Визначено напрямок дослідження закономірностей такої взаємодії з метою збільшення ефективності гірничотранспортної системи кар'єрів.

Для використання переваг автомобільно-конвеєрного комплексу та забезпечення його тривалої надійної роботи необхідно провести параметричне узгодження всіх елементів.

На основі проведених досліджень та обробки статистичного матеріалу планується провести обгрунтування параметрів надійності експлуатації автомобільно-конвеєрного комплексу глибоких кар'єрів.

Список літератури

- 1. **Ржевский В.В.** Технология и комплексная механизация открытых горных работ / **В.В. Ржевский**. М.: Недра, 1980. 631 с.
- 2. **Ржевский В.В.** Комплексы оборудования и вскрытие рабочих горизонтов мощных глубоких карьеров / **В.В.Ржевский, В.В.Истомин, В.И.Супрун** // Горный журнал. 1982. №11. С. 27-30.
- 3. **Яковлев В. Л.** Теория и практика выбора транспорта глубоких карьеров / **В.Л. Яковлев**. Новосибирск: Наука, 1989. 240 с.
- 4. **Яковлев В.Л.** Перспективные решения в области циклично-поточной технологии глубоких карьеров / **В.Л. Яковлев** // Горный журнал. -2003. -№ 4-5. -ℂ. 51-56.
 - 5. Васильев М.В. Транспорт глубоких карьеров / М.В.Васильев. М.: Недра, 1983. 295 с.
- 6. **Васильев М.В.** Научные основы проектирования карьерного транспорта / **М.В.Васильев, В.Л.Яковлев**. М.: Наука. 1972. 202 с.
- 7. **Кулешов А.А.** Формирование типажных структур систем карьерного автотранспорта с учетом его мощности и надежности / **А.А.Кулешов** // Материалы пятой Всесоюзной научно-технической конференции по карьерному транспорту, ноябрь 1984 г. Свердловск: ИГД МЧМ СССР, 1984. С.91-93.
- 8. **Смирнов В.П.** Теория карьерного большегрузного автотранспорта / **В.П.Смирнов, Ю.И.Лель**; под ред. **В.Л.Яковлева**. Екатеринбург: УРО РАН, 2002. 355 с.
- 9. Ященко Б.Е. Совершенствование работы автомобильно-конвейерного комплекса с тремя перегрузочными пунктами / Б.Е.Ященко, А.Н.Костянский, И.В.Баранов, Р.М.Логвинчук // Вісник КТУ. 2005. №10. С.5-9.
- 10. Совершенствование транспортных схем выдачи руды для условий ОАО «Южный ГОК»: монография / М.К.Короленко, В.В.Перегудов, К.А.Федин, А.Л.Романенко, В.П.Протасов. Кривой Рог: Дионис, 2012. 344 с.
 - 11. Щелканов В.А. Подземные выработки на карьерах / В.А.Щелканов. М.: Недра. 1982. 128 с.
- 12. **Мариев П. Л.** Карьерный автотранспорт стран СНГ в XXI веке / **П.Л.Мариев, А.А.Кулешов, А.Н.Егоров, И.В. Зырянов**; под ред. **А.А.Кулешова**. СПб.: Наука, 2006. 387 с.
- 13. Комплексная разработка рудных месторождений / А.Д.Черных, В.А.Колосов, О.С.Брюховецкий и др.; под. ред. А.Д.Черных. К.: Техніка, 2005. 367 с.
- 14. Юдин А.В. Эволюция перегрузочных комплексов на глубоких карьерах / А.В.Юдин, В.А.Мальцев // Горный журнал. 2002. №4. С. 41-44.

Рукопис подано до редакції 25.03.14

УДК 622.232.3

Ю.С. РУДЬ, д-р техн. наук, проф., И.С. РАДЧЕНКО, канд. физ.-мат. наук, доц., В.Ю. БЕЛОНОЖКО, ст. преподаватель, С.Ю. ОЛЕЙНИК, преподаватель Криворожский национальный университет

МОДЕЛИРОВАНИЕ ПРОЦЕССА РАЗРУШЕНИЯ КРИСТАЛЛИЧЕСКИХ ГОРНЫХ ПОРОД МАШИНАМИ УДАРНОГО ДЕЙСТВИЯ

Актуальность проблемы исследования процесса разрушения кристаллических горных пород машинами ударного действия обусловлена практической необходимостью повышения их технических характеристик.

