
Insurance Markets and Companies: Analyses and Actuarial Computations, Volume 1, Issue 1, 2010 

 54

Jim Gustafsson (Denmark) 

A mixing model incorporating three sources of data for operational 
risk quantification 
Abstract 

To meet the new Solvency II Directive for operational risk capital assessment, an insurance company's internal model 
should make use of internal data and relevant external information. One of the unresolved challenges with operational 
risk quantification is combining different information sources appropriately (e.g., internal data, consortium data and 
publicly reported losses). This paper develops a systematic approach that, apart from internal data, incorporates two 
sources of prior knowledge into internal loss distribution modelling. The standard statistical model resembles the idea 
with credibility theory and Bayesian methodology, in the sense that the sources of prior knowledge are weighted more 
when internal data is scarce than when internal data is abundant. 

Keywords: operational risk, mixing data sources, actuarial loss models, transformation, multiplicative bias reduction, 
pre- and post insurance loss distribution. 

Introduction© 

Operational risk refers to the possibility of 
unexpected events that occur in the normal course of 
business and includes all things that can happen in a 
company's daily activities. When we want to quantify 
how often this can happen and estimate the 
consequences of its occurrence. Once the 
phenomenon has been characterized then statistical 
methods will allow extrapolations1. One could, for 
example, be concerned about what would be a bound 
for the losses derived from operational risk with a 
99.5% probability, i.e. a loss which occurs once 
every two hundred years. Extrapolating to know 
your risk for a specific risk tolerance level and then 
holding the appropriate capital to cover it, bring a 
level of uncertainty and form the reason for a more 
sophisticated modelling of operational risk. 
Calculating loss distributions for operational risk by 
using only internal data often fails to identify 
potential risks and unprecedented large losses that 
have a vast impact on the accuracy of the 
extrapolation when estimating solvency capital. 
Conversely, calculating capital by using only 
external data should intuitively give more 
information when extrapolation is performed. 
However, this procedure provides a loss distribution 
that is not sensitive to internal data. Consequently, 
the estimated solvency capital will not increase 
despite the occurrence of a large internal loss, and 
does not decrease despite the improvements of 
internal controls. 

During the past few years, the interest in and need 
for useful, accurate and robust methods for 
operational risk quantification have grown both in 
the banking and the insurance sector. The general 
perception is that external data can often be useful 
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1 To estimate the value of a variable outside a known range by assuming 
that the estimated value follows logically from the known ones 
(Wiktionary). 

in improving the estimation of operational risk loss 
distributions due to the lack of reliable internal data. 
The present challenge is to incorporate external 
information into internal loss distribution modelling 
by using a systematic approach. Recent methods 
described in the literature that suggest solutions to 
this problem are limited, however, the papers by 
Shevchenko and Wiithrich (2006), Biihlmann, 
Shevchenko and Wiithrich (2007) and Lam-brigger, 
Shevchenko and Wiithrich (2007) combine loss data 
with scenario analysis information via Bayesian 
inference for the assessment of operational risk. 
Verrall, Cowell and Khoon (2007) examine Bayesian 
networks for operational risk assessment. Figini, 
Guidici, Uberti and Sanyal (2008) develop a method 
to estimate internal data distribution applying 
truncated external data originating from the exact 
same underlying distribution. Wei (2007) applies 
Bayesian credibility to combine external and internal 
data, a Bayesian approach is utilized to estimate the 
frequency distribution and a covariate is introduced 
to estimate the severity distribution. This framework 
allows the use of both internal and external data. 
Gustafsson and Nielsen (2008) develop a 
systematic approach that incorporates external 
information into internal loss distribution modelling. 
The standard statistical model resembles Bayesian 
methodology and credibility theory as the above 
references in the sense that prior knowledge 
(external data) has more weight when internal data is 
scarce than when internal data is abundant. 

Klugman, Panjer and Willmot (1998), McNeil, Frey 
and Embrechts (2005), Cizek, Hardle and Weron 
(2005) and Panjer (2006) are important 
introductions to actuarial estimation techniques of 
purely parametric loss distributions. Embrechts, 
Kliippelberg and Mikosch (1999) focus on the tail 
and offer a broad methodology for estimating these 
rare events by Extreme Value Theory (EVT). 
Further, the recent paper by Degen, Embrechts and 
Lambrigger (2007) discusses some fundamental 
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properties of the g-and-h distribution and how it is 
linked to the well documented EVT based 
methodology. However, if one focuses on the excess 
function, the link to the Generalized Pareto 
Distribution (GPD) is an extremely slow 
convergency and capital estimation for low level of 
risk tolerance using EVT may lead to inaccurate 
results if the parametric g-and-h distribution is 
chosen as a model. Also Diebold, Schuermann and 
Stroughair (2001) and Dutta and Perry (2006) stress 
the weaknesses of EVT when it comes to real data 
analysis. This problem may be solved by non- and 
semi-parametric procedures. A lot of research has 
focussed on kernel density estimation and regression 
curves. Estimating probability densities (e.g., 
Silverman (1986)), regression functions (e.g., Fan 
and Gijbels (1996)) and higher order kernels (e.g., 
Jones and Foster (1986)) are perhaps the most 
popular methods. During the last decade a class of 
semi-parametric methods was developed and 
designed to work better than a pure non-parametric 
approach (see Bolance, Guillen and Nielsen, 2003; 
Hjort and Glad, 1995; Jones, Linton and Nielsen, 
1995; and Clements, Hum and Lindsey, 2003). 
They showed that non-parametric estimators could 
be substantially improved in a transformation 
process and they offer several alternatives for the 
transformation itself. Here, we develop some of the 
ideas from the references above. The main 
contribution of this paper is to propose an estimation 
method to enable an assessment of a company 
exposure. The framework allows the use of both 
internal data, consortium data and publicly reported 
losses to quantify operational risk, enabling the 
performance of specific calculation as well as more 
accurate extrapolation for solvency capital. 

