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NUMERICAL INVESTIGATION OF A PLAIN
STRAIN STATE FOR A BODY WITH THIN COVER

USING DOMAIN DECOMPOSITION

Ivan Dyyak, Yarema Savula, Andriy Styahar

Ðåçþìå. Ðîçãëÿäà¹òüñÿ ìîäåëü, ÿêà îïèñó¹ íàïðóæåíî äåôîðìîâàíèé
ñòàí äâîâèìiðíîãî ãåòåðîãåííîãî òiëà ç òîíêèì ïîêðèòòÿì. Ñïî÷àòêó
äîâåäåíî çáiæíiñòü iòåðàòèâíîãî àëãîðèòìó, ïîáóäîâàíîãî íà îñíîâi ïî¹ä-
íàííÿ ìåòîäó ñêií÷åííèõ åëåìåíòiâ (ÌÑÅ) òà ìåòîäó ãðàíè÷íèõ åëåìåíòiâ
(ÌÃÅ) ç âèêîðèñòàííÿì äåêîìïîçèöi¨ îáëàñòåé. Ïiñëÿ öüîãî àëãîðèòì
ïðîiëþñòðîâàíî íà ïðèêëàäi äâîâèìiðíî¨ çàäà÷i äëÿ òiëà ç ïîêðèòòÿì.

Abstract. We consider a model, that describes the plain stress state of the
2D heterogeneous elastic body with the thin cover. First we prove the con-
vergence of the iterative algorithm based on �nite element method/boundary
element method (FEM/BEM) coupling using domain decomposition. Further
we illustrate this algorithm with an example of 2D problem for the body with
a cover.

1. Introduction
A lot of structures, both natural and arti�cial, contain thin covers or thin

inclusions. Therefore, the problem of analyzing the stress-strain state of such
bodies is of great importance. Typically they consist of two or more homoge-
neous parts that have a big di�erences in physical dimensions and properties
between them. A lot of aspects of the problems, related to this subject, were
analyzed (see for example [2, 4, 5, 7, 8]). In this paper we use the combined
model, where the parts of the body with comparable physical dimensions are
described by the linear elasticity equations, whereas the sress state of the thin
cover is described by Tymoshenko shell theory equations [5]. These parts are
connected using the appropriate coupling conditions on the common bound-
aries.

In order to perform numerical analysis of our model we solve the correspond-
ing problems in thin shells by �nite element method (FEM) with bubble basis
functions, and the other parts of the body are solved numerically using bound-
ary element method (BEM) with linear basis functions; the iterative domain
decomposition algorithm is then used to connect the solutions in both domains.

In this paper we also prove the properties of our model and prove the con-
vergence of the algorithm.

†Key words. Elasticity theory, boundary element method, �nite element method, domain
decomposition.
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2. Problem statement
Let us consider a problem of plane strain of cylindrical body Ω1 with the

cover Ω2.

Fig. 1. Body with cover

The plane strain stress of the body in Ω1 can be described by [1]

∂σ11

∂x1
+

∂σ12

∂x2
= f1,

∂σ21

∂x1
+

∂σ22

∂x2
= f2

(1)

that holds for x ∈ Ω1, x = x1, x2. Here f = f1, f2 denotes the volume forces
that act on the body in Ω1. From the Hook's law it follows that the components
of the stress tensor can be written as

σij =
1
2
E1

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2,

where u(x) = u1(x), u2(x) is the displacement vector with ui being the dis-
placements in the directions xi for i = 1, 2; E1 is the Young's modulus of the
body in Ω1. In the following we assume that no volume forces act on the body
in Ω1.

Let us denote by n the outer normal vector to Ω1, and by τ � the tangent
vector. Equations (1) are considered together with the boundary conditions

uv = 0, uτ = 0, x ∈ ΓD

and

σvv = 0, σvτ = 0, x ∈ ΓN ,

where uv and uτ are the components of the stress tensor in the coordinate
system n, τ . Similarly, σvv and σvτ are the components of the stress tensor in
the n, τ coordinate system.