Опубликовано ряд работ, в которых рассматриваются явление удара при бурении горных пород машинами ударного действия, описаны и проанализированы теории, применяемые при решении задачи соударения физических тел, изложены результаты экспериментальных исследований процесса разрушения горных пород. В этих работах не учитываются физико-механические свойства горной породы, которые должны приниматься во внимание при определении оптимальных параметров режима бурения.

В настоящей работе предложена физическая модель разрушения кристаллической горной породы машинами ударного действия. На основе этой модели составлено дифференциальное уравнение, которое связывает силу и продолжительность удара бурового инструмента перфоратора с физико-механическими свойствами породы и скоростью ее разрушения. Решение данного уравнения позволило получить зависимости перемещения и скорости движения горной породы, а также проанализировать влияние продолжительности воздействия нагрузки на эти параметры.

[©] Рудь Ю.С., Радченко И.С., Белоножко В.Ю., Олейник С.Ю., 2014

Проблема и ее связь с научными и практическими задачами. Современный перфоратор представляет собой машину ударного типа, в которой поршень-ударник совершает поступательно-возвратные движения и наносит удары по хвостовику вращающегося бура с закреплённой на нём буровой коронкой. При обратном ходе поршня происходит прерывистое вращение бура с помощью геликоидальной пары с храповым механизмом или непрерывно посредством встроенного в бурильный молоток двигателя с редуктором. Для очистки забоя от продуктов разрушения породы через осевой канал диаметром 6-7 мм буровой штанги и поршня-ударника или через муфту с уплотнением, одеваемую на хвостовик бура, подают воду или воздух.

Удельная энергия единичного удара перфоратора составляет 10-15 Дж на 1 см диаметра шпура. Применяют перфораторы с пониженной частотой ударов до 1000 уд./мин, с нормальной частотой - 1600-2000 уд./мин и с повышенной частотой - более 2500 уд./мин. Высокочастотные перфораторы применяют только при их установке на буровых каретках с дистанционным управлением из-за чрезмерного уровня шума (до 120 дБ) и вибрации.

Ручные перфораторы массой 10-30 кг предназначены для бурения шпуров глубиной до 3 м и диаметром до 46 мм; колонковые перфораторы массой 50-70 кг - для бурения шпуров и скважин глубиной до 25 м и диаметром до 85 мм; телескопные перфораторы массой 40-50 кг для бурения шпуров и скважин глубиной до 15 м и диаметром до 85 мм. Подача колонковых бурильных молотков с определенным осевым усилием (до 6000 Н) на забой производится автоподатчиками винтового, канатного или поршневого типов.

Пневматические перфораторы работают на сжатом воздухе давлением 0,5-0,6 МПа. Расход воздуха у ручных бурильных молотков 2,5-3,5; телескопных 3,5-5,5; колонковых 9-13 м³/мин; ударная мощность соответственно 1,6-2,1; 1,9-3,7; 4-5 кВт; крутящий момент 12-18; 20-29; 175-245 Дж. С повышением ударной мощности перфоратора и крутящего момента увеличиваются скорость, глубина и диаметр бурения шпуров и скважин. Однако тут нет прямой зависимости и при возрастании крепости пород скорость бурения снижается с 1-2 до 0,15-0,2 м/мин [1]. Актуальность проблемы исследования процесса разрушения кристаллических горных пород машинами ударного действия обусловлена практической необходимостью повышения их технических характеристик.

Анализ литературных данных и постановка проблемы. Опубликовано ряд работ, в которых рассматриваются явление удара при бурении горных пород машинами ударного действия [2], описаны и проанализированы теории, применяемые при решении задачи соударения физических тел, изложены результаты экспериментальных исследований процесса разрушения горных пород [3,4]. В книге [2] К.И. Ивановым получено уравнение, позволяющее определять скорость бурения, и представлен расчет параметров бурильных машин. Работа [3] посвящена теории и методам расчета ударных систем. В ней рассмотрен процесс соударения твердых тел по классической теории удара, приведены основы волновой теории, получены аналитические решения ударных систем, с использованием теории упругости объясняется физический смысл протекающих при разрушении процессов. В монографии [4] представлены исследования по применению энергии удара в процессе бурения горных пород, описан процесс передачи энергии удара горной породе, рассмотрены вопросы соударения бурового инструмента и породы, приводящие к разрушению горной породы.

Однако в этих работах не учитываются физико-механические свойства горной породы, которые, несомненно, должны приниматься во внимание при определении оптимальных параметров режима бурения.

