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The Cyclical Structure of the British Stock Market Returns. 
An Approach Based on Long Memory Cycles 

Luis Alberiko Gil-Alana1 

Abstract 
This paper deals with the presence of stochastic cycles in the British stock market returns. 

Stock market prices are usually characterised by the presence of a large value in the periodogram 
at the smallest frequency, which may suggest the need of first differences. Once this component is 
removed, we show in the paper that a cyclical component may still be present in the returns, and 
we model this property throughout new statistical techniques based on long memory cycles.  
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1. Introduction 
The adequacy of a mathematical model when describing the nonstationarity in macroeco-

nomic and financial time series is a question that still remains open. Deterministic approaches 
were early discouraged in view of the fact that the series changed or evolved over time, and sto-
chastic approaches (based on first differencing) became popular, especially after the seminal paper 
of Nelson and Plosser (1982). These authors used tests of Fuller (1976) and Dickey and Fuller 
(1979) and examined fourteen US macroeconomic variables. They were unable to reject the exis-
tence of unit roots in practically any of the series examined. Following that work, a battery of test 
statistics was developed for testing unit roots (Phillips, 1987; Phillips and Perron, 1988; Kwiat-
kowski et al., 1992; etc.), and they have been widely employed in the empirical work on finance. 

Although there is still no consensus, most authors agree that stock market prices contain 
unit roots and the literature has been oriented towards the short-run dynamics of the returns. Thus, 
the key question is to examine the possible autocorrelated structure of the differenced series, either 
throughout the classical ARMA representations or using other more complex forms based on sto-
chastic volatility models (see, e.g., Bollerslev, 1986; Taylor, 1986; and all subsequent work). 

In this paper we examine the stochastic behaviour of the British stock market prices from 
a different time series perspective. First, we examine the order of integration of the series. How-
ever, instead of using classical procedures (e.g., Dickey and Fuller, 1979; Phillips and Perron, 
1988; etc.), which are all based on autoregressive (AR) models, we nest the unit root in a fractional 
structure. The results show that the British stock market prices are difference-stationary. Then, the 
differenced series is examined in order to investigate a possible cyclical pattern in its behaviour. 
For the case of the long run or zero frequency, we use both parametric and semiparametric meth-
ods, whereas for the cyclical component we employ a version of a parametric testing procedure of 
Robinson (1994a). The outline of the paper is as follows: Section 2 describes the methods em-
ployed in the paper. In Section 3, we describe the historical dataset of the British stock market 
prices. Section 4 deals with the empirical work, while Section 5 concludes.  

2. The statistical methods 
For the purpose of the present paper, we define an integrated of order 0 (I(0)) process {ut, 

t = 0, ±1, … } as a covariance stationary process, with spectral density function that is positive and 
finite at any frequency on the spectrum. In this context, we say that {xt, t = 0, ±1, …} is integrated 
of order d (and denoted by I(d)) if: 

 ....,2,1t,ux)L1( tt
d ==− , (1) 

                                                           
1 The author gratefully acknowledges financial support from the Minsterio de Ciencia y Tecnologia (SEC2002-01839, 
Spain). He also thanks Susan Cabo for all her constant support. 
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with xt = 0 for t ≤ 0, where d can be any real number, and where the unit root corresponds 
to d = 1. If d ∈ [0, 0.5), xt is covariance stationary and mean-reverting. If d ∈ [0.5, 1), the process 
is no longer stationary but it is still mean reverting, with the effect of the shocks dying away in the 
long run, while d ≥ 1 means nonstationarity and non-mean-reverting. Note that this specification is 
radically different from the traditional way of testing unit roots, usually based on models of form: 

 ....,2,1t,ux)L1( tt ==ρ− , (2) 

where the unit root is ρ = 1. Here, the series is stationary if ⎢ρ ⎢ < 1. It is nonstationary 
but non-explosive for ρ = 1 and becomes explosive for ⎢ρ ⎢ > 1. Thus, the different long-run be-
haviour around the unit root makes this specification untractable in terms of standard distributions, 
unlike what happens in case of the fractional model (1). 