For the description of the cover in Ω2 we use the equations of Timoshenko
shell theory for the cylindrical shell of the form [5]
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− 1
A1

dT11

dξ1
− k1T13 = p1,

− 1
A1

dT13

dξ1
+ k1T11 = p3,

− 1
A1

dM11

dξ1
+ T13 = m1, −1 ≤ ξ1 ≤ 0,

(2)

where v1, w, γ1 are the displacements and angle of revolution in the shell; T11,
T13, M11 are the forces and moments in the shell; A1 = A1 (ξ1), k1 = k1 (ξ1)
correspond to Lame parameter and median surface curvature parameter; p1,
p3, m1 are given functions; it holds

T11 =
E2h

1− v2
2

ε11, T13 = k′G′hε13, M11 =
E2h

3

12
(
1− v2

2

)χ11, (3)

ε11 =
1

A1

dv1

dξ1
+ k1w, ε13 =

1
A1

dw

dξ1
+ γ1 − k1v1, χ11 =

1
A1

dγ1

dξ1
, (4)

p1 =
(

1 + k1
h

2

)
σ+

13 −
(

1− k1
h

2

)
σ−13,

p3 =
(

1 + k1
h

2

)
σ+

33 −
(

1− k1
h

2

)
σ−33,

m1 =
h

2

((
1 + k1

h

2

)
σ+

13 −
(

1− k1
h

2

)
σ−13

)
.

(5)

Here E2 is the Young's modulus for the shell, v2 is the Poisson's ratio; g1, g3

are the components of the volume forces vector, that act on the shell; σ+
ij , σ

−
ij ,

i, j = 1, 3 are the components of the stress tensor on the outer (ξ3 = h
2 ) and

inner (ξ3 = −h
2 ) surfaces of the shell. It is known, that in the case of isotropic

bodies we have k′ = 5
6 , G′ = E2

2(1+v2) .
At each end of the thin cover we impose boundary conditions either on the

displacements v1, w and γ1 or on the forces T11, T13 and moment M11 in the
shell (if the end is subjected to load or free). At the outer surface of the shell
we prescribe to σ+

13 and σ+
33 some given stresses.

Remark 1. The choice of 2D curvilinear coordinate system for the shell as
ξ1, ξ3 (instead of ξ1, ξ2) is based on the fact, that 2D problem is obtained from
the 3D case by assuming the cylinder being in�nite in the direction of ξ2.

On the boundary ΓI , common to both Ω1 and Ω2 we prescribe the following
coupling conditions [5]:
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uv = w, uτ = v1 − h

2
γ1,

σvv = σ−33, σvτ = σ−13.

(6)

Let us rewrite the coupling conditions (6) on ΓI as follows:

uv = w, uτ = v1 − h

2
γ1,

A1

(
1− k1

h

2

)
σvv −A1

(
1− k1

h

2

)
σ−33 = 0,

A1

(
1− k1

h

2

)
σvτ −A1

(
1− k1

h

2

)
σ−13 = 0.

(7)

3. The properties of the Steklov-Poincare operators
and convergence of the domain decomposition

iterative algorithm
Let us suppose that on the inferface ΓI the displacement is equal to ϕ =

ϕ1, ϕ2, ϕi ∈ H1 (ΓI), i = 1, 2. In the following we consider the Steklov-Poincare
operator S for our problem as well as local Steklov-Poincare operators Si, that
correspond to Ωi, i = 1, 2. Therefore, we have from (7)

〈Sϕ,ψ〉ΓI
= 〈S1ϕ,ψ〉ΓI

+ 〈S2ϕ, ψ〉ΓI
, ∀ϕ,ψ ∈ H1 (ΓI)×H1 (ΓI)

〈S1ϕ,ψ〉ΓI
=

〈
A1

(
1− k1

h

2

)
GIσvv (ϕ) , ψ1

〉

ΓI

+

+
〈

A1

(
1− k1

h

2

)
GIσvτ (ϕ) , ψ2

〉

ΓI

,

〈S2ϕ,ψ〉ΓI
=

〈
−A1

(
1− k1

h

2

)
σ−33 (ϕ) , ψ1

〉

ΓI

+

+
〈

A1

(
1− k1

h

2

)
σ−13 (ϕ) , ψ2

〉

ΓI

,

(8)

where GIσ is the trace of σ on ΓI ; 〈u, v〉ΓI
denotes the bilinear form which

formally can be written as

〈u, v〉ΓI
=

∫

ΓI

uvdΓI .

First we prove that there exists a unique solution to the problem for Steklov-
Poincare operators. For this purpose we will use the Lax-Milgram lemma.