Цель и задачи исследования. В настоящих исследованиях ставится задача создания физической модели разрушения горной породы машинами ударного действия, которая представлена в виде неоднородного объекта с макроскопическими включениями, связанными различными типами прослоек. На основе этой модели планируется составить дифференциальное уравнение, которое связывает силу и продолжительность удара перфоратора с физико-механическими свойствами породы и скоростью ее разрушения. Решение данного уравнения позволит получить зависимости перемещения и скорости движения горной породы, а также проанализировать влияние продолжительности нагружения на эти параметры.

Изложение материала и результаты. Механическая система перфоратора «поршеньударник - буровой инструмент - горная порода» может быть представлена совокупностью упругих стержней. Для определения напряжений и процессов, возникающих в элементах механической системы, необходимо знать перемещения и скорости движения каждой составляющей. Кроме того, нужны точные сведения о механических, физических и химических свойствах горных пород, которые зависят от величины и формы зерен, а также их состава.

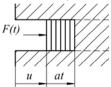
Для дальнейших исследований введем следующие обозначения: ρ - плотность разрушаемой породы, кг/м³; a - скорость звука в породе, м/с; S - площадь поперечного сечения инструмента, м²; τ - время удара, с; u - перемещение инструмента в породе, м.

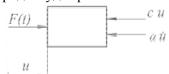
Рассмотрим удар бурового инструмента о неподвижную породу в простейшем случае. Пусть сила F(t) прилагается к породе внезапно. Тогда в ближайшей зоне сначала возникнет цилиндрическая волна, которая в дальнейшем преобразуется в сферическую волну. В первый момент сила F(t) вызывает сжатие бесконечно малого элемента породы, непосредственно примыкающего к торцу ударяющего инструмента. Сжатие первого элемента передается следующему элементу и т.д., причем этот процесс будет постепенно развиваться во времени. В любой момент времени сжатой будет лишь некоторая часть общего объема. Можно предположить, что в первый момент времени сжатая часть представляет собой объем некоторого стержня породы (рис. 1, сжатая часть заштрихована). Остальная часть объема еще не испытывает сжатия. Обозначим через a скорость, с которой распространяется деформация сжатия вдоль оси стержня.

В работе [5] показано, что скорость распространения деформации сжатия (скорость волны) определяется выражением

$$a = \sqrt{E/\rho},\tag{1}$$

где E - модуль Юнга породы.




Рис. 1. Удар инструмента о неподвижную породу

Следовательно, скорость распространения деформации сжатия a равна скорости звука в породе.

За время t длина сжатой части стержня равна at. Если сечение стержня равно S, а плотность породы равна ρ , то масса породы в сжатой части породы определяется выражением

$$m = \rho S \cdot at. \tag{2}$$

На рис. 2 показаны силы, которые действуют на сжатый участок породы. Сила $\alpha \dot{u}$ обусловлена вязким трением (α - коэффициент сопротивления), сила cu обусловлена межатомными взаимодействиями в кристаллической решетке породы [5,6]. Такая сила по своей сути подобна упругой силе сжатой пружины. В данном случае силу cu можно назвать квази-упругой силой. Поэтому коэффициент c будем называть коэффициентом жесткости породы. Однако, ввиду того, что порода состоит из отдельных макровключений, разделенных прослойками с различными физико-механическими свойствами, то и коэффициент жесткости c в разных местах породы будет разным.

Рис. 2. Схема сил, действующих на сжатый ударной силой F(t) участок породы

Дифференциальное уравнение движения сжатой породы опишем следующим уравнением

$$m\ddot{u} = F(t) - cu - \alpha \dot{u}. \tag{3}$$

Пренебрегая последним слагаемым и воспользовавшись теоремой об изменении количества движения, из уравнения (3) находим

$$\frac{d}{dt}(m\dot{u}) = F - cu. \tag{4}$$

Отсюда

$$d(m\dot{u}) = (F - cu)dt. \tag{5}$$

После интегрирования уравнения (5), получим

$$m\dot{u} - m\dot{u}_0 = (F - cu) \cdot t. \tag{6}$$

Подставим выражение (2) в равенство (6). После сокращения t получим

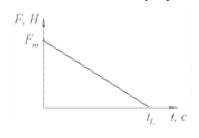
$$\frac{du}{dt} = \frac{1}{\rho Sa} \left(F(t) - cu \right) + \dot{u}_0 \,, \tag{7}$$

где \dot{u}_0 - начальная скорость сжатого объема горной породы.