The use of fractional structures in stock return data has been empirically studied in nu-
merous papers. A few examples are Cheung and Lai (1995), Jacobsen (1996) and Hiemstra and 
Jones (1997). Nowadays, there exist many well-known estimators for the fractional differencing 
parameter d (e.g., Fox and Taqqu, 1974; Dahlhaus, 1989; Geweke and Porter-Hudak, 1990; 
Sowell, 1992; etc.). Here, we present first a semiparametric method due to Robinson (1995a). It is 
a “Whittle” estimate in the frequency domain, based on a band of frequencies that degenerates to 
zero. The estimate is implicitly defined by: 
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where m is a bandwidth parameter number, I(λj) is the periodogram of the raw time series, 
and d ∈ (-0.5, 0.5)1. Under finiteness of the fourth moment and other mild conditions, Robinson 
(1995a) proved that: 

,Tas)4/1,0(N)dd̂(m do ∞→→−  

where do is the true value of d and with the only additional requirement that m → ∞ slower 
than T2. Robinson (1995a) showed that m must be smaller than T/2 to avoid aliasing effects. A multi-
variate extension of this estimation procedure can be found in Lobato (1999). There also exist other 
semiparametric procedures for estimating the fractional differencing parameter, for example, the log-
periodogram regression estimate (LPE), initially proposed by Geweke and Porter-Hudak (1983) and 
modified later by Künsch (1986) and Robinson (1995b) and the averaged periodogram estimate 
(APE) of Robinson (1994b). We have decided to use in this article the estimate of Robinson (1995a), 
firstly because of its computational simplicity. Note that using the “Whittle” estimate, we do not need 
to employ any additional user-chosen numbers in the estimation (as in the case with the LPE and the 
APE). Also, we do not have to assume Gaussianity in order to obtain an asymptotic normal distribu-
tion, Robinson’s (1995a) estimate being more efficient than the LPE.  

As mentioned in Section 1, in the context of financial time series, it is also important to 
examine the short-run dynamics underlying the series. Thus, we also perform a fully parametric 
procedure, due to Robinson (1994a), which is still based on model (1). It is a Lagrange Multiplier 
(LM) test of the null hypothesis: 

 oo dd:H =  (4) 

                                                           
1 Velasco (1999a, b) has recently showed that the fractionally differencing parameter can also be consistently 
semiparametrically estimated in nonstationary contexts by means of tapering. 
2 The exact requirement is that (1/m) + ((m1+2α(log m)2)/(T2α)) → 0 as T → ∞, where α is determined by the smoothness 
of the spectral density of the short run component. In the case of a stationary and invertible ARMA, α may be set equal to 2 
and the condition is (1/m) + ((m5(log m)2)/(T4)) → 0 as T → ∞. 
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in model (1) for any real value do. The test statistics is given by: 
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2â  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λψλε×⎟

⎠
⎞⎜

⎝
⎛ λελε×λελψ−λψ= ∑ ∑ ∑∑

−

=

−

=

−

=

−
−

=

1T

1j

1T

1j

1T

1j jj

1
1T

1j jjjj
2

j )()(ˆ)'(ˆ)(ˆ)'(ˆ)()(
T
2Â  
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I(λj) is the periodogram of ut evaluated under the null, and the function g is a known function re-
lated to the spectral density function of ut,  
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Note that this test is purely parametric and therefore, it requires specific modelling as-
sumptions regarding the short memory specification of ut. Thus, for example, if ut is white noise, g 
≡ 1, (and thus, 0)(ˆ =jλε ), and if ut is an AR process of form φ(L)ut = εt, then, g = |φ(eiλ)|-2, with σ2 

= V(εt), so that the AR coefficients are a function of τ. 
Based on the null hypothesis Ho (4), Robinson (1994a) established that under certain 

regularity conditions1: 

 ∞→→ TasR d
2
11

ˆ χ , (6) 

and also the Pitman efficiency of the test against local departures from the null2. Thus, we 
are in a classical large sample-testing situation. Because 1R̂  involves a ratio of quadratic forms, its 
exact null distribution can be calculated under Gaussianity via Imhof’s algorithm. However, a simple 
test is approximately valid under much wider distributional assumptions. An approximate one-sided 
100α% level test of Ho (4) against the alternative: Ha: d > do (d < do) will be given by the rule: “Re-
ject Ho if 1̂r  > zα ( 1̂r  < - zα)”, where the probability that a standard normal variate exceeds zα is α3.  

