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This paper describes the mathematical model of concentration waves passing through a layer of adsorbent. The 

analytic solution to this model deduced for eigenwaves of adsorptive layer had been found. It allows finding the 

analytical decisions for concentration signal of arbitrary waveform passing through adsorbing layer. To do this the 

concentration signal at the input of the adsorption layer must be decomposed into the set of eigenwaves, and then to 

obtain the analytical solution for each of these proper concentration waves at the outlet of adsorbed layer. Next, all 

solutions for their proper concentration waves are combined into a new solution, which is the solution for an arbitrary 

concentration signal that passes through the adsorbent layer. This approach allows us to find solutions for any periodic 

adsorption processes and allows to consider the variable component concentrations or variable flow losses at the 

entrance to the adsorption layer. A wave approach to the analysis of periodic adsorption processes gives an 

explanation to the empirical Van Deemter equation used in the practice of gas chromatography. 
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Хвильова математична модель для газової хроматографії 
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Дана стаття описує математичну модель концентраційних хвиль, що проходять через шар адсорбенту. Для 

власних хвиль адсорбційного шару знайдено аналітичне рішення цієї моделі. Це дозволяє знаходити аналітичні 

рішення для концентраційного сигналу довільної форми, який проходить через адсорбційний шар. Для цього 

потрібно концентраційний сигнал на вході адсорбційного шару розкласти в набір власних хвиль, а потім 

отримати аналітичне рішення для кожної з цих власних концентраційних хвиль. Далі всі рішення для власних 

концентраційних хвиль об’єднуються в нове рішення, яке і є рішенням для довільного концентраційного сигналу, 

який проходить крізь шар адсорбенту. Такий підхід дозволяє знаходити рішення для будь-яких періодичних 

процесів адсорбції та дозволяє враховувати змінну концентрацію компонентів або змінну витрати потоку на 

вході до адсорбційного шару. Хвильовий підхід до аналізу періодичних адсорбційних процесів дає пояснення 

емпіричному рівнянню ван Деемтера, що використовуються в практиці газової хроматографії. 
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1 Introduction 

 

Chromatography is a physical method of separation in 

which the components to be separated are distributed 

between two phases, one of which is stationary while the 

other mobile phase moves in a definite direction [1-3].  

The various chromatographic processes named 

according to the physical state of the mobile phase. Thus, in 

gas chromatography (GC), the mobile phase is a gas, and in 

liquid chromatography, the mobile phase is a liquid. A 

subclassification made according to the state of stationary 

phase. If stationary phase is a solid, the GC technique 

called gas-solid chromatography; and if it is a liquid, the 

technique called gas-liquid chromatography.  

This paper discusses only gas-solid chromatography 

(GSC).  

Separations of components put through a gas 

chromatography process with solid stationary phase based 

on a different adsorption value of separated substances.  

The mobile phase in gas chromatography is an inert 

http://creativecommons.org/licenses/by/4.0/
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gas, usually helium, but sometimes nitrogen or argon. This 

mobile phase often called the carrier gas.  

The schematic diagram of a gas chromatography 

apparatus is shown in Figure 1. The key parts of a gas 

chromatograph include carrier gas cylinder, flow controller, 

injector, chromatographic column, detector, and data 

system.  

Chromatographic analysis starts with a quick injection 

of a test mixture into flow of carrier gas. While being 

transported through chromatographic column, different 

components migrate through the column with different 

velocities by differently interacting with the adsorbent in 

the column. As a result, each component is retained in the 

column for different amount of time, known as a retention 

time. Different retention times cause the components to 

pass through the column outlet separately from each other. 

 The initial gas mixture separated into a series of 

binary mixtures one component of which is a carrier gas, 

and other component from the analyzed mixture. When this 

binary mixtures passes through a detector, the latter 

generates a response indicative change in the properties of 

the gas mixture. A way to observe separation result is 

through a chromatogram, which is a plot of the detector 

response as a function of time elapsed since the injection of 

a test mixture.  

Working gas chromatograph is because the retention 

time of each component is an individual property of this 

component, and does not depend on a composition of 

analysed mixture. Therefore, if the conditions of analysis 

are constant, whatever a composition of initial mixture, the 

peak corresponding to the substance will always be in 

place.  

