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Abstract 

In this paper we value the impact of different distributional assumptions relative to Lee-Carter innovations in 
forecasting age-specific mortality in Italy. We fit the matrix with Italy death rates from 1960 to 2004, and we observe 
that the innovation series presents significant kurtosis. We implement the model approximating the innovations with a 
symmetric Normal Inverse Gaussian (NIG) distribution for different groups of ages. We value the impact of Gaussian 
and NIG approximations on the distributional hypotheses considering an ex post analysis of the distributional 
approximation. We observe that for some age groups the NIG distributional assumption on the residuals of the Lee-
Carter model produces dominant results compared to the Gaussian one. 
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Introduction• 

The decline in the mortality level of populations has 
induced the social security systems of the most de-
veloped countries to reconsider their mortality tables 
taking into account Longevity Risk. The Lee-Carter 
model (see Lee and Carter (1992)) represents proba-
bly the first model that considers the increased life 
expectancy trends in mortality rates. Originally ap-
plied to USA mortality data, now it is applied to all-
cause and cause-specific mortality data from many 
countries (see Tuljapurkar et al. (2000)). Moreover, 
many of the recent approaches are consistent with it 
(see Lifemetrics (2007) and the reference therein) 
and the literature of the last decade considers it the 
leading statistical model for forecasting mortality 
(see, among others, Lee and Miller (2000), Lee 
(2000), Deaton and Paxson (2004)). The Lee-Carter 
method combines a demographic model with a sta-
tistical model of time series to forecast mortality 
rates. Referring to Girosi and King (2007), it can be 
seen as a special type of multivariate process in 
which the covariance matrix depends on the drift 
vector and the innovations are intertemporally corre-
lated. With this model, we can define a complete set 
of death probabilities tk  for a given value of the 
time index t, the estimated parameters depending on 
age ,x xα β  remaining constant and invariant 
through time. 

In this paper we relax the Gaussian distributional 
hypothesis on the stochastic innovations of mortality 
rates in Lee-Carter model and with an ex post analy-
sis we evaluate the impact of a different distribu-
tional assumption, considering the Italian mortality 
rates of the last eight years. Since we observe that 
the innovation process is essentially symmetric but 
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presents semi-heavy tails we propose to estimate 
them using a Normal Inverse Gaussian distribution 
(NIG) (see Barndorff Nielsen (1995)). Using the 
analysis proposed by Girosi and King (2007) the error 
in the mortality rates can be easily simulated from both 
Gaussian and NIG distributions. Therefore, to evaluate 
the impact of the new assumptions, we propose an ex 
post analysis of eight years of Italian mortality tables. 
From this empirical comparison we observe that gen-
erally the absolute errors we get with NIG scenarios 
are “stochastically smaller” than the Gaussian one.  

In section 1, we give the main characteristics of the 
Lee-Carter model. The second section proposes an 
empirical comparison of the different distributional 
assumptions. Finally, we briefly summarize the results.  

1. Further insights regarding the Lee-Carter model  

Let ,x tm  be the central death rate for age x in year t. 
Lee and Carter (1992) suggested a log bilinear form 
for the force of mortality ,x tµ , that is 

( ), , ,lnx t x t x x t x tm kµ α β ε= = + +   

x=1,…, A; t=1,…,T,                                              (1) 

where , ,x x tkα β  are the parameters of the model and 

,x tε  is a set of i.i.d. Gaussian errors ( )20,N σ . The 

random term ,x tε  reflects a particular age-specific 
historical influence not captured in the model. The 
coefficients xα  are age specific constants that de-
scribe the general shape of the age mortality profile. 
The index tk  serves to capture the main temporal 
level of mortality. Since ,x t x tt k tµ β∂ ∂ ≈ ∂ ∂  
(without considering random noises) then the coef-
ficients xβ  indicate changes in mortality rates at 
age x in response to changes in the general level of 
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mortality tk . So if xβ  is large for some x (as for 
infant mortality), then the death rate at age x varies 
significantly when the general level of mortality tk  
changes. Conversely, if xβ  is small (as for the mor-
tality at older ages), the death rate at that age varies 
little when the general level of mortality tk  
changes. Since the parameterization in (1) is invari-
ant with respect to the trasformations:  