So far, we have presented methods that concentrate exclusively at the long run or zero 
frequency. However, we are also interested in the cyclical structure of the series. The existence of 
cycles is a well-known stylised fact, mainly in macroeconomics, but also in finance. With the de-
velopment of the National Bureau of Economic Research (NBER)’s project of “Measurement 
without Theory”, and the first extensive study of Burns and Mitchell (1946) on the American 
Economy, business cycles and their features have also constituted a direct object of empirical 
analysis. Numerous studies have tried to describe them and to consider their stability over time. 
Examples are Romer (1986, 1994), Diebold and Rudebusch (1992), Beaudry and Koop (1993), 
Watson (1994), etc. Hess and Iwata (1997) showed that complex linear or non-linear models (like 
Perron, 1989; SETAR, Markov Switching or Beaudry and Koop, 1993) do not better replicate 
business cycle features than a simple linear ARIMA model, though in another recent article, Can-
delon and Gil-Alana (2003) show that fractional models can do it even better. In the context of 

                                                           
1 These conditions are very mild, and concern technical assumptions, which are satisfied by ψ(λ). 
2 That is, if we direct the tests against local alternatives of form: Ha: d = do + δT-1/2, the limit distribution is ),(2

1 νχ with a 
non-centrality parameter ν, that is optimal, under Gaussianity, compared with other rival regular statistics. 
3 This version of Robinson’s (1994a) tests, with the singularity in the spectrum occurring exclusively at the long run or zero 
frequency, has been used in macroeconomic time series in Gil-Alana and Robinson (1997) and in financial contexts by Gil-
Alana (2003). 
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financial data, the cycles have not received much attention. Andersen and Bollerslev (1997) found 
some evidence of strong intraday periodicity in return volatility in equity markets. They modelled 
periodicity by means of deterministic weights, though Robinson (2001) recommends the use of 
stochastic cyclical structures to explain the autocorrelations in financial series. 

Another issue is to estimate the length of the cycles. A vast majority of researchers use 
the Hodrick-Prescott’s (1997) filter or Baxter and King’s (1999) band-pass filter, and most authors 
conclude that business cycles have a duration of about six years. Englund et al. (1992) and Hassler 
et al. (1994) use another filter in the frequency domain to extract cycles with duration between 3 
and 8 years. Similar conclusions are obtained in Canova (1998), Burnside (1998), King and Re-
belo (1999) and others. 

In Section 4 we will use another version of Robinson’s (1994a) tests, which is based on 
the model, 

 ....,2,1)cos21( 2 ==+− tuxLLw tt
d

r , (7) 

where wr = 2πr/T, r = T/j, j indicating the number of periods per cycle. Here, if d > 0, the 
process is said to be long memory with respect to the cyclical part. These processes were examined 
by Gray et al. (1989, 1994), and they show that the series is stationary if ⏐cos wr⏐ < 1 and d < 0.50 
or if ⏐cos wr⏐ = 1 and d < 0.25. They also showed that the second polynomial in (7) can be ex-
pressed in terms of the Gegenbauer polynomial 

2, djC , such that, calling µ = cos wr, for all d ≠ 0, 
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where Γ(x) represents the Gamma function and a truncation will be required in (8) to 
make the polynomial operational. Thus, the process in (7) becomes 
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and when d = 1, we have 

...,2,1,2 21 =+−= −− tuxxx tttt µ , 

which is a cyclical I(1) process with the periodicity determined by µ. Its performance in 
the context of macroeconomic time series was examined, for example, by Bierens (2001)1. The 
nice property of a Gegenbauer polynomial is that it spectral density has a peak at frequency 

[ ]πλ ,0∈ . As we have rule out in this setting the long run frequency (as well as the seasonal 
frequencies), this peak typically deals with business cycle frequencies. Some papers (Gray et al., 
1989; Ferrara and Guegan, 2001) have already used the Gegenbauer polynomial as a convenient 
way to analyse fluctuation at a particular frequency. Ferrara and Guegan (2001) consider a more 
general k-factor Gegenbauer polynomial to model all the peaks in the spectrum density (it exists 
indeed k peaks in [ ]π,0 for a k-factor Gegenbauer polynomial). Nevertheless, it is regrettable that 
no asymptotic distribution of the Whittle-form is available for a k-Gegenbauer polynomial. We 
prefer then to induce from the theory the presence of a simple one-factor Gegenbauer polynomial 
to model the cyclical behavior. The persistence of such a movement however has to be tested. 