Выражение (7) полностью совпадает с уравнением (216) работы К.И. Иванова [2]

$$\frac{du}{dt} = \frac{1}{\rho a S_{uu}} \left[2F(t) - F(u) \right] + \dot{u}_0. \tag{8}$$

Однако уравнение (216) содержит ряд неточностей. Выполним их анализ.


1. Автор работы [2] утверждает, что «F(t) - «падающий силовой импульс». Подстановка размерностей показывает, что величина F(t) может быть только ударной силой.

Физический анализ работы перфоратора показывает, что зависимость ударной силы от времени в общем случае должна описываться зависимостью

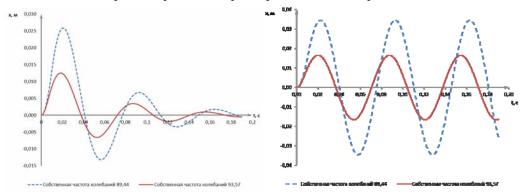
$$F(t) = F_m - \beta t, \tag{9}$$

где F_m - максимальная ударная сила, H (рис. 3).

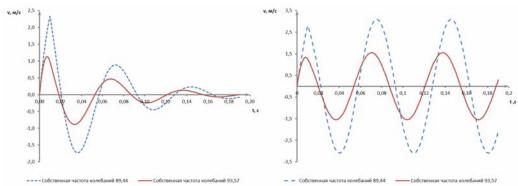
Рис. 3. Зависимость ударной силы F(u) от времени t

Отметим, что время прекращения действия ударной нагрузки t_L определяется конструкционными особенностями перфоратора и физико-механическими свойствами горной породы. К вопросу о влиянии величины F(u) на процесс разрушения породы мы обратимся позже.

 t_L t, ϵ 2. В работе [2] величина F(u) определена «усилием на контакте как функция перемещения инструмента в породе», т.е. эта величина должна иметь размерность силы.


Физическая сущность величины F(u) автором не раскрывается, но указывается, что экспериментальные данные показали, что при «прямоугольных импульсах и индикаторе с клиновидной формой в зависимости отношения, действующего на контакте между инструментом и породой усилия F к скорости внедрения v при различных амплитудах импульса и углах заострения коронок, можно выделить два участка следующего аналитического вида

$$\frac{F}{v} = \frac{A}{F(t)} \cdot u, \qquad \frac{F}{v} = \frac{B}{F(t) - K \cdot u} \cdot u, \tag{10}$$


где A,B,K - постоянные размерные коэффициенты.

Анализ показывает, что обе зависимости (10) - это зависимости вида αu с различными значениями коэффициента α .

Решение дифференциального уравнения (7) позволило найти зависимости перемещения и скорости движения горной породы, которые представлены на рис. 4 и 5.

Рис. 4. Перемещение горной породы при времени нагружения системы 0,01 с:a - без учета сил сопротивления, δ - с учетом сил сопротивления

Рис. 5. Скорость движения горной породы при времени нагружения системы 0,01 с: a - без учета сил сопротивления, δ - с учетом сил сопротивления

Проанализируем влияние продолжительности нагружения системы. Для этого целесообразно сравнить время нагружения T_L =0,01 с периодом собственных колебаний системы T_N .

Период собственных колебаний системы вычислим по формуле $T_N = \frac{2\pi}{\sqrt{c/m}} = \frac{2\cdot 3,14}{\sqrt{8756}} = 0,06715$ с. Следовательно, расчеты, выполненные ранее, относятся к слу-

чаю T_L/T_N =0,01/0,06715=0,1489. Рассмотрим случай T_L/T_N =1, т.е. когда время нагружения T_L равно периоду собственных колебаний системы T_N =0,06715 с.

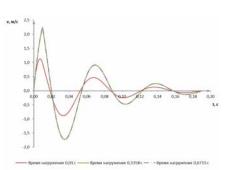
В этом случае дифференциальное уравнение движения системы без учета сил сопротивления запишем в виде

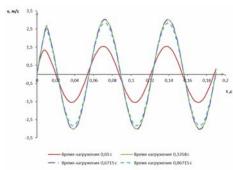
$$\ddot{x} + 8756x = 317, 7 - 4731, 2 \cdot t,$$

$$x = \frac{3177}{87560} - \frac{5914}{10945} \cdot t - \frac{3177}{87560} \cdot \cos\left(2\sqrt{2189}t\right) + \frac{2957}{23958605} \cdot \sqrt{2189} \cdot \sin\left(2\sqrt{2189}t\right),$$

$$\dot{x} = -\frac{5914}{10945} + \frac{3177}{43780} \cdot \sqrt{2189} \cdot \sin\left(2\sqrt{2189}t\right) + \frac{5914}{10945} \cdot \cos\left(2\sqrt{2189}t\right).$$