This paper proceeds as follows: Sections 1, 2 and 3 
give a theoretical overview building the proposed 
internal loss distribution model in a structural and 
intuitive manner. Section 1 lays out the theory when 
only one data source is available, section 2 presents 
the model by Gustafsson and Nielsen (2008), i.e. 
when two sources of data could be utilized. In the 
third section the proposed model is developed and 
explained. Building on the previous sections, the 
model will be able to estimate operational risk 
exposure based on two sources of prior knowledge in 
combination with a company's internal data. In 
Section 4, we evaluate the different model 
characteristics of the proposed model. A number of 
scenarios are provided for prior knowledge data 
which should capture different situations a company 
could face when solvency capital for operational risk 
is to be settled. In Section 5, an application is 
provided that illustrates the usefulness of the 
proposed estimation framework. We should see that 
the conclusions drawn on the proposed model 

characteristics in Section 4 are reproduced when using 
real operational risk data. The study is based on an 
internal sample set including 89 data points collected 
over 2 years, a consortium data set with 613 
observations with a 5-year collection period, and 
publicly reported data collected over 9 years and a 
total of 885 losses. Here all data sets originate from 
the same event risk category: 'Execution, Delivery 
and Process Management'. 

1. A semi-parametric model incorporating one 
data source 

It has been suggested that a useful approach to 
model loss data is nonparametric smoothing since 
this ideally should benefit from a parametric 
distribution. The most popular nonparametric 
estimator of an unknown probability density 
function f is the standard kernel estimator proposed 
by Rosenblatt (1956). 
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Here, ( ) niiR ≤≤1 is an independent univariate sample, 
h > 0 is a bandwidth parameter evaluated 
on ( ) niiR ≤≤1 , ( ) ( )rhKhrKh

11 −−=  and ( )⋅K  is a 
unimodal probability density function symmetric 
about zero with support [-1,1]. The consistency of 
(1.1) is well documented when the support is 
unbounded (see, e.g., Silverman, 1986). However, 
this approach is only suitable when the number of 
observations is high. The convergency rate of 
nonparametric estimators is slower than the 
parametric rate, and the bias induced by the 
smoothing procedure can be substantial even for 
moderate sample sizes. Since operational risk losses 
are positive variables, there will exist a boundary 
bias with the proposed estimator by Rosenblatt 
(1956). This boundary bias is due to the use of a 
symmetric kernel К that assigns probability mass 
outside the support when smoothing is carried out 
near and at the boundary. To solve the boundary 
issue a number of solutions have been proposed 
(see, e.g., Jones and Foster, 1996). A nonparametric 
estimator with no preferences will work reasonably 
well for almost any shape. However, during the last 
decade a class of semi-parametric methods was 
developed and designed to work better than a pure 
nonparametric approach. Wand, Marron and Ruppert 
(1991) established the semi-parametric procedure 
and showed that a nonparametric approach could be 
substantially improved with a transformation 
technique. A slightly adjusted approach could be 
found in Bolance, Guillen and Nielsen (2003), 
where they improved the transformation for skewed 
data. Also Clements, Hum and Lindsey (2003) 
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followed Wand et al. (1991) but introduced a 
Mobius-like transformation. In the spirit of Wand et 
al. (1991) many remedies have been proposed. 
Incorporating only one data source, Buch-Larsen, 
Bolance, Guillen and Nielsen (2005) and Gustafsson, 
Hagmann, Nielsen and Scaillet (2008) found a 
mapping from the original axis to [0,1] via a 
parametric start and corrected locally for possible 
misspecification with non-parametric kernel 
smoothing. This section lays out the theory 
presented in the latter reference. 

Assume ( ) +≤≤ ℜ∈niiX 1  is a sequence of internal 
random losses from a probability distribution F(x) 
with unknown density f(x) that have two 
continuous derivatives everywhere. Let ( )xxT 1,θ  
be a parametric family of cumulative distribution 
functions, indexed by the multidimensional global 
parameter { } pxx

p
xxx ℜ∈Θ∈= 1112111 ,...,, θθθθ . As 

always when estimating loss distributions the aim 
is to predict the true density f(x). Let the 
parametric probability density function ( )xxT 1,' θ  
be a first choice, serving as a global parametric start, 
and assumed to provide a meaningful but potentially 
inaccurate description of the true density f(x). To 
create a semi-parametric model which should 
correct the potentially inaccurate global parametric 
start ( )xxT 1,' θ , is to utilize the transformation 
technique established by Wand, Marron and 
Ruppert (1991) and transform the internal losses 
( ) niiX ≤≤1  to bounded support [0,1]. With losses 
transformed to [0,1] the estimation problem is now 
to find a model for the true density ( )∈ur [0,1]. For 
this, let ( )( )uu 2,θφ  serve as a local parametric 
model with the local function 
( ) ( ) ( ) ( ){ } q

q uuuu ℜ∈Θ∈= 2222212 ,...,, θθθθ for the 

unknown density function ( )ur . The aim of the 
model ( )( )uu 2,θφ  is to correct the parametric 

probability density ( )xxT 1,' θ  locally according to 
data availability. The interpretation of this is 
intuitive, in areas where the global parametric start 
assigns too much (or too small) probability mass 
according to observed data, the local model captures 
this and corrects for this misspecification. The semi-
parametric model which will form the basis for 
estimating the true density ( )xf  is 

( )( )( )=xx xTxm 121 ,,, θθθ
( ) ( ) ( )( )( )xxx xTxTxT 1211 ,,,,' θθθφθ ⋅= .            (1.2) 

The process of estimating this semi-parametric 
model begins with estimate of the global parameter 
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divergency assigns a semi-parametric estimator 
that takes the expression  
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defining the asymptotic properties of the kernel 
density estimator. The indexation on the 
semiparametric model ( )⋅1m  indicates that the 
model incorporates one data source. A deeper 
theoretical exposition can be found in Gustafsson 
et al. (2008).  
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The procedure to obtain the bias and variance 
expression above could be found in the recent 
papers of Buch-Larsen et al. (2005) or Gustafsson et 
al. (2008). 