For quantitative analysis of a mixture used height or 

area of peaks in the obtained chromatogram. The height and 

area of chromatographic peaks are proportional to 

concentration of components in a feeding gas mixture.  

Despite the fact that gas chromatography is widely 

used method, and it is rightly considered as one of the most 

theoretically founded methods, the practice of gas 

chromatography allows putting a number of questions are 

difficult to answer in the framework of existing theoretical 

concepts. The most obvious of these difficult questions: 

Why the chromatographic separation better achieved at 

high temperature of absorption column? 

It is well known that adsorption of gases increases 

with decreasing temperature of adsorbent. If gas 

chromatography based on multiple repetitions of adsorption 

and desorption of a components of mixture, it would appear 

reasonable that separation of the mixture would be better at 

a lower temperature of adsorption column. However, 

chromatographic separation processes normally executed at 

elevated temperature, usually about 100-200 °C. 

Sometimes higher temperature of the 

chromatographic column required that all components of 

the mixture to be in the gaseous state. However, even in a 

case where the boiling temperature of all components of 

mixture significantly below room temperature, separating 

of this mixture still performed at increased temperature 

[4-6].  

On the other hand, it is known that purification of 

gases by adsorption is always carried out at lower 

temperature, if it possible.  

The incompleteness of modern concepts of gas 

chromatography illustrated by the example of temperature 

programmed gas chromatography. The application of 
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Figure 1 – The schematic diagram of the gas 

chromatography apparatus. 
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temperature programming is a very adequate way to speed 

up a gas chromatographic analysis. This technique also 

used for the analysis of gas mixtures with widely differing 

properties [6-9].  

The Figure 2 shows typical view of chromatograms, 

which obtained at constant and variable temperatures of 

adsorption column in chromatographic separation process. 

It is clearly visible, that peaks in the beginning of the 

chromatogram completely separated from each other at low 

temperatures of column, but peaks corresponding to the 

various components at the end of chromatogram broadened 

at this temperature. Vice versa, peaks of chromatogram 

become sharper in the case where the temperature of 

adsorption column is elevated, but the distance between 

adjacent peaks decreased.  

If in the act of separation gradually increase column 

temperature from minimum to maximum, the form of 

chromatogram will be improved in terms of mixtures 

quantitative and qualitative analysis.  

The gas adsorption increases with decreasing 

temperature. Therefore, increasing distance between 

concentration peaks at low temperature well explained in 

the framework of existing ideas about physical mechanisms 

of gas chromatography.  

However, the sharp concentration peaks apparently 

bound with some other factor, which increases with 

increasing the temperature. One can assume that this factor 

is the longitudinal diffusion of a component in a carrier gas, 

since it increases with increasing the temperature, but the 

effect of diffusion usually explained the reverse process of 

broadening concentration peaks at the column outlet. 

The effect of this factor on the process of gas 

chromatography so significant that separation of gas 

mixtures at their chromatographic analysis practically 

always carried out at increased temperature, despite the fact 

that the adsorption in this case significantly reduced.  

From this, it follows that our understanding of 

separation mechanisms in gas chromatography are not 

comprehensive, and they need to clarify. 

 

2 Material and Methods 

2.1 Gas adsorption in porous adsorbent bed 

 

We now consider the adsorption of a component, 

which dissolved in the carrier gas. 

When constructing the mathematical model of 

adsorption process we will take the following physical 

interpretation of the component spreading processes in a 

microporous adsorbent. 

The carrier gas mixed with component, what we are 

interested, filtered through a porous adsorbent bed. Near the 

points of tangency of the adsorbent grains are the stagnant 

zones in which the carrier gas is almost stationary. 

The gas flow passes through an array of holes in the 

empty spaces between the adsorbent grains. 

Thus, all space, filled with adsorbent, can be divided 

into two zones: a stationary frame consisting from grains of 

adsorbent and adjacent stagnant zones, and the system of 

holes in which the carrier gas with dissolved component are 

moving. 

The component in stationary frame spread mainly due 

to its molecular diffusion in the gas, filling the micropores 

in the adsorbent grains and stagnant zones around them. 