( , ) ( , )x t x tk c k cβ β→  or 

( , ) ( , )x t x x tk c k cα α β→ − +   

for some { }0\Rc ∈ ,                                             (2) 

then the parameters ,x tkβ  should satisfy the con-
straints: 

1
1;

A

x
x

β
=

=∑  
1

0
T

t
t

k
=

=∑ ,                                (3) 

in order to ensure the identifiability of the model. 
The constraint 

1
0T

tt
k

=
=∑  implies that the esti-

mates of parameters xα  are given by the averages 
of the force of mortality over the time period, i.e., 

,
1

1ˆ
T

x x t
tT

α µ
=

= ∑ . Considering that 

( )2
, ,ˆ ,x t x x t x t x tk N kµ α β ε β σ− = + ≈  are Gaussian 

distributed with mean x tkβ  and variance 2σ , then 

the parameters xβ  and tk  can be estimated via 
maximum likelihood. In particular, as remarked by 
Lee and Carter (1992), the optimal solution can be 
found using the Singular Value Decomposition 
(SVD) of the matrix of centered age profiles 

, , ˆx t x t xz µ α= − . Given the matrix , 1,...,
1,...,

[ ]x t x A
t T

z =
=

=Z  

we can compute the normalized eigenvector 
1,1 1,[ ,..., ] 'Tu u=1u  (respectively 

1,1 1,[ ,..., ] 'Av v=1v ) of the matrix 'Z Z  (respec-
tively 'ZZ ) corresponding to the largest eigenvalue 

1λ . Then the optimal estimates satisfying the con-
straints (3) imposed on the parameters, are given by 
the vectors: 

1
1,1

ˆ ˆ ˆ[ ,..., ] 'A A
jj

v
β β

=

= =
∑

1vβ ,  

and ( )1 1 1,1
ˆ ˆˆ [ ,..., ] ' A

T jj
k k vλ

=
= = ∑ 1k u . 

Typically for low-mortality populations the ap-
proximation 1 'λ≈ 1 1Z v u  accounts for more than 

90% of the variance of ( ),ln x tm . We need a further 

reestimation step for the parameters tk  since with 
the above procedure the number of fitted deaths 
does not equal the number of observed deaths. The 
parameters t̂k  are adjusted (taking estimates ˆxα , 

ˆ
xβ  as given) such that the new estimates tk  solve 

the equations  

( ),
1

ˆˆexp
A

t x t x x t
x

D N kα β
=

= +∑  t=1,…,T, 

where tD  and ,x tN  are respectively the total num-
ber of deaths in year t and the total population with 
age x in year t. In order to satisfy the Lee-Carter 
constraints (3) we should also consider the admissi-
ble transformation of type (2): * ˆ

x xβ β= ; 

*

1

1ˆˆ
T

tx x x
t

k
T

α α β
=

= + ∑ ; *

1

1 T

t tt
t

k k k
T =

= − ∑ . This 

reestimation step does not always have a unique 
solution and some researchers skip this re-
estimation stage altogether. That is why we define 
the estimates of the Lee-Carter model with ˆxα , ˆ

xβ , 

and t̂k  and we do not consider the above reestima-
tion stage. 