Similarly to the other versions of his tests, Robinson (1994a) proposes a test of Ho (4) in 
model (7) for real values do. The test statistics is: 

                                                           
1 Unit roots cycles were also examined by Ahtola and Tiao (1987), Chan and Wei (1988) and Gregoir (1999a, b). 
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and the summation is now over λ ∈ M, where M = {λ: -π < λ < π, λ ∉ (ρk - λ1, ρk + λ1), 
such that ρk is the pole in the spectrum. 

Similarly to ,ˆ
1R  

 ∞→→ TasR d ,ˆ 2
12 χ . (10) 

This version of the tests of Robinson (1994a) was used in an empirical application in Gil-
Alana (2001) and its statistical properties in finite samples were also compared in that paper with 
other unit root cyclical tests (Ahtola and Tiao, 1987), showing that Robinson’s (1994a) tests out-
perform Ahtola and Tiao (1987) in a number of cases. In Section 4 all the above procedures will be 
applied to the annual data of the British stock market prices. 

3. The British stock market 
The time series data analysed in this section correspond to the annual series of the British 

stock market prices, for the period of 1700-1984, and it is the longest available time-span record in 
finance across the world. The resources and explanation of the data can be found in 
http:/fisher.su.edu/resources_data/data/britann.txt. 

The data for 1700-1790 are from P. Mirowski. For most of this period there were not 
many firms in the index (4-15). Most of the firms were quasi-public, i.e. Bank of England, East 
India Co. These data are not averaged over the year. But which month they are chosen from was 
not specified. For the period of 1790-1933 the data are from W. Hoffman. The series are based on 
several historical studies and include Hayek's stock price index. It is not clear if these data are av-
eraged for the whole year. The data for 1934-1949 are from the L.C.E.S. index for 92 industrial 
companies excluding finance and property companies. The data are an arithmetic average over the 
year of mid-month prices. The data for 1950-1962 are from Moodies index of 60 representative 
equities excluding mines and plantations. This series is a geometric mean of weekly quotes. For 
1963-1984 The Financial Times actuaries index was used. This is a value-weighted index of 500 
shares. The index is an arithmetic average of the share prices from each day. After 1967 the data 
are from C.S.O. Economic Trends. For 1934-1966 they are from L.C.E.S., The British Economy, 
Key Statistics, 1900-1966.  

As we can see in the above paragraph, the dataset comprises several sources, and the 
number of firms in the index range from as little as 4 to 500 firms. Also, in certain portion of the 
data, there is no averaging; some other parts use arithmetic averaging, while other parts are based 
on geometric averaging. However, despite all these inhomogeneities, it is worth its study in the 
sense that it is the longer available time-span record in finance across the world. On the other 
hand, long run dependence requires a sufficiently large ammount of observations in order to make 
inference about the degree of integration of the series. In that respect, the present dataset can be 
considered as a valuable information set about stock market prices and it should be taken into ac-
count for the analysis of long run dependence in financial time series. 
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* The large sample standard error under the null hypothesis of no autocorrelation is 1/√T or roughly 0.038. 

Fig.1. Historical data of the British stock market prices and its first differences, with their corresponding 
correlograms and periodograms 

Figure 1 displays plots of the original series, (log of the stock market prices) and its first 
differences (stock market returns), along with their corresponding correlograms and periodograms. 
We see that the series is nonstationary and this is substantained by the correlogram, with values 
decaying very slowly, and the periodogram, with a large value around the smallest frequency. The 
returns have a stationary appearance, though we still observe in the correlogram significant values 
even at some lags relatively far away from zero, along with some kind of cyclical oscillation. Also, 
in the periodogram, we observe some peaks at some frequencies different from zero. Thus, it may 
be of interest to deeper examine its structure in terms of a cyclical model. 