The component in the system consisting of randomly 

arranged holes in stationary frame propagated by 

convection. 

Thus, the diffusible component in the stationary frame 

and gas stream in the system of holes is moving along 

paths, which are substantially none intersects (see 

Figure 3). The interactions between these streams occur 

along the boundary of the array of holes, in which moves 

the carrier gas. 

This physical pattern of the gas propagation through a 

porous adsorbent bed is very different from the 

conventional scheme of mathematical description of the 

adsorption, which provided, for example, in [10-12]. 

In the traditional approach considered diffusion of 

adsorbed component inside the moving carrier gas. 

In the proposed formulation of this problem, 

removing the component from stationary frame to the 

moving carrier gas seems as a drain of this component in 

problem of molecular diffusion in the pores of adsorbent. 

The convection of this component in the channels 

with moving carrier gas is described the separated equation. 

As evidenced by the foregoing, the equation of molecular 

diffusion in the stationary frame can be writen as: 

 

,
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Figure 3 – The ccomponent spreading pattern in 

adsorbent bed. 

 

the motion of the diffusing component in a 
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the carrier gas line of current. 
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where C is actual volumetric concentration of the 

component in the stationary frame (gas in the pores of 

adsorbent and stagnant areas around the adsorbent particles) 

[m
3
/m

3
]; 

Сg is actual volumetric concentration of the 

component in the moving carrier gas [m
3
/m

3
]; 

 is kinetic coefficient of mass transfer between the 

gas in the stationary frame and the moving carrier gas, 

[m
3
/(s· m

2
)]; 

F  is specific contact surface of the stationary frame 

and the moving carrier gas, [m
2
/m

3
]; 

DE is equivalent value of the diffusion coefficient in 

the stationary frame, is equal to product of the diffusion 

coefficient in the carrier gas and relative value of the 

effective pore cross section in the stationary frame, [m
2
/s]. 

KG is dimensionless Henry constant for adsorption 

isotherm. 

We notice that diffusion equation, recorded for the 

stationary frame, included the Henry constant. This means 

that the proposed mathematical model of gas adsorption is 

linear model. The isotherm used to modelling adsorption 

known as Henry's adsorption isotherm. 

The material balance of component in elementary 

volume of carrier gas, moving inside the adsorbent bed, can 

write in the form of another differential equation: 

      ;0
),(

),(),( 
dx

xdCg
GxCgxCF


         (2) 

where G is the volumetric flow rate of carrier gas related to 

a unit section of the adsorbent bed, [m
3
/s]. 

These two equations, when it considered together, 

make it possible to find the distribution of the component 

concentration in the moving carrier gas and in the stationary 

frame.  

 

2.2 Wave Mathematical Model of  Adsorption 

 

We consider the component passage through a bed of 

adsorbent, having a width h.  

We assume that the volumetric concentration of the 

component in the carrier gas in the inlet section of the 

adsorbent bed varies harmonically, as shown in the 

Figure 4. 

In this paper, we consider the steady adiabatic 

adsorption process in the thermally insulated adsorbent bed. 

If we consider a steady state movement of a 

concentration wave through the adsorbed layer, according 

to Prigogine theorem, entropy production in this layer 

should reach its minimum. 

Because the adsorption accompanied by heat effect 

and heat transfer is basically an irreversible process, the 

heat that was given in the adsorption process, can never be 

returned completely in the desorption process.  

Therefore, the steady-state process, in which 

periodically changed mass of the adsorbed substance, by 

definition, will be essentially irreversible. It follows that the 

minimum entropy production in the steady-state movement 

of concentration wave will be achieved if the mass of the 

adsorbed component remains unchanged. Therefore, in this 

mathematical model used the convention about the 

constancy of mass of the component that adsorbed in the 

adsorbent bed. 

The constancy weight of component is only achieved 

for the oscillation frequencies, at which the instantaneous 

values of the component concentration at the inlet of the 

adsorbent bed is equal to the instantaneous value of its 

concentration at the outlet of this adsorbent bed. This is 

possible only when the concentration wavelength in the 

stationary frame is equal to the thickness of the adsorbent 

layer.  

