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Abstrat. The artile develops and proves an exponentially onvergent

numerial-analytial method (the FD-method) for solving Sturm-Liouville

problems with a singular Legendre operator and a singular potential. Ob-

tained within are su�ient onditions for onvergene of the method and

a priori estimates of its auray. A detailed algorithm for programmati

implementation of the FD-method is presented and ompared with known

algorithms (SLEIGN2).
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1. Introdution

The results presented in this artile onstitute a logial extension and a

generalization of the results in [1℄ and [2℄, whih onsider the subjet of solving

the following Sturm-Liouville problem:

− d

dx

[
(1 − x2)

du(x)

dx

]
+ q(x)u(x) = λu(x), x ∈ (−1, 1), (1)

lim
x→±1

(1 − x2)
du(x)

dx
= 0. (2)

Problems of this kind arise in appliations when solving partial di�erential

equations in spherial oordinates using separation of variables, as is done, e.g.,

with hydrogen-moleule ion's equation in [3℄ (see [3, p. 167�170℄).

To reall, artiles [1℄, [2℄ develop and prove an exponentially onvergent

algorithm (an FD-method) for solving problem (1), (2) for the ase when the

funtion q(x) is of the lass Q0[−1, 1] of pieewise ontinuous funtions that are
bounded on the losed interval [−1, 1] and have no more than a �nite number

of jump disontinuities. However, [2℄ shows the results of applying the FD-

method to problem (1), (2) with the potential q(x) = |x+1/3|1/2 +ln(|x−1/3|),
whih learly does not belong to the lass Q0[−1, 1]. Despite the FD-method's

onvergene having not been proved for suh problems the method turns out

Key words. Singular Sturm-Liouville problem, FD-method, oe�ient approximation

methods, Legendre funtions, Stenger's formula.
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onvergent. This fat has suggested to the authors of [2℄ that the su�ient

onvergene onditions for the FD-method for problems of type (1), (2) an be

weakened substantially, espeially where they onern the smoothness of the

funtion q(x).
The subjet of this artile is the Sturm-Liouville problem (1), (2) with a

funtion q(x) from the spae L1,ρ(−1, 1), ρ = 1/
√

1 − x2, whih ontains fun-

tions f(x), de�ned almost everywhere on the interval (1−, 1) for whih it holds

that

‖f‖1,ρ =

1∫

−1

|f(x)|√
1 − x2

dx <∞. (3)

Thus stated, the problem is a generalization of those onsidered in [1℄ and [2℄,

su�iently so we ould not apply the proof tehniques used therein. Instead,

to obtain the su�ient onditions for onvergene a new approah was used

based on an inequality for Legendre funtions proposed by V. L. Makarov.

This inequality (see Theorem 2) follows from Theorem 1, analogues of whih

the authors were unable to �nd. For this reason the aforementioned theorems

are presented here with a detailed proof as novel and original results.

The artile has the following struture: we start out by giving an outline

of the FD-method in setion 2 and applying it to the problem at hand. We

proeed to prove a general auxiliary result in setion 3. In setion 4 we give a

theoretial justi�ation of the method as applied to the ase at hand and obtain

a proof of its onvergene. We disuss the programmati side of the question

in setion 5. Finally, we draw some onlusions about what has been done.

2. The FD-method: algorithm
We are going to onstrut a solving algorithm for problem (1), (2) based on

the general idea of the FD-method (see [4℄).

It is easy to see that the di�erential operator L[·] de�ned by the equality

L[u(x)] =
d

dx

[
(1 − x2)

du(x)

dx

]
− q(x)u(x) (4)

is self-adjoint in the Hilbert spae

W =
{
f(x) ∈ C2(−1, 1) ∩ L2(−1, 1) | lim

x→±1
(1 − x2)f(x) = 0;

q(x)f(x) ∈ L2(−1, 1)
} (5)

equipped with the ommon inner produt

< f, g >=

1∫

−1

f(x)g(x)dx (6)

(see [5, p. 55℄). This fat implies that there exists an inreasing sequene of

eigenvalues λ0 < λ1 < . . . < λn < . . . and orresponding orthogonal eigenfun-

tions u0(x), u1(x), . . . , un(x), . . . that satisfy equation (1) and ondition (2).
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We are looking for the eigensolution un(x), λn to eigenvalue problem (1),(2)

in the form of a series

un(x) =
∞∑

j=0

u(j)
n (x), λn =

∞∑

j=0

λ(j)
n , (7)

where the pair u
(j)
n (x), λ

(j)
n an be found as the solution to the following system

of reurrene problems:

d

dx

[
(1 − x2)

du
(j)
n (x)

dx

]
+ λ(0)

n u(j)
n (x) =

= −
j−1∑

i=0

λ(j−i)
n u(i)

n (x) + q(x)u(j−1)
n (x), u(−1)

n (x) ≡ 0,

(8)

lim
x→±1

(1 − x2)
du

(j)
n (x)

dx
= 0, j = 0, 1, 2, . . . . (9)