In order to forecast future mortality rates Lee and 
Carter assume that xα  and xβ  remain constant over 
time and the time factor tk  is intrinsically viewed as 
a stochastic process. They suggest using the follow-
ing random walk with drift model for tk :  

1
ˆ ˆ
t t tk k θ ξ−= + + ,                                   (4) 

where ( )20,t rwNξ σ≈  are i.i.d. Gaussian distrib-

uted with null mean and variance 2
rwσ . The maxi-

mum likelihood estimate of the drift parameter θ  is 

given by ( )1
ˆ ˆˆ /( 1)Tk k Tθ = − −  and the variance 

estimates ( )212
11

1 ˆ ˆ ˆˆ
1

T
rw t tt

k k
T

σ θ−
+=

= − −
− ∑ . To 

estimate T̂ tk +∆  at time T t+ ∆  we get 

( )ˆ ˆ ˆ
T t Tk k t tθ ξ+∆ = + ∆ + ∆ %  where ( )20, rwNξ σ≈%  

and the expected log-mortality can be approximated 
as follows: 
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( )( ) ( )1

,

ˆ ˆ
ˆ ˆˆ ˆ ˆˆ ˆˆ

( 1)
T

x T t x x T x x T

k k
k t k t

T
µ α β θ α β+∆

⎛ ⎞−
⎜ ⎟= + + ∆ = + + ∆
⎜ ⎟−
⎝ ⎠

. 

Formulas (1) and (4) can be written in a vectorial 
way as follows: 

t t tk= + +µ µ β ε , 

1
ˆ ˆ
t t tk k θ ξ−= + + ,                      (5) 

where 1, ,[ ,..., ] 't t A tµ µ=µ , 
1

1 T

t
tT =

= ∑µ µ , 

1̂
ˆ[ ,..., ] 'Aβ β=β  while vector tε  and the scalar tξ  

are independent Gaussian errors with variances 
2Iσ  (here I is the A A×  identity matrix ) and 2

rwσ  
respectively. Referring to the discussion in Girosi 
and King (2007), we propose viewing the Lee-
Carter model as follows: 

( )1 1 1 1t t t t t t t t tθ ξ ξ− − − −

⎛ ⎞
= + + + − = + + + −⎜ ⎟⎜ ⎟

⎝ ⎠

ψµ µ β β ε ε µ ψ ε ε
ψ

,   (6) 

where 1[ ,..., ] ',Aθ ψ ψ= =ψ β  
1

A
ii

ψ θ
=

= =∑ψ , 

and the variance-covariance matrix  

2 2
2
' 2rwLC

Iσ σ= +∑ ψψ
ψ

                  (7) 

of the noise is a function of the drift vector ψ . The 
first term in (7) describes the shocks that are per-
fectly correlated across age groups and the second 
term those that are uncorrelated across age groups. 
Girosi and King define (6) as a random walk with 
drift model, while, the innovations in (6) are not 
i.i.d. since there is a non negative autocorrelation of 
the first order.  

Notice that in the classic Lee-Carter model, σ is the 
same for the considered groups of ages. In case we 
restrict the analysis to a single age, σ will depend on 
age. 
1.1. The Lee-Carter model with different 
distributional assumptions. Let us assume that the 
i.i.d. error terms ,x tε , tξ  follow infinitely divisible 
distributions different from the Gaussian one. This 
assumption takes into account the skewness and the 
semi-heavy tails often observed in the innovation 
distributions. Using infinitely divisible distribu-
tions the sum of i.i.d. components belongs to the 
same family of infinitely divisible distributions. 
The characteristic function of infinitely divisible 
distributions is univocally determined by the triplet

2[ , , ]γ σ ν  that identifies the so-called Lévy-
Khintchine characteristic exponent ( ) log ( )u uϕ φ=  
given by: 

2 2
{| | 1}

1( ) (exp( ) 1 1 ) ( ),
2 xu i u u iux iux dxϕ γ σ ν

+∞

<−∞
= − + − −∫  

where Ry ∈ , 2 0σ >  and ν  is a measure on 

{ }0\R  with 2(1 ) ( ) .x dxν
+∞

−∞
∧ < ∞∫  In particular 

the Lévy triplet 2[ , , ]γ σ ν  identifies the three main 
components of any Lévy process: the deterministic 
component (γ ), the Brownian component ( 2σ ) and 
the pure jump component (ν ). For further details on 
the theoretical aspects we refer to Sato (1999). Thus, 
if ,x tε , tξ  follow two alternative infinitely divisible 
distributions with characteristic exponents respec-
tively 1( )uϕ , 2 ( )uϕ , then according to the random 
walk model with drift (6), an individual with age x 
should present the force of mortality:  