Following the conventional terminology, we call these 

oscillations of the concentration  eigenmodes of this 

adsorbent bed, and frequency of these oscillations  

eigenfrequencies of the adsorbent bed. 

In considered mathematical model is also accepted 

assumption that the gas, filling the pores of the adsorbent, 

and the gas adsorbed on its surface are in thermodynamic 

equilibrium.  

For this physical interpretation the spreading of 

component in the porous adsorbent bed, initial condition for 

equation (1) can be written as: 

 )()0,( xСoxС  .          (3) 

Neumann boundary condition: 

 0
),0(






x

С 
;  0

),(






x

hС 
.      (4) 

The physical sense of these boundary conditions is the 

end surfaces of the adsorbed layer is not absorbed and does 

not leave the considered component. The mass transfer 

performed only between a moving carrier gas and the 

stationary frame of the adsorbent bed. 

Figure 4 – The concentration eigenwave 

spreading through the adsorbent bed. 
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We write the equation (1) in the operator form (S  

operator of differentiation with respect to time) [13]: 

      

 
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G

E
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




         

(5) 

The boundary conditions also may be written in the 

operator form:  

 0
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





x
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),(






x

shС
.         (6) 

We construct the finite integral cosine transform to 

the coordinate x: 


h

kk dx
h

x
sxCsC

0

)cos(),()(  ,  ...2,1,0k        (7) 

The inversion formula: 
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Where 
2

k  is the square of the norm of the integral 

transform kernel: 
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h

x
h
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The last expression is the tabular integral: 
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Let convert the image of expression for the second 

derivative of the component concentration by the formula 

for integration by parts:  
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Let find eigenvalues μk of the integral transform to 

ensure compliance with boundary conditions. 

The boundary condition at х=0: 
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Therefore, the boundary condition at х=0 for a cosine 

transform is performed automatically. 

The boundary condition at х=h: 
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Find the eigenvalues of the integral transform such as 

to satisfy the condition: 
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Then dividing right and left sides of this equation to 

 kcos , obtain: 
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Comparing with the second boundary condition, we 

obtain the formula for finding the eigenvalues: 
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Taking this into account, we obtain an expression for 

the integral transform: 
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After cosine-transform, diffusion equation in the 

stationary frame (1) takes the form: 
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Hence, we find the image of the function describing 

the concentration of the component in a stationary frame:
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For simplicity, we choose zero value of the initial 

temperature distribution: 

0)( xCo . 

With this in mind, we obtain: 
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For further investigation, we specified wave nature of 

concentration oscillation in the carrier gas. This means that 

if we know the period of oscillations, the length of 

concentration eigenwave can found by knowing the width 

of the adsorbing layer: 
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where T is the period of oscillations in the main 

concentration wave, [s]. Ak is the amplitude of the k-th 

harmonic of the concentration oscillations, [m
3
/ m

3
]. 

We construct the finite cosine integral transform into 

the coordinate, taking into account that the lengths of the 

concentration waves are multiples of the thickness of the 

adsorbent layer: 
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To find these integrals we use the frequency selection 

rule: 
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With this in mind: 
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Next, convert this expression to the form whith the 

differentiation operator with respect to time: 
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Substituting this expression into the equation (21), 

after elementary transformations, we obtain the expression, 

easy to go back to its original: 
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Let transform it by the original image. The resulting 

expression is the sum of two components.  

The first summand is an inverse exponential function 

by time. The steady state value of this function becomes 

equal to zero. The second summand of this original is the 

sum of sine and cosine.  

For simplicity, we introduce the following notation: 
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With consideration of this, original is: 
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Hence, we find a simple solution to equation of 

diffusion when its eigenwave passing through the adsorbent 

bed: 
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The physical sense of this formula is obvious. The 

oscillation amplitude of component concentration in a 

stationary frame is proportional to the amplitude of its 

oscillation in a carrier gas (at the entrance of adsorbent bed) 

multiplied by a coefficient that depending of carrier gas 

velocity and adsorbent properties. 

Phase of the concentration oscillations in a stationary 

frame lags behind the oscillation phase in a carrier gas at 

the entrance of adsorbent bed. 