2. A semi-parametric model incorporating two 
data sources 

This section demonstrates how to incorporate prior 
knowledge into model (1.4), thereby enriching the 
estimation of an internal loss distribution. The model 
presented in this section was developed by 
Gustafsson and Nielsen (2008), where they argue 
that combining internal data with prior knowledge is 
the way to get a more accurate extrapolation of a 
company solvency capital for operational risk. As in 
model (1.4), assume ( ) +≤≤ ℜ∈niiX 1  is a sequence of 
internal random losses and extend the information 
by letting ( ) +≤≤

ℜ∈
mjjY

1
 be a sample of external 

losses (e.g., publicly reported losses or consortium 
data). In addition, let ( )yxT 1,θ  be a parametric 
family with density function ( )yxT 1,' θ , indexed by 
the global external parameter 

{ } pyy
p

yyy ℜ∈Θ∈= 1112111 ,...,, θθθθ . From Gustafsson 
and Nielsen (2008), we know that this global start 
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situation using x
1θ  as a parametric start. The 

estimation process begins by estimating y
1θ  on 
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holds. Note that the theoretical counterpart is the 
same as in the scenario with one data source, 
therefore this model has the same asymptotic bias 
and variance as (1.4). This is explained in more 
depth in Gustafsson and Nielsen (2008). Also 
notable is that the bandwidth is still estimated on 
the internal sample set. Since we want that as 

∞→n  then 0→h , meaning that as internal data 
increases more correction should be done, so 
internal data becomes more significant in the 
internal loss distribution model on the source of 
prior knowledge. The estimated extended semi-
parametric model that incorporates two data 
sources takes the form  
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⎠
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⎟
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⎜
⎜
⎝

⎛

=
n

i

yy
ih

y

y

xTXTK

hxTn

xT
θθ

θα

θ
 (2.2) 

The indexation on m2 implies that the model 
incorporates two data sources. Note that prior 
knowledge could be publicly reported losses, 
consortium data or scenario analysis that unite with 
the internal sample ( ) niiX ≤≤1  in (2.2). The model is 
also able to handle other combinations if internal 
data is not available. Examples of such combinations 

are: publicly reported losses with consortium data, 
scenario analysis with consortium data, and scenario 
analysis with publicly reported losses. 

3. A semi-parametric model incorporating three 
data sources 

In the situation where different prior knowledge is 
available to a company, one should take the 
opportunity to obtain a more accurate and reliable 
operational risk capital assessment. Certainly, 
making use of the model which incorporates two 
data sources, presented in Section 2, and combining 
the different prior knowledge available with 
collected internal data could be a flexible way to 
assess and settle solvency capital for operational risk. 
Hopefully, the extrapolated capital number from one 
combination (e.g., publicly reported losses and 
internal data) is similar to the capital figure from 
another combination (e.g., consortium data and 
internal data). However, what if the extrapolated 
numbers are significantly different? The optimal 
situation would be if all sources of prior knowledge 
could be incorporated in one model in a logical and 
intuitive way. One requirement would be if two 
sources of prior knowledge are available with more 
or less the same characteristics, the model should 
resemble the model presented by Gustafsson and 
Nielsen (2008). On the other hand, if the second 
added prior knowledge source differs substantially 
from the first, the model characteristics should 
handle this in an obvious and explicable way. 

This section develops a model that meets these 
requirements. The inspiration originates from the bias 
reduction literature (see Hjort and Glad, 1995; Jones, 
Linton and Nielsen, 1995; and Jones, Signorini and 
Hjort, 1999). In these references different kernel 
density estimators are developed to reduce asymptotic 
bias from model (1.1), but still contain the same 
magnitude on the asymptotic variance. In short, the 
multiplicative bias correction method with underlying 
pilot estimator (1.1) is presented as 

( ) ( ) ( ) =⋅= rgrfrf ~~~

( ) ( ) ( )rRKRfnrf ihi

n

i

−⋅= −

=

− ∑ 1

1

1 ˆ~
.            (3.1) 

Inspired by (3.1), we let ( ) +≤≤ ℜ∈niiX 1  and 
( ) +≤≤

ℜ∈
mjjY

1
be sequences of internal and 

external random losses (e.g., publicly reported 
losses) as in the previous section, and extend the 
information by letting ( ) +≤≤ ℜ∈qkkZ 1 be another 

sequence of external random losses (e.g., 
consortium data). As above let ( )yxT 1,θ  be a 
parametric family, indexed by the global parameter 
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{ } pyy
p

yyy ℜ∈Θ∈= 1112111 ,...,, θθθθ , and let ( )zxT 1,θ  
be another parametric family, indexed by the 
global parameter { } pzz

p
zzz ℜ∈Θ∈= 1112111 ,...,, θθθθ . 