4. The empirical application 
First, we concentrate on the original series and examine the behaviour of the time series at 

the long run or zero frequency. Figure 2 displays the estimates of d based on the Whittle estimator 
of Robinson (1995a), for the whole range of values of the bandwidth parameter m1. Since the series 
is clearly nonstationary, we compute d̂  in (3) based on the first differenced data, adding then 1 to 
the estimated values to obtain the proper order of integration. We also include in the figure the 

                                                           
1 Some attempts to calculate the optimal bandwidth numbers have been examined in Delgado and Robinson (1996) and 
Robinson and Henry (1996). However, in the case of the Whittle estimator (Robinson, 1995a), the use of optimal values 
has not been theoretically justified. Other authors, such as Lobato and Savin (1998) use an interval of values for m but we 
have preferred to report the results for the whole range of values of m. 
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95%- confidence interval corresponding to the unit root hypothesis. We observe that practically all 
values of d̂  are within the unit root interval, implying that the returns are I(0) stationary. 
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Fig. 2. Estimates of d based on the QMLE (Robinson, 1995a) for the whole range of values of m 

Table 1 

95%-confidence intervals of those values of do where Ho: d = do cannot be rejected in model (1 – L)dxt = ut 
ut - type Confidence intervals 
White noise [0.94 - 1.10] 
AR(1) [0.83 - 1.16] 
AR(2) [0.88 - 0.99] 
Bloomfield (1) [0.83 - 1.15] 
Bloomfield (2) [0.82 - 1.17] 

 
In order to confirm the existence of a unit root, we also perform the parametric procedure de-

scribed in Section 2, testing Ho (4) in model (1) for values do = 0, (0.01), 2, using 1R̂  in (5), with white 
noise and autocorrelated disturbances. However, instead of reporting the values for all statistics, we 
compute in Table 2 the confidence intervals corresponding to the non-rejection values of do at the 95% 
significance level1. We see that, similarly to the semi-parametric procedure, the unit root is included in 
all intervals. Thus, if ut is white noise, the values range between 0.94 and 1.10, and, if we permit auto-
correlated disturbances (either with AR or using the Bloomfield’s (1973) exponential spectral model)2, 
the intervals are slightly wider but still including the unit root. Thus, we can conclude by saying that the 
annual data of the British stock market prices contains a unit root. Additionally, other unit root tests 
based on AR alternatives (Dickey and Fuller, 1979; and Phillips and Perron, 1988) were also performed 
on the series, and we found in all cases strong evidence in favour of unit roots. 

Once we have determined the existence of a unit root in the stock market prices, we con-
centrate on the returns. The classical approach here consists of testing for autocorrelation either in 
the original series or in some transformations of the returns. In this paper, however, we take a dif-
ferent approach and examine its cyclical structure throughout the model given by (7). 

We computed the statistic 22
ˆˆ Rr =  given by (9) for values d = 0, (0.25), 2, and r = 1, (1), 

T/2 (= 192)3, assuming that ut is white noise (Table 2) and AR(1) and AR(2) are processes (Tables 3 
and 4 respectively). The first thing we observe is that Ho (4) is rejected for all values of do when r is 

                                                           
1 The confidence intervals were built up according to the following strategy. First, we choose a value of d from a grid. 
Then, we form the test statistics testing the null for this value. If the null is rejected at the 5% level, we discard this value of 
d. Otherwise, we keep it. An interval is then obtained after considering all the values of d in the grid. 
2 The Bloomfield’s (1973) model is a nonparametric approach of modelling the I(0) disturbances, which produces 
autocorrelation in a similar way to an AR process, but that accommodates fairly well to the present version of the tests. 
3 Note that in case of r = 1, the model reduces to an I(2) process, with the pole (or singularity) occurring exclusively at the 
long run or zero frequency. 
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smaller than 3 or higher than 10, which is consistent with the literature mentioned in Section 2 about 
business cycles length, that says that cycles have a duration constrained between 3 and 10 years. 

Table 2 

Testing Ho: d = do in the model: (1 – 2cos wrL + L2)d xt = ut; ut is white noise 

r / d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
3 -0.28 -4.28 -6.55 -7.98 -8.96 -9.65 -10.15 -10.53 -10.82
4 2.99 -1.27 -2.98 -3.83 -4.35 -4.72 -4.99 -5.21 -5.39
5 1.43 -2.27 -5.01 -6.82 -8.06 -8.93 -9.57 -10.03 -10.83
6 1.57 -3.57 -6.57 -8.45 -9.66 -10.45 -10.97 -11.33 -11.59
7 0.66 -4.02 -7.07 -8.88 -9.94 -10.60 -11.03 -11.32 -11.53
8 0.87 -4.70 -7.52 -9.05 -9.95 -10.51 -10.89 -11.16 -11.35
9 1.03 -5.08 -7.65 -9.00 -9.80 -10.31 -10.67 -10.92 -11.11
10 0.36 -5.07 -7.62 -8.92 -9.67 -10.15 -10.49 -10.73 -10.92

In bold, the non-rejection values at the 5% significance level. 