If we put j = 0 in (8) we obtain the equation for the basi problem

d

dx

[
(1 − x2)

du
(0)
n (x)

dx

]
+ λ(0)

n u(0)
n (x) = 0. (10)

Taking into aount that the eigenfuntions of operator L[·] (4) are determined

up to a multipliative onstant we impose an additional requirement on the

solutions of the basi problem (10), (9):

1∫

−1

(
u(0)

n (x)
)2
dx = 1, n = 0, 1, 2, . . . (11)

It is well known (see [6, p. 121℄, [7, p. 33℄) that every solution u
(0)
n (x) to

equation (10) (when λ
(0)
n is �xed) an be represented through the Legendre

funtions Pν(x), Qν(x) :

u(0)
n (x) = APν(x) +BQν(x), A,B ∈ C, (12)

where ν is the solution of the algebrai equation ν(ν + 1) = λ
(0)
n , i.e,

ν = −1

2

(
1 ±

√
1 + 4λ

(0)
n

)
. (13)

Now taking into aount the formulas that desribe the behaviour of Legendre

funtions near the singular points ±1 (see [6, p. 163�164℄) and the formulas

that onnet derivatives of the Legendre funtions with the assoiated Legendre

funtions (see [6, p. 148℄) we an easily ompute that

lim
x→−1

(
1 − x2

) dPν(x)

dx
=

2 sin (πν)

π
, lim

x→1

(
1 − x2

) dPν(x)

dx
= 0,

(14)

lim
x→−1

(
1 − x2

) dQν(x)

dx
= cos (πν) , lim

x→1

(
1 − x2

) dQν(x)

dx
= 1.
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From equalities (14) it follows that funtion u
(0)
n (x) (12) satis�es ondition (9)

if and only if B = 0 and ν = n ∈ N ∪ {0}, whereas ondition (11) leads us to

the equality (see [7, p. 42℄)

A−1 =

√
1∫

−1

(Pn(x))2 dx =

√
2

2n+ 1
. (15)

In the other words we have that the pairs

u(0)
n (x) =

√
2n+ 1

2
Pn(x), λ(0)

n = n(n+ 1), n = 0, 1, 2, . . . . (16)

represent eigensolutions of eigenvalue problem (9), (10) and (11). Problems

(8), (9) for j = 1, 2, . . . are solvable if and only if the funtions

F (j)
n (x) = −

j−1∑

i=0

λ(j−i)
n u(i)

n (x) + q(x)u(j−1)
n (x), j = 1, 2, . . . (17)

are orthogonal (in the sense of inner produt (6)) to the kernel spae of the

linear operator

L(0)
n [u(x)] =

d

dx

[
(1 − x2)

du(x)

dx

]
+ λ(0)

n u(x),

i.e, to the funtion u
(0)
n (x). This fat gives us a simple formula for �nding λ

(j)
n ,

j = 1, 2, . . .:

λ(j)
n =

1∫

−1

u(0)
n (x)

{
−

j−1∑

i=1

λ(j−i)
n u(i)

n (x) + q(x)u(j−1)
n (x)

}
dx, (18)

whereas funtions u
(j)
n (x), j = 1, 2, . . . an be found via the variation of param-

eters formula (see, e.g., [7, p. 8, 34℄)

u(j)
n (x) = c(j)n u(0)

n (x) +

x∫

−1

Kn(x, ξ)F (j)
n (ξ)dξ, (19)

where

Kn(x, ξ) = Pn(x)Qn(ξ) −Qn(x)Pn(ξ) (20)

and onstant c
(j)
n ∈ R an be hosen arbitrary. In a later setion we will hoose

it to satisfy the orthogonality ondition

〈
u

(0)
n (x), u

(j)
n (x)

〉
= 0.

3. Auxiliary results

In what follows we will need the result stated below in the form of a theorem,

whih we onsider to be quite elegant.

Theorem 1. Suppose that uI(θ) and uII(θ) are a pair of solutions to the dif-

ferential equation

d2u(θ)

dθ2
+ φ(θ)u(θ) = 0, θ ∈ (a, b) , (21)
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φ(θ) ∈ C1(a, b), φ(θ) > 0,∀θ ∈ (a, b)

that satisfy the following ondition:

W (θ) = uI(θ)u
′
II(θ) − u′I(θ)uII(θ) = 1, ∀θ ∈ (a, b). (22)

If there exists a point c ∈ (a, b) suh that φ′(θ) ≤ 0 ∀θ ∈ (a, c] and φ′(θ) ≥ 0
∀θ ∈ [c, b) then ∣∣∣v(θ, θ̃)

∣∣∣ ≤
√

2φ−1(c),∀θ, θ̃ ∈ (a, b), (23)

v(θ, θ̃)
def
= uI(θ)uII(θ̃) − uI(θ̃)uII(θ).