The characteristics of the new model is that the 
probability density function ( )yxT 1,' θ  will still 
serve as the global parametric start as in Gustafsson 
and Nielsen (2008), but now the local parametric 
model is extended to embrace an added source of 
prior knowledge. Assume now that this extended 
correction function ( )( )wsw ,, 2θφ , with 

( )yxTs 1,θ=  and ( )zxT 1,θω = , is a local 
parametric model with local function 
( ) ( ) ( ) ( ){ } q

q wswswsws ℜ∈∈= 2222212 ,,...,,,,, θθθθθ
that should correct the global parametric start 
density ( )yxT 1,' θ . Then, the presented semi- 
parametric model enriched with three different 
sources of data could be formulated as 

( ) ( )( )( )=zyy xTxTxm 1121 ,,,,, θθθθ  

( )( )( ) ( ) ( ) ( )( )( )zyyyy xTxTxTxTxm 1121121 ,,,,,,,, θθθθφθθθ ⋅

( )yxT 1,' θ=  

( ) ( )( )( ) ( ) ( ) ( )( )( )zyyyy xTxTxTxTxT 1121121 ,,,,,,, θθθθφθθθφ ⋅⋅ . 

The process of estimating (3.2) begins by estimating 
y

1θ  on ( )
mjjY

≤≤1
 and z

1θ  on ( ) qkkZ ≤≤1 using 

maximum likelihood estimation. As a consequence, 
different prior knowledge will be incorporated in the 
transformed data sets ( ) ( )yy

ii xTsXTS 11
ˆ,ˆ,ˆ,ˆ θθ == , 

and ( ) ( )zz
ii xTwXTW 11

ˆ,ˆ,ˆ,ˆ θθ == . Now, let 

( )( )ss ˆˆ,ˆ 2θφ  be the same estimated local model as in 
(2.2) that incorporates two data sources, and let 

( )( )wss ˆ,ˆ,ˆ 2θφ  be the extended local model that 
incorporates an additional source of prior 
knowledge. The estimation of the local model is 
achieved by choosing the local function ( )ws ˆ,ˆ2θ  
such that 

( ) ( )( )−−∑
=

− wsSssSKn x
i

n

i
ih ˆ,ˆ,ˆ,ˆˆˆ

2
1

1 θυ  

( ) ( )( )⋅−− ∫ wstsstK x
h ˆ,ˆ,,ˆˆ 2

1

0
θυ  

( )( ) ( )( ) 0ˆ,ˆ,ˆˆˆ,ˆ, 2212 =⋅ dtwsssxm xy θφθθ             (3.3) 

holds. Note that equation (3.3) includes the 
estimated model (2.2). For simplicity, if we use the 
abbreviations iŜ , iŴ , ŝ and ŵ denned above, the 
estimated version of (3.2) takes the following form  

( )( ) ( )( )=zyy xTxTxm 11213
ˆ,,ˆ,ˆ,ˆ, θθθθ  

( )( )( ) ( ) ( )( ) ( )( )=⋅= zyyyxy xTxTxTxTxm 11211212
ˆ,,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ, θθθθφθθθ

( )( ) ( )( )=⋅= wsssxm y ˆ,ˆˆ,ˆˆˆ,ˆ, 2212 θφθθ  

( ) ( )( ) ( )( )wssssxT y ˆ,ˆˆ,ˆˆˆ,ˆˆ,' 221 θφθφθ ⋅⋅=             (3.4) 

with 

( )( ) ( )( ) ( )sSKhsnss i

n

i
h ˆˆ,ˆˆˆ,ˆ

1

1
012 −= ∑

=

−αθφ , 

( )( ) ( )( ) ( )
( )( )∑

=

− −
=

n

i i

ih

sS
sWKhsnwss

1 2

1
012 ˆˆ,ˆ

ˆˆ
,ˆˆ,ˆˆ,ˆ

θφ
αθφ . 

The indexation on 3m  implies that this model 
incorporates three sources of data. The asymptotic 
bias and variance of (3.2) is presented in Theorem 
1. As in the previous sections we know that 

y
1̂θ and z

1̂θ  converge with a parametric rate to the 

pseudo true value 0
1θ , faster than the 

nonparametric rate, which allows us to disregard 
the noise associated with the estimation of 0

1θ . In 
the Theorem we make the following shortening to 
make place ( ) ( )( )( ) 311213 ˆˆ,,ˆ,ˆ,ˆ, mxTxTxm zyxy =θθθθ . 

Theorem 1. Let ( ) niiX ≤≤1 , ( )
mjjY

≤≤1
 and 

( ) qkkZ ≤≤1 be iid random variables with density f . 

Suppose that f  has four continuous derivatives 
everywhere, and that as ∞→n , 0→h , and 

∞→nh . Then the asymptotic bias and variance 
for 3m is presented as  

( ) ( )( )⋅−≅−Ε hxThxfm ,,
4

ˆ 0
121

4

3 θα  

( ) ( )( ) ( )
( ) ( ) ( ) +

″

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ ′
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⎠

⎞
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121 θθ
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( ) ( ) ( ) ⎟
⎠
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′
≅ ∫ nh

odttK
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xfxTmV p
1~,ˆ
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1

3
θ

 

with ( ) ( ) ( )tKKtKtK ∗−≅2~
 and ( ) ( ) ( ) υυυ dKtKtKK ∫ −=∗~

 

is the convolution. 