Table 3 

Testing Ho: d = do in the model: (1 – 2cos wrL + L2)d xt = ut; ut is AR(1)  

r / d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
3 -0.39 -5.93 -9.07 -11.06 -12.41 -13.37 -14.07 -14.57 -15.00
4 2.99 -1.27 -2.98 -3.83 -4.35 -4.77 -4.99 -5.21 -5.39
5 2.30 -2.58 -5.68 -7.72 -9.12 -10.11 -10.82 -11.34 -11.73
6 2.19 -6.10 -9.78 -11.92 -13.54 -14.54 -15.12 -18.79 -20.24
7 1.10 -6.75 -11.84 -14.86 -16.64 -17.76 -18.51 -19.06 -19.45
8 1.67 -9.03 -14.42 -17.34 -19.02 -20.09 -20.75 -21.10 -22.97
9 2.14 -10.60 -15.63 -18.72 -20.31 -21.25 -21.69 -22.52 -23.16
10 -1.03 -11.65 -16.58 -19.09 -20.37 -20.73 -21.09 -22.55 -24.30

Table 4 

Testing Ho: d = do in the model: (1 – 2cos wrL + L2)d xt = ut; ut is AR(2)  

R / d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
3 1.25 -5.96 -8.16 -9.52 -8.95 -7.98 -8.49 -8.92 -9.27 
4 8.27 -4.80 -5.07 -5.27 -4.35 -2.61 -3.01 -3.36 -3.67 
5 6.38 -6.16 -7.64 -8.65 -8.07 -6.71 -7.41 -8.12 -8.61 
6 4.00 -7.35 -9.55 -10.44 -9.64 -8.54 -8.94 -9.54 -9.74 
7 1.46 -5.15 -8.46 -10.20 -9.93 -9.10 -9.56 -9.92 -10.21 
8 0.63 -5.34 -8.65 -10.28 -9.93 -9.11 -9.52 -9.85 -10.11 
9 0.12 -5.50 -8.63 -10.17 -9.78 -8.99 -9.37 -9.68 -9.91 
10 -0.82 -5.33 -8.20 -10.03 -9.65 -8.89 -9.25 -9.54 -9.74 

 
Starting with the case of white noise disturbances, we see that there is a monotonic decrease in 

the value of the test statistics with respect to do. Such monotonicity is a characteristic of any reasonable 
statistics, given correct specification and adequate sample size. Note that the test statistic is one-sided. 
Thus, for example, if we reject Ho (4) with do = 1 against d > 1, an even more significant result in this di-
rection should be expected when the null is tested with do = 0.75 or 0.50. We see that if do = 0.5, Ho (4) is 
always rejected against smaller degrees of integration, implying that the cycles are stationary. If r = 4, Ho 
(4) cannot be rejected at do = 0.25, while for the remaining values of r, do = 0 is the only non-rejection 
case. However, the significance of the above results may be in large part due to the un-accounting for I(0) 
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autocorrelation in ut. Thus, we also fit AR(1) and AR(2) processes, in Tables 3 and 4 respectively. The 
results are similar in both cases and most of the non-rejection values take place when do = 0 or slightly 
higher. Note that in many cases, the value of the test statistic changes its sign when we move from do = 0 
to do = 0.25, implying that some non-rejections may take place between these two values. 
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Fig. 3. (r / do) values where Ho: d = do cannot be rejected in: (1 – 2cos wrL + L2)d xt = ut; ut is white noise ut 
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Fig. 4. (r / do) values where Ho: d = do cannot be rejected in model: (1 – 2cos wrL + L2)d xt = ut; ut is AR(1) ut 
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Fig. 5. (r / do) values where Ho: d = do cannot be rejected in model: (1 – 2cos wrL + L2)d xt = ut; ut is AR(2) ut  