In other words, at same speed of a carrier gas, 

velocity of concentration wave in adsorbent bed is less than 

velocity of the concentration wave out of adsorbent bed. 

Moreover, this speed difference affected by many factors, 

which including the Henry's law constant for gas 

adsorption. Is easy to verify, that the greater value of Henry 

constant the greater value of Bsk and therefore more phase 

shift, and is less the speed of a concentration wave in the 

adsorbent bed. 

Material balance of a component in elementary 

volume of carrier gas, moving inside adsorbed layer, can be 

written in the form of first order differential equation (2). 

The physical meaning of this equation is that the change in 

concentration of gas, moving in the pores, occurs only 

through mass exchange with the gas in a stationary frame. 

We search for the solutions of this equation for the k-

th iegenwave of adsorptive layer: 
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The component from carrier gas can pass only into 

stationary frame; and vice versa, the component from sta-

tionary frame can move only to carrier gas. It follows that, 

if the concentration of component decreases in a carrier gas, 

it stationary frame concentration can only increase, and vice 

versa, if component concentration in a stationary frame 

decreases, it should increase in a carrier gas. 

To satisfy this condition, represent concentration 

waves in a stationary frame as the function of sine: 
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For functions of selected type, the equation of 

material balance (2) takes the form: 
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By grouping the similar terms, and using the formula 

of difference identities for sine, we transform the last 

expression into a form convenient for analysis: 
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The expression above can be interpreted as a spatial 

lag between the concentration wave in carrier gas and the 

concentration wave in stationary frame.  

The tangent of the phase angle between the 

component concentrations in a stationary frame and in a 

carrier gas is equal to: 
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In steady state motion of a concentration wave, 

between carrier gas and adsorbent takes place multiple 

exchanges of component. As a result, the amplitudes of 

component mass oscillation in the carrier gas and in the 

adsorbent are identical. It follows that the amplitude of 

eigenoscillations of the component concentration at the 

outlet from adsorbent bed will be equal to half of oscillation 

amplitude at the entrance to this adsorbent bed. 

In view of this, we obtain a comparatively simple 

solution to the concentration eigenwaves, at the outlet of 

adsorptive layer: 

.2cos
2

),( 
















 kk

k
k

Th

x
k

A
xCg 


     (39) 

The physical sense of this formula is obvious: for 

eigenwaves propagating through the adsorbent bed, its 

frequency remains the same, and the phase of the wave 

delayed in time by an angle φk, and lags in space on the 

angle ψk. Moreover, phase angles are different for different 

concentration wave. 

Essentially important for the considered mathematical 

model is that the system of eigenfunctions is complete. This 

means that any periodic sequence of arbitrary shape pulses 

can be with any desired degree of accuracy expanded in a 

finite series of these eigenfunctions. This position proved in 

mathematical analysis. 

Therefore, any concentration signal entering into the 

adsorption column can be decomposed into the finite series 

of eigenfrequencies of this column. Further, having 

separately passed through the absorption column, we can 

combine back this eigenmodes into output concentration 

signal at the column outlet. 

Thus, having the analytical solution for the set of 
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eigenwaves in adsorption column, we can relatively easy to 

get a solution for any periodic sequence of concentration 

pulses. 

We take as an example of these solutions the 

calculation of nitrogen pulse passage through the adsorption 

column.  

Helium selected as a carrier gas. The pressure in the 

adsorption column is taken equal to 1,0 bar. Henry constant 

for adsorption of nitrogen is taken to be 1,0 m
3
/(m

3
·bar), the 

temperature of adsorption column is 100°C. 

The formulas for definition of mass transfer 

coefficient are taken from [14]. The length of the 

adsorption column taken equal to 1,8 m, velocity of the 

carrier gas in the column is taken equal to 0,18 m/min. The 

trapezoidal shape is given by input concentration signal. 

First, decompose trapezoidal pulse of the nitrogen 

partial pressure in a Fourier series. To determine the 

coefficients of this expansion we use well-known formulas 

from the mathematical analysis: 
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where f(x) is a function expanded in Fourier series.  