Let Ω∗2 be a midline of Ω2. Without loss of generality we assume that g1 =
g3 = σ+

13 = σ+
33 = 0. Moreover, one notices that all the displacements de�ned
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in Ω2 are continuous with respect to ξ3, since both equations and boundary
conditions are independent of ξ3. Using the coupling conditions (7), one can
rewrite (8) as

〈S2ϕ, ψ〉ΓI
=

〈
−A1

(
1− k1

h

2

)
σ−33 (ϕ) , w̃

〉

ΓI

+

+
〈
−A1

(
1− k1

h

2

)
σ−13 (ϕ) ,

(
ṽ1 − h

2
γ̃1

)〉

ΓI

=

=
(
−A1

(
1− k1

h

2

)
σ−33, w̃

)

Ω∗2

+
(
−A1

(
1− k1

h

2

)
σ−13, ṽ1

)

Ω∗2

+

+
(

A1
h

2

(
1− k1

h

2

)
σ−13, γ̃1

)

Ω∗2

,

(9)

where
(u, v)Ω∗2 =

∫

Ω∗2

uv dΩ∗2.

Let us substitute into (9) the corresponding left sides of the system of equa-
tions (2)-(5):

〈S2ϕ,ψ〉ΓI
=

(
−dT13

dξ1
+ k1A1T11, w̃

)

Ω∗2

+

+
(
−dT11

dξ1
− k1A1T13, ṽ1

)

Ω∗2

+
(
−dM11

dξ1
+ A1T13, γ̃1

)

Ω∗2

.

After integrating by parts one can easily notice that the coerciveness and
symmetry of the Steklov-Poincare operator S2 follows from the properties of
the corresponding operator de�ned on the midline Ω∗2 which has been proven
in [2]. Therefore, one obtains

〈S2ϕ,ϕ〉ΓI
≥ c2

0∫

−1

((
dv1

dξ1

)2

+
(

dw

dξ1

)2

+
(

dγ1

dξ1

)2
)

dΩ∗2+

+c2

0∫

−1

(
v2

1 + w2 + γ2
1

)
dΩ∗2, c 6= 0.

Further,

〈S2ϕ,ϕ〉ΓI
≥ c2

1

0∫

−1

((
dw

dξ1

)2

+
(

dv1

dξ1
− h

2
dγ1

dξ1

)2
)

dΩ∗2+
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+c2
1

0∫

−1

(
w2 +

(
v1 − h

2
γ1

)2
)

dΩ∗2, c1 6= 0.

Thus, S2 is coercive. The linearity of S2 follows directly from the linearity
of the corresponding operator in Ω∗2.

Let us now prove the continuity of S2. For this purpose, �rstly one proves
the continuity of the following operator in Ω∗2

(Ay, ỹ)Ω∗2 =
(
−dT13

dξ1
+ k1A1T11, w̃

)

Ω∗2

+

+
(
−dT11

dξ1
− k1A1T13, ṽ1

)

Ω∗2

+
(
−dM11

dξ1
+ A1T13, γ̃1

)

Ω∗2

,

where y = v1, w, γ1, ỹ = ṽ1, w̃, γ̃1. Using Cauchy-Schwarz inequality, one
obtains for y, ỹ ∈ H1 (ΓI)×H1 (ΓI)×H1 (ΓI)