If φ′(θ) ≤ 0 or φ′(θ) ≥ 0 ∀θ ∈ (a, b) then

∣∣∣v(θ, θ̃)
∣∣∣ ≤ max

{√
φ−1(θ),

√
φ−1(θ̃)

}
,∀θ, θ̃ ∈ (a, b). (24)

Before proeeding to the proof of Theorem 1 we should emphasize that the

main idea of the theorem was evoked by the Theorem of Sonin (see [8, p. 166℄).

Proof. Suppose that the onditions of Theorem 1 are ful�lled and for some

c ∈ (a, b) we have that

φ′(θ) ≤ 0 ∀θ ∈ (a, c], φ′(θ) ≥ 0 ∀θ ∈ [c, b). (25)

In suh a ase the auxiliary funtion

f1(θ, θ̃) = v2(θ, θ̃) + φ−1(θ)

(
∂v(θ, θ̃)

∂θ

)2

(26)

is non-dereasing on (a, c] and non-inreasing on [c, b) with respet to its argu-

ment θ, i.e.,

∂f1(θ, θ̃)

∂θ
≥ 0, ∀θ ∈ (a, c];

∂f1(θ, θ̃)

∂θ
≤ 0, ∀θ ∈ [c, b), ∀θ̃ ∈ (a, b). (27)

The latter fat easily follows from the equality

∂f1(θ, θ̃)

∂θ
= 2

∂v(θ, θ̃)

∂θ

(
v(θ, θ̃) + φ−1(θ)

∂2v(θ, θ̃)

∂θ2
− 1

2

φ′(θ)
φ2(θ)

(
∂v(θ, θ̃)

∂θ

))
=

= − φ′(θ)
φ2(θ)

(
∂v(θ, θ̃)

∂θ

)2

, ∀θ, θ̃ ∈ (a, b) (28)

and inequalities (25). In muh the same way it is easy to verify that

∂f2(θ, θ̃)

∂θ̃
≥ 0, ∀θ̃ ∈ (a, c];

∂f2(θ, θ̃)

∂θ̃
≤ 0, ∀θ̃ ∈ [c, b), ∀θ ∈ (a, b). (29)

where

f2(θ, θ̃) = v2(θ, θ̃) + φ−1(θ̃)

(
∂v(θ, θ̃)

∂θ̃

)2

. (30)

Let us onsider the funtion f(θ, θ̃) de�ned in the following way:

f(θ, θ̃) =

{
f1(θ, θ̃) when θ ≤ θ̃; θ, θ̃ ∈ (a, c],

f2(θ, θ̃) when θ ≥ θ̃; θ, θ̃ ∈ (a, c].
(31)
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a с b

a

с

b

ϕ-1(θ)

θ

θ
~

f1(θ,θ)

f2(θ,θ)
~

Fig. 1. A graph of f(θ, θ̃), f̄(θ, θ̃) on (a, b)×(a, b). The domain

of f̄(θ, θ̃) is indiated with a bold-lined square. It may be of

interest to note that on (a, c)2 ∪ (c, b)2 the right side of estimate

(23) need not ontain

√
2; see formulas (34), (35)

From expressions (26) and (30) it follows that f1(θ, θ) = f2(θ, θ) = φ−1(θ). The

latter fat means that the funtion f(θ, θ̃) (31) is well de�ned and ontinuous

on (a, c]2. Expressions (26) and (30) together with inequalities (27), (29) and

identity (22) lead us to the inequalities

f1(θ, θ̃) ≤ f1(θ̃, θ̃) = φ−1(θ̃), ∀θ, θ̃ ∈ (a, c], θ ≤ θ̃, (32)

f2(θ, θ̃) ≤ f2(θ, θ) = φ−1(θ), ∀θ, θ̃ ∈ (a, c], θ ≥ θ̃. (33)

Taking into aount expressions (26), (30) from inequalities (32), (33) we an

dedue that

v2(θ, θ̃) ≤ f(θ, θ̃) ≤ φ−1(c), ∀θ, θ̃ ∈ (a, c]. (34)

Through applying nearly idential reasoning to the funtion

f̄(θ, θ̃) =

{
f2(θ, θ̃) when θ ≤ θ̃, θ, θ̃ ∈ [c, b),

f1(θ, θ̃) when θ ≥ θ̃, θ, θ̃ ∈ [c, b).

