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NUMERICAL INVESTIGATION OF A PLAIN
STRAIN STATE FOR A BODY WITH THIN COVER
USING DOMAIN DECOMPOSITION

IvaN DYYAK, YAREMA SAVULA, ANDRIY STYAHAR

PE3IOME. Posragmaersca mMozmesnb, gka ONHCYE HAIPYKeEHO mnedOpPMOBAHMIA
CTaH JIBOBUMIPDHOTO TETE€POTEHHOTO Tijia 3 TOHKUM TOKPUTTAM. CrodaTky
JIOBEIEHO 301KHICTh iTEpaTUBHOTO AJIrOPUTMY, TOOYI0BAHOTO HA, OCHOBI ITO€/I-
nauHg Merony ckindenuux enementis (MCE) ra meroy rpaHudHuUX ejleMeHTIB
(MT'E) 3 BUKOpPHCTAaHHAM JEKOMMTO3WINI oOmacteii. Ilicas mboro aaropurm
HPOIIIOCTPOBAHO HA MIPUKJIA I JTBOBUMIDHOI 33a4i JjId Tija 3 TOKPUTTAM.

ABSTRACT. We consider a model, that describes the plain stress state of the
2D heterogeneous elastic body with the thin cover. First we prove the con-
vergence of the iterative algorithm based on finite element method/boundary
element method (FEM/BEM) coupling using domain decomposition. Further
we illustrate this algorithm with an example of 2D problem for the body with
a cover.

1. INTRODUCTION

A lot of structures, both natural and artificial, contain thin covers or thin
inclusions. Therefore, the problem of analyzing the stress-strain state of such
bodies is of great importance. Typically they consist of two or more homoge-
neous parts that have a big differences in physical dimensions and properties
between them. A lot of aspects of the problems, related to this subject, were
analyzed (see for example |2, 4, 5, 7, 8]). In this paper we use the combined
model, where the parts of the body with comparable physical dimensions are
described by the linear elasticity equations, whereas the sress state of the thin
cover is described by Tymoshenko shell theory equations [5]. These parts are
connected using the appropriate coupling conditions on the common bound-
aries.

In order to perform numerical analysis of our model we solve the correspond-
ing problems in thin shells by finite element method (FEM) with bubble basis
functions, and the other parts of the body are solved numerically using bound-
ary element method (BEM) with linear basis functions; the iterative domain
decomposition algorithm is then used to connect the solutions in both domains.

In this paper we also prove the properties of our model and prove the con-
vergence of the algorithm.

tKey words. Elasticity theory, boundary element method, finite element method, domain
decomposition.



24 IVAN DYYAK, YAREMA SAVULA, ANDRIY STYAHAR

2. PROBLEM STATEMENT
Let us consider a problem of plane strain of cylindrical body €2y with the
cover (1.

Fic. 1. Body with cover

The plane strain stress of the body in € can be described by [1]

doy1 Ooip
8.%1 + 8932 N fl,

5 5 (1)
021 022

65131 + 8352 - f2

that holds for x € Q1, x = x1,x2. Here f = fi, fo denotes the volume forces
that act on the body in €. From the Hook’s law it follows that the components

of the stress tensor can be written as

1 Ou;  Ou;
0ij = 5B (ax; + 8xi) , i, =1,2,
where u(z) = ui(z),u2(x) is the displacement vector with u; being the dis-
placements in the directions z; for ¢ = 1,2; E is the Young’s modulus of the
body in ;. In the following we assume that no volume forces act on the body
in €.

Let us denote by n the outer normal vector to €2, and by 7 — the tangent
vector. Equations (1) are considered together with the boundary conditions

Uy, =0, u=0, ze€lp
and

Opw =0, o0y, =0, zely,
where u, and u, are the components of the stress tensor in the coordinate
system n, 7. Similarly, o,, and o, are the components of the stress tensor in
the n, 7 coordinate system.
For the description of the cover in 9 we use the equations of Timoshenko
shell theory for the cylindrical shell of the form [5]
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where vq, w, 1 are the displacements and angle of revolution in the shell; 771,
Ty3, My are the forces and moments in the shell; Ay = Ay (&), k1 = k1 (&)
correspond to Lame parameter and median surface curvature parameter; pi,
p3, m are given functions; it holds

Esh o Eyh?
Th=—2Sen, Tis=kGhes, Min=-———xu, 3
11 1_1)%811 13 €13 11 2010 )Xn (3)

1 dv; 1 dw 1 dv
=——+4k + k ==
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Here Es is the Young’s modulus for the shell, v is the Poisson’s ratio; gl, g3
are the components of the volume forces vector, that act on the shell; of;

b3

z]’ 'Lj’
i,7 = 1,3 are the components of the stress tensor on the outer ({3 = %) and
inner (&3 = —%) surfaces of the shell It is known, that in the case of isotropic

bodies we have k' = 5 , G = (1+v2)

At each end of the thln cover we impose boundary conditions either on the
displacements vi, w and 1 or on the forces T11, T13 and moment Mi; in the
shell (if the end is subjected to load or free). At the outer surface of the shell
we prescribe to o3 and o33 some given stresses.