The calculation of the asymptotic bias and variance 
can be found in Appendix A. 
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4. Characteristics of the models 

In this section, we evaluate the characteristics of the 
models considered in the previous sections. The 
mixing models (2.2) and (3.4) are interpreted and 
compared to (1.4) by adding different types of prior 
knowledge. Throughout the study, we assume that the 
internal sample ( ) niiX ≤≤1  is a sequence of random 
losses drawn from a ( )xxN σµ ,log distribution with 
sample size n = 200, and true density function 

( )
{ }( ) ( )

+

−−

ℜ∈x
x

exf
x

x xx

,
2

22 2/log

πσ

σµ

.                          (4.1) 

The true density is parameterized in terms of location 
and scale parameters such that { } { }1,1, =xx σµ . 

4.1. Evaluation of the characteristics by 
incorporating one source of prior knowledge. 
Assume ( )

mjjY
≤≤1

is a sequence of external random 

losses (e.g., publicly reported losses) with           
m = 1000 drawn from (4.1) but with location and 
scale parameters { }yy σµ , . The study commences 
by evaluating different scenarios for different 
parameters { }yy σµ , and intepreting the effect on 
model (2.2) compared to model (1.4). This allows 
us to see how mixing model (2.2) peforms when 
different external data characteristics are 
available. In total, eight different scenarios will be 
studied between models (2.2) and (1.4) and are 
summarized in Table 1. 

Table 1. Different scenarios considered on the parametrization between models (2.2) and (1.4) 
 Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Scenario 

5 

Scenario 

6 

Scenario 

7 

Scenario 

8 
{ }yy σµ ,  {1, 1} {1, 1} {1, 1} {1, 1} {1, 1} {1, 1} {1, 1} {1, 1} 

{ }xx σµ ,  
⎭
⎬
⎫

⎩
⎨
⎧

xx σµ
4
3,  { }xx σµ ,  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ
4
5,

 
⎭
⎬
⎫

⎩
⎨
⎧

xx σµ
2
3,

 
⎭
⎬
⎫

⎩
⎨
⎧

xx σµ ,
4
3  { }xx σµ ,  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ ,
4
5  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ ,
2
3  

 

As seen in Table 1, the eight scenarios differ in that the 
first four situations utilize the same location parameter 
on the external sample as the internal sample, i.e. 

yx µµ = , and changes are made on the scale 
parameter. For the remaining four scenarios, the 
opposite is studied, holding the scale parameters equal 
and changing the location on the external sample. 
The underlying distribution assumption made for 
models (2.2), (3.4) and (1.4) is the Generalized 
Champernowne Distribution GCD 131211 ,, θθθ  with 
density function 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ,

2
, 2

13131213

131312
1

1311
1

111111

111111

θθθ

θθθ

θθθθ

θθθθθθ
−+++

−++
=′

−

x
xxT

+ℜ∈x ,               (4.2) 

where the parameters 011 >θ , 012 >θ  and 013 >θ  
are defined by the global parameter 

{ } 3
11312111 ,, ℜ∈Θ∈= θθθθ . Here 11θ  is a tail 

parameter, 12θ  controls the body of the distribution, 
and 13θ  is a shift parameter that controls the domain 

close to zero. The global parameter 1θ  in (4.2) is 
estimated by maximum likelihood on each pseudo 
scenario sample ( ) 2001 ≤≤iiX  and ( )

10001 ≤≤ jjY , resulting 

in  x
1̂θ   and y

1̂θ .  The  kernel function  K  is  chosen   
as  the  Epanechnikov   function  and    the   bandwidth  

h is estimated on the transformed axes using 
Silverman’s plug-in bandwidth (see Silverman, 1986). 

Consequently, models (2.2) and (1.4) are estimated 
and evaluated in Figure 1 (Appendix B). 

The top row in Figure 1 represents the first four 
scenarios considered in Table 1. Here, an identical 
location parameter is assumed between the 
samples, while scenarios change from a low to a 
high volatile data on the external sample. The first 
graph indicates that when prior knowledge data is 
less volatile than collected internal data, model 
(2.2) places more probability mass in the 
beginning of the domain. Thereby, model (2.2) 
proves to have light tail characteristics compared 
to model (1.4). As 12 the external data becomes 
more volatile, the mode remains the same but 
with less probability mass. Thus, the tail becomes 
more extreme for (2.2). The final four scenarios in 
Table 1 are given by the bottom row in Figure 1 
(Appendix B). Here, the standard deviation is 
maintained, while we find the mode shifting to the 
right when increasing the location parameter. 

4.2. Evaluation of the characteristics by 
incorporating two sources of prior knowledge. 
We continue with investigating the characteristics 
of the developed model (3.4). Assuming the same 
internal data and publicly reported data as above, 
we extend the analysis by adding an extra source 
of prior knowledge. Let ( ) qkkZ ≤≤1 with q = 1000, be 
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a sequence of random losses (e.g., consortium 
data) drawn from (4.1) with location and scale 
parameters { }zz σµ , . In this section, we consider 
sixteen different scenarios: the first eight present the 
same information on the prior knowledge  

sources ( )
10001 ≤≤ jjY  and ( ) 10001 ≤≤kkZ  while the 

remaining eight scenarios consider different 
information.The first eight scenarios that will be 
investigated between models (3.4) and (1.4) are 
summarized in Table 2. 