( ), , 1 , , 1x t x t x x t x t x tµ µ β θ β ξ ε ε− −= + + + −   

x=1,…, A; t=1,…,T,                (8) 

where the error term , , 1x t x t x tβ ξ ε ε −+ −  is uniquely 
determined by its characteristic function. Therefore, 
considering that the terms , , 1, ,x t x t x tβ ξ ε ε −  are in-
dependent, then the characteristic function of the 
global error term is given by: 

( )
, , 1 2 1 1( ) exp ( ) ( ) ( )

x t x t x t xu u u uβ ξ ε εφ ϕ β ϕ ϕ
−+ − = + + − . (9) 

Clearly, the variance covariance of the vector of 
errors is still given by formula (7) but the singular 
variance terms 2σ  and 2

rwσ  depend on the parame-
ters characterizing the different infinitely divisible 
distributions of ,x tε  and tξ . In particular, next, we 
consider the Normal Inverse Gaussian distribution 
(NIG) (see Barndorff-Nielsen (1995)) that, differ-
ently from Gaussian distribution, presents skewness 
and semi heavy tails. An NIG distribution 

( , , , )NIG qα β δ  depends on the parameters 0α > , 
( , )β α α∈ − , 0δ > , Rq ∈ . The characteristic 

function of an NIG is given by: 

( )( )2 2 2 2

( ; , , , )

exp ( )

NIG u q

iu iuq

φ α β δ

δ α β α β

=

= − − + − − +
 

and the density is given by:  
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2 2
1

2 2

2 2

( ( ) )
( ; , , , )

( )

exp ( )

NIG
x q

f x q
x q

x q

δα α δ
α β δ

π δ

δ α β β

+ −
= ×

+ −

× − + −

K

, 

where ( )xλK  denotes the modified Bessel function 
of the third kind with index λ . To estimate the pa-
rameters we can use either maximum likelihood 
estimation or semi-parametric methods (see, among 
others, Caviezel et al. (2009)). Observe that if a 
random variable X follows a ( , , , )NIG qα β δ  then 
the opposite -X follows a ( , , , )NIG qα β δ− − . In 
particular, q represents a location parameter, while 
β  is a parameter of symmetry and when it is equal 
to zero the distribution is symmetric around the 
mean q (when 0β = ). This can be easily derived 
considering that the mean, the variance, the skew-
ness and the kurtosis of a NIG variable are simply 
given by:  

q
δα

δβMean +
−

=
2 22

; 

( )2 322

2

δα

βαVariance
−

= ; 

4 22

3
βαβα

βSkewness
−⋅

= ; 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

+
+=

222

22 413
βαδα

βαKurtosis .                   (10) 

Next, we characterize the error terms of Lee-Carter 
model for the Italian mortality rate. 

2. An empirical analysis based on the Italian 
mortality rate 

In this section we implement the Lee-Carter model 
on Italian dead/exposure to death data taken from 
the “Human Mortality Database” (see the refer-
ences), available from 1922 to 2004. We choose an 
opportune range of data (from 1960 to 2004) in or-
der to have a reliable and complete data set for ages 
50 to 90. We propose the following empirical analy-
sis: first, we discuss how to model the time factor 

tk  and we propose, following Girosi and King 
(2007), the random walk model as in (4). Further, 
we propose an ex-post comparison considering 
simulated data from both a Gaussian and a NIG 
distributions.  

Figure 1 gives the estimation of the Lee-Carter tem-
poral level t̂k  of mortality and its adjusted re-
estimation for the Italian population (1960-1996). 