Начальные условия после удара t_1 =0,01 с, v_1 =1,2573 м/с, x_1 =0,009691 м. Тогда


$$\ddot{x} + 8756x = 0; \ x = \frac{9691}{10^6} \cdot \cos\left(2\sqrt{2189} \cdot (t - 0.01)\right) + \frac{12573 \cdot \sqrt{2189}}{43780000} \cdot \sin\left(2\sqrt{2189} \cdot (t - 0.01)\right),$$


$$\dot{x} = -\frac{19382}{10^6} \cdot \sqrt{2189} \cdot \sin\left(2\sqrt{2189} \cdot (t - 0.01)\right) + \frac{12573}{10^4} \cdot \cos\left(2\sqrt{2189} \cdot (t - 0.01)\right).$$

На рис. 6 и 7 представлены зависимости перемещения и скорости движения частицы горной породы при различном времени нагружения.

Рис. 6. Перемещение горной породы при собственной частоте колебаний системы 93,57: a – без учета сил сопротивления, δ – с учетом сил сопротивления

Рис. 7. Скорость движения породы при собственной частоте колебаний системы 93,57: a – без учета сил сопротивления, δ с учетом сил сопротивления

Выводы. В настоящей работе предложена физическая модель разрушения кристаллической горной породы машинами ударного действия.

Горная порода представлена в виде неоднородного объекта с макроскопическими включениями, связанными различными типами прослоек.

На основе этой модели составлено дифференциальное уравнение, которое связывает силу и продолжительность удара бурового инструмента перфоратора с физико-механическими свойствами породы и скоростью ее разрушения.

Решение данного уравнения позволило получить зависимости перемещения и скорости движения горной породы, а также проанализировать влияние продолжительности нагружения на эти параметры.

Список литературы

- 1. Бурильный молоток [Электронный ресурс]. Режим доступа http://www.mining-enc.ru/b/burilnyj-molotok/
- 2. **Иванов, К.И.** Влияние формы ударника на коэффициент передачи энергии удара в породу [Текст] / К.И. Иванов // В сб.: «Горный породоразрушающий инструмент». Киев: «Техника», 1970.
- 3. **Александров, Е.В.** Прикладная теория и расчеты ударных систем [Текст] / Е.В. Александров, В.Б. Соколинский. М.: Наука, 1969. 201 с.
- 4. **Шелковников, И.Г.** Использование энергии удара в процессах бурения [Текст] / И.Г. Шелковников. Л.: Недра, 1977. 159 с.
- 5. **Рудь, Ю.С.** Теория разрушения горных пород машинами ударного действия с учетом их кристаллического строения и физико-механических свойств [Текст] / Ю.С. Рудь, И.С. Радченко, С.Ю. Олейник // Гірничий вісник. 2012. Вип. 95 (1). С. 112-117.
- 6. **Протодьяконов**, **М.М.** Свойства и электронное строение породообразующих минералов [Текст] / М.М. Протодьяконов. М.: Наука, 1969. 205 с.

Рукопись поступила в редакции 25.03.14

УДК 004.75.056.5: 004.455

В.І. МИХАЙЛІВ, аспірант, Криворізький національний університет

КРИТИЧНИЙ АНАЛІЗ ЗАСОБІВ ТА МЕТОДІВ ЗАХИСТУ ІНФОРМАЦІЇ В ХМАРНИХ СИСТЕМАХ ЗБЕРІГАННЯ ДАНИХ

Розглядається сучасний стан проблеми захисту інформації в хмарних системах зберігання даних, а також наводяться результати детального критичного огляду переваг та недоліків програмних засобів та методів захисту інформації в хмарних сховищах даних. Виконано аналіз найбільш значних досліджень та патентів. Розглянуто проблеми та вразливості безпеки хмарних систем зберігання даних.

Проблема та її зв'язок з науковими та практичними завданнями. Зростання кількості цілеспрямованих атак на корпоративні інфраструктури, що інтегрують хмарні середовища зберігання даних, вимагає чітко продуманої стратегії об'єднання технологій інформаційної захисту. На даний момент практично кожен з користувачів комп'ютера стикався у своїй роботі з хмарними сховищами даних та може стати потенційною жертвою загроз інформаційної безпе-

[©] Михайлів В.І., 2014