Table 2. Different scenarios considered on the parametrization between models (3.4) and (1.4) 
 Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Scenario 

5 

Scenario 

6 

Scenario 

7 

Scenario 

8 

{ }xx σµ ,  {1, 1} {1, 1} {1, 1} {1, 1} {1, 1} {1, 1} {1, 1} {1, 1} 

{ }yy σµ ,  
⎭
⎬
⎫

⎩
⎨
⎧

xx σµ
4
3,  { }xx σµ ,  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ
4
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⎭
⎬
⎫

⎩
⎨
⎧

xx σµ
2
3,

 
⎭
⎬
⎫

⎩
⎨
⎧

xx σµ ,
4
3  { }xx σµ ,  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ ,
4
5  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ ,
2
3  

{ }zz σµ ,  
⎭
⎬
⎫

⎩
⎨
⎧

xx σµ
4
3,  { }xx σµ ,  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ
4
5,  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ
2
3,

 
⎭
⎬
⎫

⎩
⎨
⎧

xx σµ ,
4
3  { }xx σµ ,  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ ,
4
5  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ ,
2
3  

 

Figure 2 (Appendix B) presents the results for the 
eight scenarios. As an appealing feature model (3.4) 
behaves similarly to model (2.2) when adding 
similar data. This is encouraging since if the 
information from the new data source have similar 
characteristics as the source of prior knowledge that 
already is incorporated, model (3.4) falls down on 
model (2.2). Logically, this is how it should be, 
since the exposure should not change if no different  

information is added to the model. In this situation, 
the local parametric model ( )( )wss ˆ,ˆˆ,ˆ 2θφ  in (3.4) is 
close to one, and the remaining functions in (3.4) 
will be multiplied with something close to one. 

The final eight scenarios which we will evaluate are 
summarized in Table 3. Here, different 
characteristics are assumed on the two sources of 
prior knowledge. 

Table 3. Different scenarios considered on the parametrization between models (3.4) and (1.4) 
 Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Scenario 

5 

Scenario 

6 

Scenario 

7 

Scenario 

8 
{ }xx σµ ,  {1, 1} {1, 1} {1, 1} {1, 1} {1, 1} {1, 1} {1, 1} {1, 1} 

{ }yy σµ ,  
⎭
⎬
⎫

⎩
⎨
⎧

xx σµ
4
3,  { }xx σµ ,  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ
4
5,  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ
2
3,
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⎬
⎫

⎩
⎨
⎧

xx σµ ,
4
3  { }xx σµ ,  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ ,
4
5  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ ,
2
3  

{ }zz σµ ,  
⎭
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⎧

xx σµ
2
3,  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ
4
5,

 { }xx σµ ,  
⎭
⎬
⎫

⎩
⎨
⎧

xx σµ
4
3,

 
⎭
⎬
⎫

⎩
⎨
⎧

xx σµ ,
2
3  

⎭
⎬
⎫

⎩
⎨
⎧

xx σµ ,
4
5  { }xx σµ ,  

⎭
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⎩
⎨
⎧

xx σµ ,
4
3  

 

Figure 3 (Appendix B) tells us that if an extra prior 
knowledge source is added which has the same or 
larger standard deviation than the external data 
source added first, the model takes that into account 
and presents a heavier tail. If we add a less volatile 
source than already presented, the model decreases 
in the tail. 

5. Pre- and post-insurance loss distribution 

This section demonstrates the usefulness of the 
proposed model in an empirical study. The data 
considered are an internal sample set ( ) niiX ≤≤1 , 

publicly  reported   losses   ( )
mjjY

≤≤1
  filtered   for  

relevance, and insurance consortium data ( ) qkkZ ≤≤1 , 

where all sources originate from the event risk 
category: 'Execution, Delivery and Process 
Management'. The objective is to evaluate next years' 
operational risk exposure by estimating total loss 
distributions on the presented data with pre- and post-
insurance recoveries, then employ the risk measure 
Value-at-Risk (VaR) for different levels of risk 
tolerance. The developed model (3.4) will be evaluated 
against five benchmark models in a Monte Carlo 
simulation, where all six models lean on the same 
frequency assumption. Table 4 shows the descriptive 
statistics of the three data sets included in the study. 

Table 4. Statistics for event risk category execution, delivery and process management 
 Number of  

losses 
Maximum 
loss (m£) 

Sample 
mean (m£) 

Sample 
median (m£) 

Standard 
deviation (m£) 

Time 
horizon (T) 

Internal data, ( ) niiX ≤≤1
 89 1.05 0.08 0.03 0.17 2 

Consortium data, ( ) qkkZ ≤≤1
 613 31.4 0.44 0.03 2.25 5 

Publicly reported data, ( )
mjjY

≤≤1
 885 106.3 1.51 0.04 6.61 9 
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It should be noted that the mean is larger than the 
median in all cases, consistent with right skewed 
data. Further, the number of losses, the maximum 
loss, the standard deviation and the collection 
period are different. Also remarkable are the wide 
differences in the maximum loss. 

5.1. The severity models. The global parametric 
start for the severity models is estimated by the 
maximum likelihood. Here, we assume that the 
underlying distributions ( )xxT 1,θ , ( )yxT 1,θ  and 
( )zxT 1,θ  originate from a GCD defined by (4.2) and 

the respective estimated global parameters are 
provided in Table 5. 

Table 5. Maximum likelihood estimation of the 
global parameters for a GCD 

 11θ̂  
12θ̂  13θ̂  

x
1̂θ  on the internal data ( ) niiX ≤≤1

 1.714 0.032 0 

z
1̂θ on the consortium data ( ) qkkZ ≤≤1

 1.224 0.033 0 

y
1̂θ  on the publicly reported data ( )

mjjY
≤≤1

 0.440 0.044 0.067 

It should be noted that the estimated tail parameter 

11θ̂  for the different data sets is widely different. 
The publicly reported data provide a very heavy tail 
since the corresponding low value of 11θ̂ . The 
internal data set appears not to be significantly heavy 
tailed, and the consortium data offer a moderate tail 
for the GCD. For the sake of simplicity, we 
introduce the abbreviations 621

ˆ,...,ˆ,ˆ FFF  for the 
estimated severity models considered in the Monte 
Carlo analysis. A detailed description of each 
abbreviation will be given below. 