So having a sum of sines and cosines representation 

of an input concentration signal, we can easily predict the 

steady state output concentration signal. To do this, we are 

using equations (32, 33) and (38, 39) to find the Fourier 

series for the nitrogen concentration in the stationary frame, 

and in the carrier gas, leaving the adsorption column. 

In this example, calculation made for the first hundred 

members of the Fourier series. This allows eliminating the 

termination effects of Fourier series. 

Figure 5 shows the calculated curves for the nitrogen 

concentration at the entrance into the adsorption column 1, 

in the outlet from the adsorption column 2, and in the 

stationary frame (adsorbent) 3. The forms of corresponded 

graphs qualitatively are similar to chromatogram in gas-

chromatographic analysis. 

As expected, during passage the concentration pulse 

through the adsorption column, shifted phases of individual 

harmonics of the concentration signal. This leads to 

broadening of the concentration signal in time and space.  

Wave approach to investigations of cyclic adsorption 

and desorption processes is based on the concept of 

eigenwave in the adsorbed layer. Therefore, this method of 

calculation is necessary to determine the main 

eigenfrequency of the adsorptive layer. 

From the definition of concentration eigenwaves 

follows that period of the main eigenwave is equal to 

retention time for the peak, corresponding to this 

component in the chromatogram. 

In practical calculations, we may to find the period of 

main eigenwave by successive approximations. 

Predetermined velocity of carrier gas and length of 

the adsorption column, it is easy to determine the time of 

the carrier gas passage across the adsorption column. This 

is a first approximation of the retention time of the 

component in the chromatographic column. 

Then, using formulas (33) and (38), we find the phase 

shifts of the main concentration wave. 

During the movement of the carrier gas in the 

chromatographic column, component move forward by a 

distance is equal to: 





2

2 11
1


 hh .              (41) 

where h is the length of chromatographic column.

  

From this, it is easy to give a further refine speed of 

concentration pulse promotion in the chromatography 

column, and specify the period of its eigenwave in the 

chromatography column. 

Repeating this procedure several times, we can 

determine velocity of concentration pulses of all 

components in the analysed gas mixture with acceptable 

accuracy. 

Because the phase shift of concentration waves for 

each component not only depends on the value of 

adsorption, but also on the diffusion and the kinetic 

coefficients of mass transfer, the concentration waves move 

with different speeds. On this effect is based 

chromatographic separation of gas mixtures. 

 

Figure 5 – The calculated graphics of 

concentration pulse passage in the adsorbed layer. 

 

1  the form of concentration pulse at the inlet of 

the adsorption column; 

2  the shape of the concentration pulse in the 

output from the adsorption column; 

3  the form of the concentration pulse in the 

stationary frame. 
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3  Results and Discussion 

 

3.1 Analysis of the mathematical Model of Gas 

Chromatography 

   

As is done in the analytical gas chromatography, as a 

starting point we will accept nonsorbent component 

concentration wave, having the same period and initial 

phase of oscillations that the test component. 

The mathematical model assumed that the carrier gas, 

as well as unretained component does not interact with the 

adsorbent. Therefore, the velocity of solute that does not 

sorb is equal to the velocity of the carrier gas. 

The length of the concentration wave of unretained 

component may found as the product of the velocity of the 

carrier gas and the period of concentration wave for 

component does not sorb. 

The height equivalent to a theoretical plate and, 

consequently, efficiency of chromatography column 

depends upon the velocity of carrier gas. The nature of this 

relationship is that it has an optimum velocity of carrier gas 

at which obtained minimum height equivalent to a 

theoretical plate or minimal broadening of concentration 

peaks. 

The height equivalent to a theoretical plate for packed 

column, and carrier gas velocity connected to each other by 

the empirical van Deemter equation having the form [15]: 

        CV
V

B
Ah DT  ,                   (42) 

where AD, B and C are constants; V  velocity of a carrier 

gas. 

Because optimal values of carrier gas velocity is 

important for chromatography, literature gives various 

hypotheses about the physical meaning of constants AD, B 

and C, as well as recommendations to determine their 

value. 

A minimum height equivalent to a theoretical plate 

obtained by the van Deemter equation, explained by the 

fact that this equation is the sum of a decreasing function  

hyperbole and increasing straight line. 