(Ay, ỹ)Ω∗2 =

0∫

−1

(
T13

dw̃

dξ1
+ k1A1T11w̃

)
dξ1+

+

0∫

−1

(
T11

dṽ1

dξ1
− k1A1T13ṽ1

)
dξ1 +

0∫

−1

(
M11

dγ̃1

dξ1
+ A1T13γ̃1

)
dξ1 =

=

0∫

−1

(
k′G′h

(
1

A1

dw

dξ1
+ γ1 − k1v1

)
dw̃

dξ1
+

+k1A1
E2h

1− v2
2

(
1

A1

dv1

dξ1
+ k1w

)
w̃

)
dξ1+

+

0∫

−1

(
E2h

1− v2
2

(
1

A1

dv1

dξ1
+ k1w

)
dṽ1

dξ1
−

−k1A1k
′G′h

(
1

A1

dw

dξ1
+ γ1 − k1v1

)
ṽ1

)
dξ1+

+

0∫

−1

(
E2h

3

12
(
1− v2

2

) 1
A1

dγ1

dξ1

dγ̃1

dξ1
+ A1k

′G′h
(

1
A1

dw

dξ1
+ γ1 − k1v1

)
γ̃1

)
dξ1 ≤

≤ k′G′h
1

Am
1




0∫

−1

(
dw

dξ1

)2

dξ1




1
2



0∫

−1

(
dw̃

dξ1

)2

dξ1




1
2

+
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+k′G′h




0∫

−1

(γ1)
2 dξ1




1
2



0∫

−1

(
dw̃

dξ1

)2

dξ1




1
2

+

+k′G′h
∣∣kM

1

∣∣



0∫

−1

(v1)
2 dξ1




1
2



0∫

−1

(
dw̃

dξ1

)2

dξ1




1
2

+

+
E2h

1− v2
2

∣∣kM
1

∣∣



0∫

−1

(
dv1

dξ1

)2

dξ1




1
2



0∫

−1

(w̃)2 dξ1




1
2

+

+(A1 |k1|)M E2h

1− v2
2




0∫

−1

(w)2 dξ1




1
2



0∫

−1

(w̃)2 dξ1




1
2

+

+
E2h

1− v2
2

1
Am

1




0∫

−1

(
dv1

dξ1

)2

dξ1




1
2



0∫

−1

(
dṽ1

dξ1

)2

dξ1




1
2

+

+
E2h

1− v2
2

∣∣kM
1

∣∣



0∫

−1

(w)2 dξ1




1
2



0∫

−1

(
dṽ1

dξ1

)2

dξ1




1
2

+

+
E2h

1− v2
2

∣∣kM
1

∣∣



0∫

−1

(
dw

dξ1

)2

dξ1




1
2



0∫

−1

(ṽ1)
2 dξ1




1
2

+

+k′G′h (A1 |k1|)M




0∫

−1

(γ1)
2 dξ1




1
2



0∫

−1

(ṽ1)
2 dξ1




1
2

+

+k′G′h
(
A1k

2
1

)M




0∫

−1

(v1)
2 dξ1




1
2



0∫

−1

(ṽ1)
2 dξ1




1
2

+

+
E2h

3

12
(
1− v2

2

) 1
Am

1




0∫

−1

(
dγ1

dξ1

)2

dξ1




1
2



0∫

−1

(
dγ̃1

dξ1

)2

dξ1




1
2

+



30 IVAN DYYAK, YAREMA SAVULA, ANDRIY STYAHAR

+k′G′h




0∫

−1

(
dw

dξ1

)2

dξ1




1
2



0∫

−1

(γ̃1)
2 dξ1




1
2

+

+k′G′hAM
1




0∫

−1

(γ1)
2 dξ1




1
2



0∫

−1

(γ̃1)
2 dξ1




1
2

+

+k′G′h (A1 |k1|)M




0∫

−1

(v1)
2 dξ1




1
2



0∫

−1

(γ̃1)
2 dξ1




1
2

≤

≤ C2 ‖y‖H1(Ω∗2) ‖ỹ‖H1(Ω∗2) , C 6= 0.

In the above fM = sup
Ω∗2

f , fm = inf
Ω∗2

f . As a result, the continuity of the

operator A is proven. Taking into account the continuity of the operator A, we
can conclude

〈S2ϕ,ψ〉ΓI
≤

≤ C2




0∫

−1

((
dv1

dξ1

)2

+
(

dw

dξ1

)2

+
(

dγ1

dξ1

)2

+ v2
1 + w2 + γ2

1

)
dΩ∗2




1
2

×

×



0∫

−1

((
dṽ1

dξ1

)2

+
(

dw̃

dξ1

)2

+
(

dγ̃1

dξ1

)2

+ ṽ2
1 + w̃2 + γ̃2

1

)
dΩ∗2




1
2

, C 6= 0.

Thus, one obtains

〈S2ϕ,ψ〉ΓI
≤

≤ C2
1




0∫

−1

((
dw

dξ1

)2

+
(

dv1

dξ1
− h

2
dγ1

dξ1

)2

+ w2 +
(

v1 − h

2
γ1

)2
)

dΩ∗2




1
2

×

×



0∫

−1

((
dw̃

dξ1

)2 (
dṽ1

dξ1
− h

2
dγ̃1

dξ1

)2

+ w̃2 +
(

ṽ1 − h

2
γ̃1

)2
)

dΩ∗2




1
2

, C1 6= 0.