 

Fig. 1A. Italian t̂k  estimation (1960-1996) 

 

Fig. 1B. Adjusted Italian *
tk  estimation (1960-1996) 

We consider Italian mortality from 1960 until 1996 
for the population of age 50 to 90. In particular, 
Figure 1 plots the estimated t̂k  and its adjusted es-

timation *
tk  so that the number of fitted deaths 

equals the number of observed deaths. Since there is 
not a big difference between the two alternative 
estimates and we want to value the distributions of 
the statistical approximations, we operate with the 
first estimated t̂k  that is not adjusted. In order to 
value the forecasting power of the Lee-Carter model 
we propose to model t̂k  with a random walk with 
drift, see equation (4).  

From a first analysis of the residuals of the model, 
we observe that the residuals of the AR(1) model 
with drift are substantially i.i.d. Gaussian (no auto-
correlation is revealed, the residual mean is 0, stan-
dard deviation is 1.566 and the kurtosis is 3.3). We 
tested for the presence of the unit root through the 
ADF (Adjusted Dickey-Fuller) test and it turned out 
that we could not reject a null hypothesis for the 
presence of the unit root for different lags and dif-
ferent significance levels (from 0.01 to 0.05). These 
results and the scarcity of data prevented us from 
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testing an ARMA-GARCH model on t̂k . Then, we 
tested ex-post the capacity of the model to forecast 
future Italian mortality rates. Starting from the last 
year of observation used to value the model, we 
forecast 8 years t̂k  and we inserted them into the 
Lee-Carter model (1). We computed the difference 
between the forecasted mortality rates and the real 
ones for the last eight years and we observed that 
the Lee-Carter forecasting for Italian mortality rates 
could be further improved.  

2.1. Lee-Carter model with NIG distributions. As 
further empirical analysis we valued the impact of a 
NIG distributional assumptions on the residuals of 
the Lee-Carter model. From a preliminary analysis 
of the empirical residuals:  

, ,
ˆˆˆ ˆx t x t x x tkε µ α β= − −  

we verified that they are not autocorrelated (see 
Figure 2), they are not Gaussian distributed and 
present semi-heavy tails. 

Table 1. Variance, skewness and kurtosis of Lee-Carter residuals 

AGE 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

               

Variance .002 .0016 .0018 .0015 .0009 .0011 .0010 .0013 .0014 .0010 .0011 .0009 .0012 .0009 

Skewness -0.04 0.189 0.154 0.451 0.365 -0.08 -0.46 0.01 -0.235 -0.369 -0.29 -0.05 -0.22 0.042 

Kurtosis 2.989 2.67 2.99 2.831 2.849 4.238 3.745 3.997 3.634 3.201 3.465 3.157 4.522 3.088 

               

AGE 64 65 66 67 68 69 70 71 72 73 74 75 76 77 

               

Variance .0010 .0012 .0011 .0011 .0010 .0009 .0011 .0012 .0011 .0010 .0009 .0008 .0009 .0008 

Skewness -0.183 0.025 -0.527 -0.31 -0.03 -0.99 -0.25 -0.124 0.328 0.493 0.401 0.722 0.932 1.115 

Kurtosis 3.376 4.625 3.668 3.944 5.054 7.374 4.278 3.808 4.985 4.6 4.473 4.738 5.966 6.178 

               

AGE  78 79 80 81 82 83 84 85 86 87 88 89 90 

               

Variance  .0008 .0010 .0005 .0004 .0003 .0004 .0006 .0004 .0004 .0007 .0004 .0008 .0010 

Skewnless  1.304 0.573 -0.34 -0.28 -0.6 -0.36 -0.542 -0.81 -0.177 -0.18 -0.69 -1.23 -0.161 

Kurtosis  7.412 5.356 3.017 3.598 4.485 3.607 4.224 5.432 3.246 3.851 4.496 7.683 3.51 

Notes: This table gives the variance, skewness and kurtosis of Lee-Carter residuals for each age from 50 till 90 for Italian mortality 
between 1960-1996. 

 
Notes: This figure shows the absence of autocorrelation in the residuals for ages: 50, 60, 70, 80 in the period of 1960-1999. 