Remark 1. The choice of 2D curvilinear coordinate system for the shell as
&1,&3 (instead of £1,&2) is based on the fact, that 2D problem is obtained from
the 3D case by assuming the cylinder being infinite in the direction of €.

On the boundary 'y, common to both Q1 and Qo we prescribe the following
coupling conditions [5]:
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h

UU:U), UT:V1—§’YL
(6)
Oypy = 033, Opr = O13.

Let us rewrite the coupling conditions (6) on I'r as follows:

_ oy n
Uy =W, Ur =V]1 2’717
h h\ _
Al <]. - k12> Opy — Al (]. - k12> 033 = 07 (7)

h h
Al <1 - k12> Oyr — Al <1 - k12> O'i)) =0.

3. THE PROPERTIES OF THE STEKLOV-POINCARE OPERATORS
AND CONVERGENCE OF THE DOMAIN DECOMPOSITION
ITERATIVE ALGORITHM
Let us suppose that on the inferface I'; the displacement is equal to ¢ =
©1,02, pi € H (T'7), i = 1,2. In the following we consider the Steklov-Poincare
operator S for our problem as well as local Steklov-Poincare operators S;, that
correspond to €, i = 1,2. Therefore, we have from (7)

<SS0>¢>FI = <SlS07¢>FI + <SQQO5 Q’Z)>FI ’ v@ad) € Hl (FI) X Hl (FI)

Sietle, = (4 (1= 1 ) Giow (0)0n) +

Iy

+<A1 (1—k1};> Groy: (@)7¢2>F17 (8)

(Sap, Y)p, = <—A1 <1 - /~€1;L> 033 () ,¢1> +

I'r
h _
+ <A1 <1 - k?12> 013 () ,7!)2> ,
Ty

where Gjo is the trace of o on I'y; <u,v>FI denotes the bilinear form which
formally can be written as

(u,v)p, = /UUdF].
Iy
First we prove that there exists a unique solution to the problem for Steklov-
Poincare operators. For this purpose we will use the Lax-Milgram lemma.
Let 5 be a midline of (2. Without loss of generality we assume that g1 =
gs = JE = Jég = 0. Moreover, one notices that all the displacements defined
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in Q9 are continuous with respect to &3, since both equations and boundary
conditions are independent of &;. Using the coupling conditions (7), one can
rewrite (8) as

a0, = (1 (111} ) o) )+

A\ . h_
+ <—A1 <1 - k12> o13(9), <V1 - 271>> =
Iy
h\ _ . h\ _ .
= —A1 1—]451* 033, W + —Al 1_k1* 013, V1 +
2 Qx 2 Qf
2 2
h h\ _ .
+ Alf 1 _kli 013, M )
2 2 o
2

(u, U)QE = /uv dQs,.

Q3

9)

where

Let us substitute into (9) the corresponding left sides of the system of equa-
tions (2)-(5):

dT: -
(S, )p, = (_dgllg + k1A1T11,w>Q +
2

dT; dM- B
+ (—11 - k‘1A1T13,\71) + <— LI A1T13,71>
d§1 Q; d§1

After integrating by parts one can easily notice that the coerciveness and
symmetry of the Steklov-Poincare operator Sy follows from the properties of
the corresponding operator defined on the midline €25 which has been proven
in [2|. Therefore, one obtains

0
) dvi\?  [(dw\?® [(dn\?\ ..
st 2 (@s) () + () )

-1

2

0
+62/ (vi+w® +97) d, c#0.

Further,

0
dw 2 dVl h d% 2
> ¢ — a6 2dg ;
<S2S0790>F1 = Cl/ <<d€1> + <d£1 2 d£1> dQ2+
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0

h 2
+C%/ <w2 + (V1 — 271) ) dQ;, Cc1 7é 0.
-1

Thus, S5 is coercive. The linearity of Sy follows directly from the linearity
of the corresponding operator in 5.