we an get the inequalities

v2(θ, θ̃) ≤ f̄(θ, θ̃) ≤ φ−1(c), ∀θ, θ̃ ∈ [c, b). (35)

Now let us return to the funtion f1(θ, θ̃) (26). From inequalities (27) it

follows that

v2(θ, θ̃) ≤ f1(θ, θ̃) ≤ f1(c, θ̃) = v2(c, θ̃) + φ−1(c)w2(θ̃), θ, θ̃ ∈ (a, b) (36)

where w(θ̃) = u′I(c)uII(θ̃) − uI(θ̃)u
′
II(c). Taking into aount inequalities (34)

and (35) we an proeed estimating v2(θ, θ̃) as follows:

v2(θ, θ̃) ≤ φ−1(c)(1 + w2(θ̃)), θ, θ̃ ∈ (a, b). (37)

It is not hard to verify that

w2(θ̃) ≤ w2(θ̃) + φ−1(θ̃)

(
dw(θ̃)

dθ̃

)2

≤ w2(c) + φ−1(c)

(
dw(θ̃)

dθ̃

)2
∣∣∣∣∣∣
θ̃=c

= 1.
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Combining the latter inequality with inequality (37) we arrive at sought in-

equality (23).

Inequality (24) an be easily derived from inequalities (32), (33) as a limit

ase when c→ b.
The proof is omplete. �

Using Theorem 1 we an obtain a urious and useful inequality pertaining

to the Legendre funtions.

It is well known that the Legendre funtions Pν(x) and Qν(x) are two linearly
independent solutions to the Legendre di�erential equation (see [6, p. 121℄):

d

dx

[
(1 − x2)

dy(x)

dx

]
+ ν(ν + 1)y(x) = 0, x ∈ (−1, 1). (38)

Furthermore, the funtions Pν(x) and Qν(x) possess the property

(1 − x2)(P ′
ν(x)Qν(x) − Pν(x)Q

′
ν(x)) = 1, ∀x ∈ (−1, 1). (39)

It is also known (see [8, p. 67℄) that equation (38) an be rewritten in the

equivalent form (21) with

φ(θ) = (2 sin(θ))−2 + (ν + 1/2)2, (40)

u(θ) =
√

sin(θ)y(cos(θ)), a = 0, b = π.

In the other words, we have that funtions

uI(θ) =
√

sin(θ)Pν(cos(θ)), uII(θ) =
√

sin(θ)Qν(cos(θ)) (41)

satisfy equations (21), (40) and identity (22), whih is equivalent to identity

(39). Also, it is easy to see that the funtion φ(θ) (40) ful�ls all the require-

ments of Theorem 1 with c = π/2. Therefore, Theorem 1 provides us with the

estimation√
sin(θ)sin(θ̃) ·

∣∣∣Pν(cos(θ))Qν(cos(θ̃) − Pν(cos(θ̃))Qν(cos(θ)
∣∣∣ ≤

≤
√

2φ−1(π/2) ≤
√

2
1
4 +

(
ν + 1

2

)2 ,

∀θ, θ̃ ∈ (0, π) and the following orollary:

Theorem 2. For every ν ∈ R the inequality

4
√

(1 − x2)(1 − ξ2) |Pν(x)Qν(ξ) − Pν(ξ)Qν(x)| ≤
√

2
1
4 +

(
ν + 1

2

)2 (42)

holds true for all x, ξ ∈ (−1, 1).

4. The FD-method: theoretial justifiation
In this setion we are going to investigate the question of onvergene of

the proposed FD-method, i.e, to �nd the su�ient onditions that provide the

onvergene of series (7).

Let us onsider a general eigenvalue problem
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d

dx

[
(1 − x2)

du(x, τ)

dx

]
− τq(x)u(x, τ) = −λ(τ)u(x, τ), x ∈ (−1, 1), τ ∈ [0, 1],

(43)

lim
x→±1

(1 − x2)
du(x, τ)

dx
= 0, ∀τ ∈ [0, 1]. (44)

The problem (1), (2) is its partial ase for τ = 1. If we suppose that the

eigenvalue λn(τ) and the orresponding eigenfuntion un(x, τ) an be expressed

in the form of a series

λn(τ) =

∞∑

i=0

λ(i)
n τ i, un(x, τ) =

∞∑

i=0

u(i)(x)τ i ∀x ∈ (−1, 1), τ ∈ [0, 1]

and the di�erential formulas

dun(x, τ)

dx
=

∞∑

i=0

du
(i)
n (x)

dx
τ i,

d2un(x, τ)

dx2
=

∞∑

i=0

d2u
(i)
n (x)

dx2
τ i ∀x ∈ (−1, 1), τ ∈ [0, 1]

hold we immediately arrive at the onlusion that the unknown oe�ients

λ
(i)
n , u

(i)
n (x), i = 0, 1, 2, . . . an be found as solutions to problems (8), (9). To

justify formulas (7) we only need to mention that if we set τ = 1 problem (43),

(44) will be redued to problem (1), (2).