Fig. 2. Autocorrelation of Lee-Carter residuals 



Investment Management and Financial Innovations, Volume 6, Issue 3, 2009 

191 

This fact is confirmed by Table 1, which gives the 
variance, the skewness and the kurtosis of empirical 
residuals ,ˆx tε  for each age x from 50 to 90. The 
Kolmogorov-Smirnov, Jarque-Bera and Lilliefors 
tests on the normality of residuals reject the null 
hypothesis of normality for the whole dataset (1887 
data) with a kurtosis equal to 5.95. Table 1 tells us 
that residuals are non-Gaussian distributed for the 
oldest ages, since they present skewness and heavier 
tails than a Gaussian distribution. Even Figure 3 
shows that the empirical residuals present several 
peaks for the population with ages 50, 60, 70, 80. 

Since there was empirical evidence of a non-
Gaussian distribution for the Lee-Carter residuals 
we estimated the residuals ,ˆx tε  for Italian individu-
als with age x varying from 50 to 90 with a 

( , , ,0)NIG α β δ . The NIG maximum likelihood 
parameters for the residuals were 32.2327α = , 

0β = , 0.0458δ = . Thus, we deduced that the 
NIG estimates for residuals were symmetric around 
the null mean, with variance /δ α  and kurtosis 

13δα
δα

+
. These results partially confirm those of 

Table 1. Table 1 shows that the skewness is sig-
nificant only in 5 cases out of 40 (the 5% critical 
value for skewness is 0.745 for n=40) whereas 
kurtosis is significant in 15 cases out of 40 (the 
5% critical value for kurtosis is 4.37 for n=40 
given a one-side hypothesis). This justifies our 
choice for a NIG with 0β = . 

In order to value the impact of this distributional 
assumption we simulated different scenarios of 
the exposure to death for the last eight years, and 
we used the random walk model with Gaussian 
residuals tξ  to model t̂k .  

We compared ex-post the performance we obtained 
modeling the Lee-Carter residuals ,ˆx tε  either with a 
NIG or with Gaussian distributions. We used the 
last 8 years (1996-2004) of Italian mortality data. 
For each scenario we computed the average over the 
8 years for the individual absolute difference be-
tween the forecasted and the historical ones. Since 

these are absolute errors they represent the occur-
rences of positive random variables that we can 
suppose are uniquely determined by their mean and 
standard deviation. Notice that, due to the estimate 
parameter β being statistically not different from 
zero in the NIG distribution, the NIG depends only 
on two parameters. 

Thus, we can determine if types of stochastic domi-
nance orderings among these positive errors exist. In 
particular, we can use the stochastic dominance 
rules proposed by Ortobelli (2001) to compare posi-
tive random variables belonging to a translation and 
scalar invariant family of distribution determined by 
only two parameters: the mean m and the standard 
deviation σ. In particular, we summarized three of 
these stochastic dominance rules: 

1) X Y

X Y

m m
σ σ

≥ and X Yσ σ≥  (with at least one ine-

quality strict) implies X  dominates at the first sto-
chastic order (FSD) Y. 

2) X Y

X Y

m m
σ σ

≥ and X Ym m≥  (with at least one ine-

quality strict) implies X  dominates at the second 
stochastic order (SSD) Y. 
3) X Ym m≥ and X Yσ σ≤  (with at least one ine-
quality strict) implies X SSD Y .  
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Notes: This figure shows the empirical Lee-Carter residuals 
time series plot for Italians of ages: 50, 60, 70, 80 in the period 
of 1960-1999. 