Let us now prove the continuity of Se. For this purpose, firstly one proves
the continuity of the following operator in €23

d&r
drT dM
+ (—11 — k1A1T13,V1> + <— LI A1T13771) ;
dgl Q dfl Q3

where y = vi,w,v1, ¢ = V1,W,7. Using Cauchy-Schwarz inequality, one
obtains for y,§ € H (I'y) x H* (F ) x H' (')

N dT;
(A%y)gz; = < =B 4 kAT, > +
Q3

J
(T13ci§ + k1A1T11w> dé1+

0
d&y +/ (Mn + A1T1371> ¢ =
21
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< c? HyHHl(Q;) HQHHl(Q;) , C#0.
In the above fM = supf, f™ = iélff. As a result, the continuity of the
Q3 2

operator A is proven. Taking into account the continuity of the operator A, we
can conclude

<2

<SQ<)07¢>FI§
0 3
dvy) 2 dw \ dv 2 2 2 2 %
/(<d§) w(e) () vt o)
0 3
dv \? | (do\® | (AN o oL a2 o
X /<<d€1> +<d§1> +<d§1 +V1 +w +’71 dQQ 3 C#O

Thus, one obtains

0

dw\? [dvi hdn\® A
/((d&) (G -gm) v (o) )| s
21

1
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Let us consider now the local Steklov-Poincare operator Sy.
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(S1e. ), = <A1 <1 - klZ) Grow () ,?/)1> +

Iy
h
+ <A1 (1 - k12> G1ovr (¢) 7¢2> .
ry

It can be shown similarly to the case of linear elasticity that the operator
Sy is coercive, symmetric, linear and continuous on H'2(T';) [3, 6]. From
the equivalence of the H'/2 (I';) and Lo (I';) norms with the use of Friedrichs’
inequality, we obtain, that the operator S is linear, continuous, symmetric and
coercive on H* (T').

To conclude, the Steklov-Poincare operator S is linear, continuous, symmet-
ric and coercive on H! (I';) as the sum of the operators having such properties.
By the Lax-Milgram lemma, our problem for the Steklov-Poincare operator has
a unique solution on H! (Ty).

We remark that for the case of nonzero volume forces as well as nonzero
boundary conditions, the proof can be carried out in a similar way.

Let @, Q1 and @3 be the corresponding preconditioners in the domain de-
composition algorithm [6]. It is known, that in the case of Dirichlet-Neumann
iterations these preconditioners can be expressed through S and S as [6]

Q=0Q1+Q2,
<Q1¢7¢>FI = <Sl()0a 7’/)>FI ) (10)
(Q20,¥) 1, = (S200,9)r,

Since the Steklov-Poincare operators S; and Ss are linear, continuous, sym-
metric and coercive on H' (I'y), we conclude that the operators @, Q1 and Q-
also possess these properties.

Therefore, by the convergence of the Dirichlet-Neumann iterations, the fol-
lowing method is convergent for 0 < 6 < 6,,44:

P = ok 005" (G—Qgpk), k=0,1,2,..

where (G is the right-hand side of the equation Qy = G.

It is worth mentioning that all the properties of the continuous operators
can be transferred to the corresponding discrete operators, and in the case of
quasi-uniform mesh, these properties also hold for the discrete operators |6].

4. NUMERICAL EXAMPLE
In this section we consider a rectangular object lying in € that consists of
a concrete main part in ; with a thin steel cover 2o attached to its top.
The physical dimensions are as follows: xl{ = 0.05, wg = 0.05, z{ = 1.05,
x5 = 0.55, h = 0.02. The physical parameters for the main part are v = 0.33,
FE = 25000M Pa, for the shell - v = 0.33, £ = 200000M Pa. The body is kept
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fixed on both sides and subjected to the load on the bottom of p = 1M Pa/m?
(see Fig.2) with zero load on top.

‘_ |

P~ h

A 1

=

=
[V ]

v

F1G. 2. Numerical Example

Dizplacement uxZ on the interface

Fia. 3. Displacements in xo direction on the interface

The solution on each iteration in the main part is done by BEM with linear
basis functions with the Galerkin method applied to integral representation
formula [1]

1

2ui:Léﬁﬁb(%y)w(deF+l£(Gm(%y)wMdeF, i=1,2,

where Fj; and Gj; are the Green’s function and the co-normal derivative of
Green’s function respectively; t; = o;;n; are the tractions.

The solution in €9 is seeked as the linear combination of bubble basis func-
tions which are defined on each element by

_1-¢ 1+¢

D (&) = ——, P (5):T

2
25 —1 [¢ ‘
®; (§) = \/T/liDj—l (t)dt, j7=2,3..,
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where P; (§) are the Legendre polynomials. The solution in both domains is
then combined using the iterative algorithm (10).

For our example we choose 96 equally spaced boundary elements. The re-

laxation parameter 6 is taken to be equal 0.00225

In Fig. 3 the displacement in x2 direction along the interface is shown. The

displacement achieves its maximum in the middle point A of the interface.
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