Now let us go bak to formula (19). Without loss of generality we an obtain

the values of c
(j)
n using the orthogonality ondition:

cjn = −
1∫

−1

u(0)
n (x)

x∫

−1

Kn(x, ξ)F (j)
n (ξ)dξdx. (45)

It is not hard to verify that if c
(j)
n is found aording to formula (45) then

〈
u(0)

n (x), u(j)
n (x)

〉
def
=

1∫

−1

u(0)
n u(j)

n (x)dx = 0, ∀j ∈ N

and formula (18) an be substantially simpli�ed:

λ(j)
n =

1∫

−1

q(x)u(0)
n (x)u(j−1)

n (x)d, j ∈ N. (46)

Using the norm ‖ · ‖1,ρ introdued in (3) and formula (46) we an estimate

|λ(j)
n | as follows:

∣∣∣λ(j)
n

∣∣∣ =

∣∣∣∣∣∣

1∫

−1

q(x)√
1 − x2

4
√

1 − x2u(j−1)
n (x)

4
√

1 − x2u(0)
n (x)dx

∣∣∣∣∣∣
≤ (47)
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≤ ‖q‖1,ρ‖u(j−1)
n ‖∞,1/

√
ρ‖u(0)

n ‖∞,1/
√

ρ,

where ‖f‖∞,1/
√

ρ
def
= max

x∈[−1,1]
|f(x)

√
ρ| = max

x∈[−1,1]
| 4
√

1 − x2f(x)|. Theorem 7.3.3

from [8℄ allows us to estimate ‖u(0)
n ‖∞,1/

√
ρ as follows:

‖u(0)
n ‖∞,1/

√
ρ =

√
n+ 1/2 max

0≤θ≤π

√
sin(θ) |Pn(cos(θ))| ≤

√
2(n + 1/2)

πn
. (48)

Combining the latter inequality with (47) we get the estimation

∣∣∣λ(j)
n

∣∣∣ ≤
√

2(n+ 1/2)

πn
‖q‖1,ρ‖u(j−1)

n ‖∞,1/
√

ρ. (49)

Using estimation (48) and formula (45) we an estimate |c(j)n | as follows:
∣∣∣c(j)n

∣∣∣ =

∣∣∣∣∣∣

1∫

−1

1√
1 − x2

4
√

1 − x2u(0)
n (x)

x∫

−1

4
√

(1 − x2)(1 − ξ2)√
1 − ξ2

Kn(x, ξ) ×

×
[
−

j−1∑

i=0

λ(j−i)
n

4
√

1 − ξ2u(i)
n (ξ) + q(ξ) 4

√
1 − ξ2uj−1

n (ξ)

]
dξdx

∣∣∣∣∣ ≤

≤
√

2π2

n+ 1/2

√
2(n + 1/2)

πn

[
j−1∑

i=0

|λ(j−i)
n |‖u(i)

n ‖∞,1/
√

ρ + ‖q‖1,ρ‖u(j−1)
n ‖∞,1/

√
ρ

]
=

=
2π

√
π

√
n
√
n+ 1/2

[
j−1∑

i=0

|λ(j−i)
n |‖u(i)

n ‖∞,1/
√

ρ + ‖q‖1,ρ‖u(j−1)
n ‖∞,1/

√
ρ

]
.

To obtain the latter inequality we used the evident equality

1∫

−1

dx√
1 − x2

= π

and the result of Theorem 2.

Now we are in a position to estimate ‖u(j)
n ‖∞,1/

√
ρ. We an do this in the

following way (see formula (19)):

‖u(j)
n ‖∞,1/

√
ρ ≤ |c(j)n |

√
2(n+ 1/2)

πn
+

+ max
x∈[−1,1]





x∫

−1

4
√

1 − x2 4
√

1 − ξ2√
1 − ξ2

|Kn(x, ξ)|dξ×

×
[

j−1∑

i=0

|λ(j−i)
n |‖u(i)

n ‖∞,1/
√

ρ + ‖q‖1,ρ‖u(j−1)
n ‖∞,1/

√
ρ

]}
≤ (50)

≤ |c(j)n |
√

2(n+ 1/2)

πn
+
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+

√
2π

n+ 1/2

[
j−1∑

i=0

|λ(j−i)
n |‖u(i)

n ‖∞,1/
√

ρ + ‖q‖1,ρ‖u(j−1)
n ‖∞,1/

√
ρ

]
=

=
√

2π

(
3n+ 1

n(n+ 1/2)

)[j−1∑

i=0

|λ(j−i)
n |‖u(i)

n ‖∞,1/
√

ρ + ‖q‖1,ρ‖u(j−1)
n ‖∞,1/

√
ρ

]
.