Fig. 3. Time series plot of Lee-Carter residuals 

Table 2. NIG parameters and orderings between absolute errors 

Parameters NIG 

AGE 0-11 11-21 21-31 31-41 41-51 51-61 61-71 71-81 81-91 

Alpha 23.0275 91.5494 20.1377 14.7931 34.7884 29.4403 30.8112 30.6179 105.058 

beta 0 0 0 0 0 0 0 0 0 

delta 0.1609 0.3621 0.0839 0.0877 0.0639 0.03 0.0237 0.0215 0.0231 
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Table 2 (cont.). NIG parameters and orderings between absolute errors 

AGE 0-11 11-21 21-31 31-41 41-51 51-61 61-71 71-81 81-91 

Mean and standard deviation of the absolute error we get simulating NIG residuals 

Mean 0.2471 0.2025 0.2144 0.318 0.0679 0.0775 0.0712 0.0735 0.0829 

STD 0.0691 0.0575 0.0604 0.0536 0.0123 0.0295 0.0325 0.0322 0.0373 

mean/STD 3.57598 3.52174 3.54966887 5.932836 5.52033 2.627119 2.19077 2.282609 2.22252 

Mean and standard deviation of the absolute error we get simulating Gaussian residuals 

Mean 0.2484 0.2022 0.2147 0.317 0.0681 0.0775 0.0716 0.0736 0.083 

STD 0.0693 0.0575 0.0606 0.054 0.0121 0.0293 0.0323 0.0321 0.0373 

mean/STD 3.584416 3.51652 3.54290429 5.87037 5.6281 2.645051 2.21672 2.292835 2.2252 

Stochastic Gaussian NIG SSD NON NIG SSD Gaussian Gaussian Gaussian Gaussian Gaussian 

dominance FSD NIG Gaussian comparable Gaussian SSD NIG SSD NIG SSD NIG SSD NIG SSD NIG 

          

Rule applied 1 2-3 // 2-3 2-3 2-3 2-3 2-3 2-3 

Notes: This table gives: 1. The NIG (MLE) estimated parameters for Lee-Carter residuals of group ages. 2. The mean and standard 
deviation of the absolute error we get simulating either Gaussian or NIG residuals. 3. The stochastic dominance relationships (based 
on mean and standard deviation) between the absolute errors we get simulating either Gaussian or NIG residuals. 

We tested the stochastic dominance using means and 
standard deviations obtained by a large number of 
simulated scenarios from the NIG and Gaussian re-
siduals’ distributions. In particular, computing the 
mean and the standard deviation of absolute errors on 
twenty thousand scenarios generated by NIG and 
Gaussian residuals, we obtained, for the NIG scenar-
ios, a mean NIGm =0.0735 and a standard deviation 

NIGσ =0.0176 and, for the Gaussian scenarios, a mean 

Gaussianm =0.0738 and standard deviation 

Gaussianσ =0.0174. Since 

4.24138 4.1761Gaussian NIG

Gaussian NIG

m m
σ σ

= ≥ = , 

Gaussian Gaussianm m≥  then the absolute errors obtained 
with the Gaussian scenarios of residuals dominate at 
the second stochastic order over the errors obtained 
with NIG residuals. In some sense the “NIG errors” 
are stochastically smaller than the Gaussian ones. We 
also extended this ex-post comparison considering 
different age groups. In particular, in Table 2 we give 
the maximum likelihood estimates of residuals NIG 
parameters and we see that even for groups of age we 
estimate symmetric residuals around the null mean. 
Then we generated a consistent number of scenarios 
and Table 2 shows that the absolute errors we get with 
Gaussian scenarios generally dominate at the second 
stochastic order over the same errors we get with NIG 
scenarios except for age groups 11-21 and 31-41 
where the NIG errors dominate over  the Gaussian 

ones. Therefore, this empirical analysis confirms that it 
makes sense to use distributions with semi heavy tails 
for the residuals of the mortality rates. 

Concluding remarks  

This paper compares alternative distributional as-
sumptions and modeling for forecasting the Italian 
mortality rate. First, we analyzed the historical se-
ries considered in the Italian mortality rate. The 
observed skewness and kurtosis together with other 
empirical tests indicate that the residuals of Lee 
Carter model are not Gaussian distributed.  

Secondly, we proposed an expost comparison with 
simulated scenarios based on either Normal Inverse 
Gaussian residuals or simulated Gaussian ones. This 
analysis shows that the absolute errors we create 
using NIG distributions are generally stochastically 
smaller than those we get with Gaussian residuals. 
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