1̂F : Pure parametric GCD. Model (4.2) is estimated 
on the internal data ( ) 891 ≤≤iiX , consistent with 

( )xxT 1̂,θ . 

2̂F : Pure parametric GCD. Model (4.2) is estimated 
on consortium data ( ) 6131 ≤≤kkZ , consistent with 

( )zxT 1̂,θ . 

3̂F : Pure parametric GCD. Model (4.2) is estimated 

on publicly reported data ( )
8851 ≤≤ jjY , consistent with 

( )yxT 1̂,θ . 

4̂F : A semi-parametric model. Model (1.4) is 
estimated using collected internal data ( ) 891 ≤≤iiX , 
consistent with the estimator 

( )( )( )xxx xTxm 1211
ˆ,ˆ,ˆ, θθθ . 

5̂F : A semi-parametric model. Model (2.2) is 
estimated using collected internal data ( ) 891 ≤≤iiX  

and publicly reported losses ( )
8851 ≤≤ jjY  consistent 

with the estimator ( )( )( )yxy xTxm 1212
ˆ,ˆ,ˆ, θθθ . 

6̂F : A semi-parametric model. Model (3.4) is 
estimated using collected internal data ( ) 891 ≤≤iiX , 
publicly reported losses ( )

8851 ≤≤ jjY  and consortium 

data ( ) 6131 ≤≤kkZ , consistent with the estimator 

( )( ) ( )( )zyy xTxTxm 11213
ˆ,,ˆ,ˆ,ˆ, θθθθ . 

5.2. The frequency model and the Monte Carlo 
simulation. For the annual frequency model we 
assume that ( )tN is an independent homogeneous 
Poisson process denoted as ( ) ( )tPotN λ∈ , where 
the intensity 0>λ . The maximum likelihood 
estimator of the annual intensity of internal losses is 
λ̂  where n = 89 and T = 2 from Table 2, which gives 

45ˆ ≅λ . The Monte Carlo simulation begins by 
simulating the Poisson frequency R times with 
estimated intensity λ̂ . Denote the annual 
simulated frequencies by rλ̂  with Rr ,...,1=  
with number of simulations R = 100000. For each 

rλ̂  we draw randomly uniform distributed samples 
and combine these with loss sizes taken from the 
inverse function of the severity distribution models 

6,...,2,1,ˆ =δδF . By using Monte Carlo simulation 
with the severity and frequency assumptions we 
could create a simulated one year operational risk 
loss distribution for each model. Let the 
abbreviations 6,...,2,1, =δδM , be the total loss 
distributions obtained through the Monte Carlo 
simulation and expressed as 

( ) RruFM
r

k
rkr ,...,1,ˆ

ˆ

1

==∑
=

←
λ

δδ  

with ( )1,0Uurk ∈ for rk λ̂,...,1= , and 

( ) ( ) ξξδ dfuF rku

rk ∫= 0
ˆˆ , 

where δF̂  is the compared severity estimators 
described above. 

5.3. Insurance recoveries. To make the study more 
realistic for a company, each of the individual 
events ( )rkuF←

δ̂  in the total loss distributions 
( ) RrrM ≤≤1δ  will go through an insurance filter. For 
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each simulated amount ( )rkuF←
δ̂  the payable 

insurance amount is determined. Since specific 
operational risk reinsurance contracts are unusual, 
expert opinions could be taken into account to assess 
whether operational risk losses for the considered 
event risk category are covered under other 
reinsurance contracts by the company. The 
procedure begins by determining whether the 
individual events are covered by the insurance. A 
random process takes place using a Bernoulli 
distribution with probability p1 to ascertain whether 
the event is insured. If a loss event is insured, the 
methodology then seeks to determine which 
insurance cover type the event falls within. This is 
done by generating a Multinomial distribution with a 
given probability p2c, for cover type с. If a loss event 

is insured, falls within one of the cover types, one 
determines if the loss event is honored or not. Once 
again, a Bernoulli trial takes place with probability 
p3. Finally, if a loss event is insured and honored, a 
random process should determine whether the event 
is paid in the next financial year. Once again a 
Bernoulli trial takes place with probability p4. Note, 
if the amount ( )rkuF←

δ̂  does not pass through all 
steps in the insurance filtration, the simulated 
amount is seen as an uninsured event. If a loss event 
has passed through the filtration, the calculation of 
insurance payout follows a non-proportional 
reinsurance contract (excess-of-loss) with a 
deductible of D million pounds sterling and limit of 
L million pounds sterling. Table 6 summarizes the 
input values for the insurance cover filtration. 

Table 6. Expert opinions on insurance recoveries information for the Event Risk Category (ERC): 
Execution, Delivery and Process Management 

 Proportion 
of insured 

p1 
Cover 
type 

Cover type 
probability 
{p21, p22} 

Probability 
honoring 

p3 

Probability 
payment 

p4 
Deductible 

D 
Limit 

L 

  Directors & 
officers 15% 90% 80%   

ERC 90%     5 20 
  Professional 

indemnity 85% 80% 90%   
 

The individual events for the total of six pre-
insurance loss distributions rMδ are filtered 
according to Table 6, and the post-insurance total 
loss distributions are generated for each δ  as 

( ) RruFM rk
k

r

r

,...,1,ˆ
ˆ

1

==∑
=

←∗∗
λ

δδ . 

Note that the following equalities will always hold, 

rr MM δδ ≤∗ . 