Combining inequalities (49) and (50) we arrive at the following estimate:

‖u(j)
n ‖∞,1/

√
ρ ≤

≤ αn

[
βn

j−1∑

i=0

‖u(j−i−1)
n ‖∞,1/

√
ρ‖u(i)

n ‖∞,1/
√

ρ + ‖u(j−1)
n ‖∞,1/

√
ρ

]
,

(51)

where

αn = αn(n) =

√
2π(3n+ 1)

n(n+ 1/2)
‖q‖1,ρ ≤ 3

√
2π

n
‖q‖1,ρ,

βn = βn(n) =

√
2(n + 1/2)

πn
≤
√

3

π
< 1.

Using substitution

‖uj
n‖∞,1/

√
ρ = αj

nvj (52)

we an rewrite inequality (51) in the form of

vj ≤
j−1∑

i=0

vivj−i−1 + vj−1, j = 1, 2, . . . , v0 = ‖u(0)
n ‖∞,1/

√
ρ. (53)

Let us onsider a sequene of positive real numbers {Vi}i=0,1,... de�ned by

the reurrene formula

Vj+1 =

j∑

i=0

ViVj−i + Vj, j = 0, 1, 2, . . . , V0 = 1. (54)

Comparing (53) with (54) and taking into aount inequality (48) we an

arrive at the onlusion that

vj ≤ Vj , j = 0, 1, 2, . . . . (55)

Reall that ‖uj
n‖∞,1/

√
ρ ≤ αj

nVj = αj
nVj(n). If for some n = n0 ∈ N the series

∞∑
i=0

αj
nVj(n) is onvergent then aording the inequalities (55), (47) and equality

(52) the series (7) are onvergent, i.e., the FD-method is onvergent. Now we

are going to �nd the smallest n0 of the kind mentioned above. For this purpose

let us onsider the series

f(z) =

∞∑

j=0

zjVj (56)

and �nd its radius of onvergene.

Taking into aount reurrene equalities (54) one an verify that funtion

f(z) (56) satis�es the funtional equation

f(z) = zf2(z) + zf(z) + 1
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or, in a more onvenient form,

zf2(z) + (z − 1)f(x) + 1 = 0. (57)

Solving equation (57) with respet to funtion f(z) we obtain

f(z) =
1

2z

(
1 − z −

√
1 − z

γ

√
1 − γz

)
, γ = 3 − 2

√
2. (58)

From formula (58) we see that the radius of onvergene R for series (56) is

equivalent to γ :

R = γ = 3 − 2
√

2. (59)

Thus, if

3 − 2
√

2 ≥ 3
√

2π

n
‖q‖1,ρ ≥ αn (60)

the FD-method is onvergent.

For a su�iently large n inequality (60) will always be satis�ed. This means

that for su�iently large values of n the FD-method will always be onvergent.

To be spei�, the FD-method will be onvergent for all n > n0, where N ∋
n0 ≥ 3

√
2π

3−2
√

2
‖q‖1,ρ.

Furthermore, formula (58) allows us to �nd the oe�ients Vj, j ∈ N expli-

itly. For this purpose we need to expand the right-hand side of formula (58)

into a power series with respet to z :

f(z) =
1

2z


1 − z −


√γ − z

2
√
γ
−

∞∑

p=2

(2p − 3)!!

(2p)!!
γ1/2−pzp


×

×


 1√

γ
−

√
γz

2
−

∞∑

p=2

(2p − 3)!!

(2p)!!
γp−1/2zp




 = (61)

=
1

2z

(
−z+

∞∑

j=1

zj

[
(2j − 3)!!

(2j)!!
(γj + γ−j)−

−
j−1∑

p=1

(2p − 3)!!

(2p)!!

(2j − 2p − 3)!!

(2j − 2p)!!
γ2p−j

])
=

= 1 +
1

2

∞∑

j=2

zj−1


(2j − 3)!!

(2j)!!
(γj + γ−j) −

j−1∑

p=1

(2p − 3)!!

(2p)!!

(2j − 2p − 3)!!

(2j − 2p)!!
γ2p−j


 .

Here we de�ne (2p)!! as 2× 4× . . .× 2p and (2p+ 1)!! as 1× 3× . . .× (2p+ 1),

(−1)!!
def
= 1.

From (61) we have that

Vj−1 =
1

2


(2j − 3)!!