Figure 6 shows graphs of phase shift of concentration 

eigenwave in the stationary frame (φ1), in the carrier gas, 

exiting chromatography column (ω1), and the total phase 

shift angle (φ1+ ω1) as a functions of the velocity of carrier 

gas.  

It is clear that graph of the total phase shift for 

concentration wave is similar to function, which is the sum 

of hyperbole and a straight line.  

Expression for the eigenwaves phase shift in 

stationary frame, after simplification, assumes the form: 
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Considering that the kinetic mass transfer coefficient 

β for laminar flow will be independent of the speed of 

carrier gas, denominator in this expression is a constant. 

The numerator only variable is a period of the main 

eigenmode T, which is inversely proportional to the 

velocity of the carrier gas. 

Therefore, the phase shift angle of a concentration 

wave in the stationary frame is the arctangent function of 

square of carrier gas velocity: 

 2arctan Vconst  .                 (44) 

The spatial phase shift at the output of a 

chromatographic column is determined by the expression: 
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This deduction is the spatial phase shift is decreasing 

function against velocity of carrier gas, like a hyperbola. 

The implication of this analysis is that the phase shifts 

in space and in time versus to the speed of carrier gas is a 

decreasing and increasing functions that have a minimum.  

As shown in Figure 6 (gray area), for small values of 

the argument, resulting function is well approximated by 

van Deemter equation, which is the sum of hyperbole and a 

straight line. 

 

Sometimes the van Deemter equation needs to 

improvement. For example, Giddings and Robinson [16] 

offered such modification of van Deemter equation: 
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Figure 6 – The graphs of phase angle shift of 

concentration eigenwave as a function of the 

velocity of carrier gas. 

φ – in a stationary frame; 

ω  in a carrier gas, filling the adsorbent bed; 

(φ+ω)  total phase shift. 
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Another, more recent equation, the Knox equation 

[17], is applicable to various types of liquid 

chromatography: 

         CV
V

B
VAh DT  3/1

.                  (47) 

In these equations, into the classical van Deemter 

equation inserted an additional function, which is a convex 

in shape. This is necessary for a more accurate 

approximation of the dependence shown in Figure 6. 

Summary phase angle (φi+ωi) for each eigenmode of 

concentration signal finally defines a shape of concentration 

pulse exiting chromatography column. The smaller is the 

phase-shift angle between individual eigenmodes, the less 

be blurred the peaks on gas chromatogram, and therefore is 

less height equivalent to a theoretical plate. 

Thus, the proposed mathematical model gives results 

that in good agreement with totality of experience in 

analytical gas chromatography. 

There are parallels between the movement of 

concentration waves and the different nature wave’s 

propagation, such as a light. 

Movement of concentration waves in the adsorbent 

similar to the motion of the light waves in a transparent 

medium. 

Light waves are slowed down when it passes through 

a transparent medium. This effect depends upon a nature of 

this medium. Quite similarly, a slow down of concentration 

waves depends on a nature of adsorbent.  

Slowing down the light waves also depends of its 

frequency. On this property is based the spectral analysis. 

Due to different velocities of the light waves in a 

transparent medium, narrow light beam, in which mixed 

radiation from different atoms, decomposed in a spectrum. 

Quite similarly, by different speed of the 

concentration waves of various substances, a short pulse of 

gas mixture passing through a chromatographic column 

stretching in a gas chromatogram. 

From this point of view, it is quite natural similarity 

between optical spectrum of gas mixtures and view of a 

chromatogram, obtained by gas chromatography. 

Similar to refraction of the light waves we could talk 

about refraction of concentration waves in a 

chromatography column. 

Therefore, the wave approach to the consideration of 

periodic adsorption processes is not only a new method of 

calculation, but it is a same kind of a new paradigm in the 

adsorption technique. 

 

 

4  Conclusion 

 

The mathematical model of wave adsorption produces 

reasonable results that well agreed with empirical data to 

have accumulated in analytical gas chromatography. 

Wave approach to the analysis of periodic adsorption 

processes enables to better understanding process of 

analytical gas chromatography. 

The mathematical model of wave absorption can 

improve methods of calculating the sorption dynamic for a 

broad class of batch action adsorption apparatus. 
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