In order to have a more precise view about the non-rejection values obtained across Tables 
2-4, we recomputed the tests, but this time for values do = 0, (0.01), 2. Figures 3 – 5 display the (r, do) 
combinations of the non-rejection values of do at the 5% level, respectively for the three cases of 
white noise, AR(1) and AR(2) ut. The results are again similar for the three cases: r is constrained 
between 3 and 12, and do oscillates between 0 and 0.3. If ut is white noise (but also in some cases 
with AR disturbances), the null hypothesis of d = 0 cannot be rejected, though in all cases, it is “less 
clearly non-rejected”1 than in the case of positive do. In the light of this, we can conclude by saying 
that there exists a component of long memory behaviour in the cyclical part of the British stock mar-

                                                           
1 By “less clearly non-rejected” we mean that the value of the test statistics is closer to the rejection critical values. 
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ket returns, with the order of integration ranging between 0 and 0.3 and thus, implying that cycles are 
stationary and mean reverting, with shocks affecting them, disappearing in the long run. 

4. Concluding comments 
In this paper we have examined the time series behaviour of the British stock market 

prices by means of fractionally integrated techniques. However, instead of looking exclusively at 
the case of roots occurring at the long run or zero frequency, we have also examined the possibility 
of long memory with respect to the cyclical part. Starting with the logged-transformed data, we 
show that the series contains a unit root. Here, we used both parametric and semiparametric proce-
dures. In particular, we employed a Gaussian semiparametric method of Robinson (1995a) and a 
parametric testing procedure (Robinson, 1994a). We used these methods because of the distin-
guishing features that make them particularly relevant in the context of financial time series. Thus, 
they do not require Gaussianity, (which is an assumption rarely satisfied in most financial data), 
requiring a moment condition only of order 2. Additionally, they have standard null limit distribu-
tions, which is another unusual feature of the tests compared with other procedures for long mem-
ory. Using these and other methods, the evidence was strong in favour of unit roots. 

Once it was confirmed the existence of a unit root, we concentrated on the first differ-
enced data, and examined the returns by looking at the possibility of fractional cycles. Using an-
other version of Robinson’s (1994a) tests, we showed that long memory cycles are plausible alter-
natives when modelling the returns, with the periodicity of the cycles constrained between 3 and 
10 years, (which is consistent with the literature on business cycle duration), and the order of inte-
gration ranging between 0 and 0.3. Thus, the cycles are stationary and mean reverting, with the 
effect of the shocks disappearing in the long run. 

An argument that can be employed against this type of model is that cycles occurring in 
economics and finance are typically weak and irregular and are spread evenly over a range of fre-
quencies rather than peaked at a specific value. A strong counter-argument is that, despite the fixed 
frequencies used in this specification, flexibility can be achieved through the first differenced 
polynomial, the ARMA components and the error term. In fact, Bierens (2001) also uses a model 
of this kind (with d = 1) to test for the presence of business cycles in the annual change of monthly 
unemployment in the UK. Our analysis also yields clear-cut results, which are consistent with ear-
lier findings on the periodicity of cycles.  

It would also be worthwhile proceeding to get point estimates of the fractional differencing 
parameter with respect to the cyclical frequency. Some attempts have been made by Arteche and 
Robinson (2000) and Arteche (2002). However, the goal of this paper is to show that a fractional 
cyclical model can be a credible alternative for the British returns to the conventional ARMA speci-
fications. In fact, our approach leads us to some unambiguous conclusions, with the periodicity con-
strained to be between 3 and 10 years and the order of integration ranging between 0 and 0.3.  

A potential drawback of the present work might be its univariate nature, with the limitation 
that it imposes in terms of theorising, policy-making or forecasting. Theoretical models and policy-
making involve relationships between many variables, and forecast performance can be improved 
through the use of many variables (e.g., factor based forecasts based on data involving hundreds of time 
series beat univariate forecasts, as shown, e.g., in Stock and Watson, 2002). However, the univariate 
approach adopted in this paper is useful in enabling to decompose the series into a long run and a cycli-
cal component. Moreover, theoretical econometric models for both long run and cyclical fractional 
structures in a multivariate framework are not yet available. In that respect, the present study can be 
viewed as a preliminary step in the analysis of financial data from a different time series perspective. 
Data mining is an additional relevant issue. Work in all these directions is now in progress. 
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