(2j)!!
(γj + γ−j) −

j−1∑

p=1

(2p − 3)!!

(2p)!!

(2j − 2p − 3)!!

(2j − 2p)!!
γ2p−j


,

j = 2, 3, . . . .

(62)
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Using the fat that Vj ≥ 0 and Stirling's formula we an estimate Vj−1 in the

following way:

Vj−1 ≤ (2j − 3)!!

2(2j)!!
=

(2j − 1)!!

2(2j − 1)(2j)!!
=

=
(2j)!

2(2j − 1)((2j)!!)2
=

(2j)!

22j+1(2j − 1)(j!)2
<

<
2
√
πj(2j)2je−2j+1/(24j)

22j+1(2j − 1)(
√

2πjjje−j)2
=

e1/(24j)

2(2j − 1)
√
πj

<
1

(2j − 1)
√
πj
. (63)

Using inequalities (49), (55) and (63) together with equality (52) we an easily

estimate ‖u(j)
n ‖∞,1/

√
ρ and |λ(j)

n | :

‖u(j)
n ‖∞,1/

√
ρ ≤ αj

nVj ≤
(

3
√

2π

n
‖q‖1,ρ

)j
1

(2j + 1)
√
π(j + 1)

, (64)

∣∣∣λ(j)
n

∣∣∣ ≤
(

3
√

2π

n

)j−1

(‖q‖1,ρ)
j 1

(2j − 1)
√
πj

(65)

Inequalities (64), (65) now allow us to formulate the theorem about onver-

gene of the FD-method.

Theorem 3. Let

n0 =

[
3
√

2π

3 − 2
√

2
‖q‖1,ρ

]
∗ + 1

and

α̃n =
3
√

2π

n
‖q‖1,ρ.

The FD-method desribed by formulas (7), (16), (19), (20), (45) and (46) on-

verges to the eigensolution (un(x);λn) of problem (1), (2) for all n > n0. Fur-

thermore, for the n > n0 the following estimations of the method's onvergene

rate hold true:

∥∥∥un(x)− m
un(x)

∥∥∥
∞,1/

√
ρ
≤ α̃m+1

n

(2m+ 3)
√
π(m+ 2)(1 − α̃n)

, (66)

∣∣∣λn−
m
λn

∣∣∣ ≤ ‖q‖1,ρ
α̃m

n

(2m+ 1)
√
π(m+ 1)(1 − α̃n)

, (67)

where

m
un(x) =

m∑

j=0

u(j)
n (x),

m
λn=

m∑

j=0

λ(j)
n . (68)

∗
Here [·] denotes the integer part of a real number.
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5. The FD-method: software implementation

In the setion below we disuss the software implementation that was pro-

dued of the present method and desribe expliitly the algorithm used in this

implementation.

The software implementation was written in the Python programming lan-

guage version 2.7 using the libraries NumPy, SiPy, mpmath and matplotlib.

The use of the NumPy library has allowed us to have �oating-point variables

with up to quadruple preision

†
. We faed a tehnial problem when trying to

ompute the values of Legendre Qn funtion for an argument that's su�iently

lose to ±1 using SiPy's lqmn to irumvent whih we had to resort to alling

the orresponding funtion legenq of the mpmath library. This proess involves

onverting the argument of legenq from the data type numpy.longdouble to

mpf and bak again with su�ient preision.

In the algorithm we use the tanh rule and Stenger's formula in order to

approximate integration in (18), (19):

∫ b

a
f(x)dx =

∫ +∞

−∞
f

(
a+ bet

1 + et

)
(b− a)dt

(e−t/2 + et/2)2
≈ (69)

≈ hsinc

K∑

i=−K

f

(
a+ beihsinc

1 + eihsinc

)
b− a

(e−ihsinc/2 + eihsinc/2)2
,

∫ zj

a
f(x)dx ≈ hsinc

K∑

i=−K

δ
(−1)
j−i f

(
a+ beihsinc

1 + eihsinc

)
b− a

(e−ihsinc/2 + eihsinc/2)2
(70)

where δ
(−1)
i = 1

2 +
∫ i
0

sin(πt)
πt dt, i = −2K . . . 2K, hsinc =

√
2π
K .

Below we also use the following auxiliary notation:

zi =
a+ behsinci

1 + ehsinci
, µi =

b− a

(e−ihsinc/2 + eihsinc/2)2
, (71)

and refer to A−1
as de�ned in (15).

In order to measure how lose an obtained approximation is to the exat

solution we used the funtional

m
ηn =



∫ 1

−1

[
(1 − x2)

d
m
un(x)

dx
+

∫ x

−1

(
m
λn − q(ξ)

)
m
un(ξ)dξ

]2

dx




1
2

referred to in the algorithm as the residual.