Let us consider now the local Steklov-Poincare operator S1.
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〈S1ϕ,ψ〉ΓI
=

〈
A1

(
1− k1

h

2

)
GIσvv (ϕ) , ψ1

〉

ΓI

+

+
〈

A1

(
1− k1

h

2

)
GIσvτ (ϕ) , ψ2

〉

ΓI

.

It can be shown similarly to the case of linear elasticity that the operator
S1 is coercive, symmetric, linear and continuous on H1/2 (ΓI) [3, 6]. From
the equivalence of the H1/2 (ΓI) and L2 (ΓI) norms with the use of Friedrichs'
inequality, we obtain, that the operator S1 is linear, continuous, symmetric and
coercive on H1 (ΓI).

To conclude, the Steklov-Poincare operator S is linear, continuous, symmet-
ric and coercive on H1 (ΓI) as the sum of the operators having such properties.
By the Lax-Milgram lemma, our problem for the Steklov-Poincare operator has
a unique solution on H1 (ΓI).

We remark that for the case of nonzero volume forces as well as nonzero
boundary conditions, the proof can be carried out in a similar way.

Let Q, Q1 and Q2 be the corresponding preconditioners in the domain de-
composition algorithm [6]. It is known, that in the case of Dirichlet-Neumann
iterations these preconditioners can be expressed through S1 and S2 as [6]

Q = Q1 + Q2,

〈Q1ϕ,ψ〉ΓI
= 〈S1ϕ,ψ〉ΓI

,

〈Q2ϕ,ψ〉ΓI
= 〈S2ϕ,ψ〉ΓI

(10)

Since the Steklov-Poincare operators S1 and S2 are linear, continuous, sym-
metric and coercive on H1 (ΓI), we conclude that the operators Q, Q1 and Q2

also possess these properties.
Therefore, by the convergence of the Dirichlet-Neumann iterations, the fol-

lowing method is convergent for 0 < θ < θmax:

ϕk+1 = ϕk + θQ−1
2

(
G−Qϕk

)
, k = 0, 1, 2, ...

where G is the right-hand side of the equation Qϕ = G.
It is worth mentioning that all the properties of the continuous operators

can be transferred to the corresponding discrete operators, and in the case of
quasi-uniform mesh, these properties also hold for the discrete operators [6].

4. Numerical example
In this section we consider a rectangular object lying in Ω that consists of

a concrete main part in Ω1 with a thin steel cover Ω2 attached to its top.
The physical dimensions are as follows: xb

1 = 0.05, xb
2 = 0.05, xe

1 = 1.05,
xe

2 = 0.55, h = 0.02. The physical parameters for the main part are ν = 0.33,
E = 25000MPa, for the shell � ν = 0.33, E = 200000MPa. The body is kept
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�xed on both sides and subjected to the load on the bottom of p = 1MPa/m2

(see Fig. 2) with zero load on top.

Fig. 2. Numerical Example

Fig. 3. Displacements in x2 direction on the interface

The solution on each iteration in the main part is done by BEM with linear
basis functions with the Galerkin method applied to integral representation
formula [1]

1
2
ui =

∫

Γ
(Fij (x, y) tj (y)) dΓ +

∫

Γ
(Gij (x, y) uj (y)) dΓ, i = 1, 2,

where Fij and Gij are the Green's function and the co-normal derivative of
Green's function respectively; ti = σijnj are the tractions.

The solution in Ω2 is seeked as the linear combination of bubble basis func-
tions which are de�ned on each element by

Φ0 (ξ) =
1− ξ

2
, Φ1 (ξ) =

1 + ξ

2

Φj (ξ) =

√
2j − 1

2

∫ ξ

−1
Pj−1 (t) dt, j = 2, 3...,
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where Pj (ξ) are the Legendre polynomials. The solution in both domains is
then combined using the iterative algorithm (10).

For our example we choose 96 equally spaced boundary elements. The re-
laxation parameter θ is taken to be equal 0.00225

In Fig. 3 the displacement in x2 direction along the interface is shown. The
displacement achieves its maximum in the middle point A of the interface.
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