5.4. Value-at-Risk. For each of the twelve models 
( ) 61 ≤≤δδM  and ( ) 61 ≤≤

∗
δδM  the risk measure Value-

at-Risk (VaR) is estimated. For the pre-insured loss 
distributions we have 

( ) ( ){ }αδδα ≤≤Ρℜ∈= mMmMVaR rr |sup  

and for the post-insured distributions we use 

( ) ( ){ }αδδα ≤≤Ρℜ∈= ∗∗ mMmMVaR rr |sup . 

If we compare each models VaR outcome separately 
for different risk tolerances α , and subsequently 
evaluate the insurance recovery effect, we see in 
Figure 4 (Appendix B) that some models are not 
affected by the insurance filter. 
Interpreting Figure 4, we find that models M1 and 
M4   are   identical   to  their   post-insurance   loss  

distributions ∗
1M and ∗

4M , respectively. This is not 
remarkable since these loss distributions have severity 
estimators that only incorporate internal collected data 
in their estimation, therefore the limit level L million 
pounds sterling was never reached in the simulation. 
Focus on the second model M2, after risk tolerance 
level α = 99%, insurance recoveries occur. The 
remaining three post-insurance loss distributions ∗

3M , 
∗
5M  and ∗

6M  have all been affected with insurance 
recoveries for low risk tolerance levels. This is not 
extraordinary since all three models' severity 
estimators include the publicly reported data set that is 
characterized by extremely large losses. 
Table 7 focuses in more detail on the tail for the 
outcomes presented in Figure 4. 
Table 7. Value-at-Risk with focus on the tail for the 

different loss distributions 
 VaR95% VaR99% VaR99.5% VaR99.9% 

1M  2.90 3.28 3.44 3.74 
∗
1M  2.90 3.28 3.44 3.74 

2M  4.81 5.63 5.96 6.64 
∗
2M  4.81 5.14 5.50 6.30 

3M  57.48 76.98 84.78 101.72 
∗
3M  42.67 64.32 72.48 91.68 

4M  3.29 3.78 3.97 4.32 
∗
4M  3.29 3.78 3.97 4.32 
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Table 7 (cont.). Value-at-Risk with focus on the tail 
for the different loss distributions 

 VaR95% VaR99% VaR99.5% VaR99.9% 

5M  46.70 56.69 67.58 79.69 
∗
5M  25.09 35.09 46.11 58.07 

6M  15.89 20.61 22.53 26.58 
∗
6M  12.31 17.63 19.57 23.95 

If we compare the results for risk tolerance level 
α = 95% we see that model M3 extrapolates the 
highest value. This model only takes into account 
the publicly reported losses when estimating the 
severity distribution. Further, mixing model M5 
presented by Gustafsson and Nielsen (2008) is 
much closer to model M3 than model M1. The 
interpretation of this is that more weight is 
assigned to the publicly reported data than to the 
internal sample. If we look at the return period 
one in two hundred years (99.5%), it is interesting 
to see that model M5 reduces the solvency capital 
amount with 21.47 million pounds sterling by 
including insurance recoveries. Model M6 shows 
lower values than M5 for all α -values. Since the 
extra added source of prior knowledge is less 
volatile and different in mean, the model corrects 
M5 to be less heavy tailed.  
Conclusions 

This paper has explored the possibility of 
applying a model that incorporates three sources of 
data for operational risk capital assessment. The model 

displays desirable characteristics for operational 
risk modelling. In a scenario setup we worked out 
different scenarios on the added external sources 
and the performance of the outcome from the 
developed model is appealing. The model is 
receptive to extreme events introduced by a prior 
knowledge source, but the statistical equalities 
from internal data and the second added source of 
prior knowledge play an essential role in the 
correction of the model. 

We examine operational risk modelling using 
only internal data. By considering VaR99.5% for 
model M1 we find a total number of 3.44 million 
pounds sterling. However, by adding an extra 
source of prior knowledge, the publicly reported 
loss data set, the same return period results in a 
value which is almost 20 times higher. As we can 
see, model M5 is close to M3, meaning that for 
these data sets model M5 provides a flat local 
model. The presented model M6 takes the 
consortium data into account. We find that 
VaR99.5% is three times smaller for model M6 than 
M5, but the effect from the publicly reported data 
is still present since VaR99.5% for M6 is six times 
higher than the outcome when using only internal 
data, and more than three times higher compared 
to using only consortium data. The model also has 
appealing features when more abundant internal 
losses will be collected and taken into account 
and thereby a greater correction on the prior 
knowledge will be made. 
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Appendix A 

In order to shorten the proof we introduce the notation ( ) ( )( ) ( )( )wsssss ˆ,ˆˆ,ˆˆˆ,ˆˆ,ˆ 222 θφθφθξ ⋅=  with the theoretical 

counterpart ( )0
2,θξ s  with ( )0

1,θxTs = . From Jones, Signorini and Hjort (1999) the calculation of the bias and 

variance for ( )2̂,ˆ θξ s  is given by:  
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By back-transforming to original axes, we need to consider the following equalities: 
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As a consequence, inserting these expressions in the bias and variance formulas, we obtain 

( ) ( )( ) ( )( )211
1

3
ˆ,ˆ,ˆ, θθξθ yy xTxTxfm ⋅Ε=−Ε  
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Fig. 1. Eight scenarios that evaluate the characteristics of model (2.2) compared to (1.4) 
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Fig. 2. Eight scenarios that evaluate the characteristics of model (3.4) compared to (1.4) where the prior 

knowledge data sources are similar in their appearance 

           

      
              

       
Fig. 3. Eight scenarios that evaluate the characteristics of model (3.4) compared to (1.4) where the prior 

knowledge data sources are different in their appearance 
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Fig. 4. Estimated Value-at-Risk for different risk tolerance for the six proposed models with and without 

insurance cover 

 