The developed software library implements the apaity to subdivide the

interval (a, b) on whih numerial integration takes plae into subintervals (a =
x0, x1), . . . , (xN−1, xN = b) in a uniform as well as a non-uniform manner. A

†
If the ode alled upon by SiPy and NumPy is ompiled for the x86_64 arhiteture. For

reasons to do the GCC ompiler the same numpy.longdouble type we use results in 80-bit

preision on 32-bit proessors.
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Algorithm 1: IntAB(values)

Data: values, hsinc, zj , µj

Result: s
begin

s := 0;

for j := −K . . . K do

p := µj;

foreah v in values do

if v is a funtion then

p := p v(zj);

else

// v is an array

p := p v[j];

end

end

s := s+ p;

end

s := hsinc s;

end

Algorithm 2: IntAZ(j;values)

Data: j, values, hsinc, zj , µi, δ
(−1)
i

Result: r
begin

s := 0;

for i := −K . . .K do

p := µiδ
(−1)
j−i ;

foreah v in values do

if v is a funtion then

p := p v(zi);

else

// v is an array

p := p v[i];

end

end

s := s+ p;

end

s := hsinc s;

end
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Algorithm 3: Main

Data: n � the number of the eigenvalue we want to �nd, m � the order of

the FD-method (the number of steps taken), K, hsinc, zi, µi, δ
(−1)
i

Result:

m
λn,

m
ηn,

m
un(x), d

m
un

dx (x),
{∥∥∥u(i)

n (x)
∥∥∥
}m

i=0

begin

// We initialize L as a one-dimensional array of 2K + 1

zeros and F, U and DU as two-dimensional arrays of 2K +

1 by 2K + 1 zeros.

L := zeros(−K . . .K);

F,U,DU := zeros(−K . . .K,−K . . .K);

L[0] = n(n+ 1);

for i := −K . . .K do

U [0][i] = Pn(x);

DU [0][i] = dPn(x);

end

for d := 1, 2 . . . m do

// Compute the orretion for the eigenvalue

L[d] := A−2
IntAB(U [0], U [d − 1], q);

// Compute F

for i := −K . . .K do

F [d][i] := U [d− 1][i] q(zi);

for j := 0 . . . d− 1 do
F [d][i] := F [d][i] − L[d− j]U [j][i];

end

end

// Compute the orretion for the eigenfuntion

for i := −K . . .K do

U [d][i] := Qn(zi)IntAZ(i;F [d], Pn) − Pn(zi)IntAZ(i;F [d], Qn);
DU [d][i] :=
dQn(zi)IntAZ(i;F [d], Pn) − dPn(zi)IntAZ(i;F [d], Qn);

end

// Orthogonality

I = A−2
IntAB(U [d], U [0]);

for i := −K . . .K do

U [d][i] := U [d][i] − I U [0][i];

DU [d][i] := DU [d][i] − I DU [0][i];

end

// Compute the residual

CompRes;

end

m
λn :=

∑m
i=0 L[i];

end
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separate set of zi, µi is generated for eah (xi−1, xi), i ∈ {0, 1, . . . , N} in that

ase. Sine q(x) is sampled at the points zi, whih are at their densest at

the ends of the interval, one ould bene�t from subdividing the interval at the

singularity points of q(x). For the sake of simpliity we shall omit this detail

in the desription of the algorithm that follows.

As the values of δ
(−1)
i do not depend on q(x) or how the interval is subdivided

they were preomputed and stored in a �le to be loaded by the library at

runtime.

Note: when in the algorithm we say �F [i][j]� we refer to a partiular element

of the two-dimensional array F that has the index i, j. However, when we refer

to �F [i]� what we mean is the values F [i][−K], F [i][−K +1], . . . , F [i][K] taken
as a one-dimensional array.

The main omputing routine is desribed in Algorithm 3. It referenes the

subroutines IntAB and IntAZ de�ned in Algorithms 1, 2.

6. Numerial experiments

Using the above algorithm we applied the FD-method to problem (1), (2)

with the potential

q(x) = ln

(∣∣∣∣
(

5

12
− x

)(
1

3
+ x

)∣∣∣∣
)
.

First, the software was run to approximate the value of λ0 with m = 60 steps

of the FD-method to demonstrate the rate of onvergene. In this and subse-

quent runs the quadrature formulas (69), (70) had K at 250 and for numerial

integration (−1, 1) was subdivided into four subintervals using the set of points

{−1,−1
3 , 0,

5
12 , 1}. The importane of using the latter kind of subdivision is

illustrated below.
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∥∥∥
)

Fig. 2. A log-sale graph that shows the onvergene rate for λ0, . . . , λ4

Figure 2 illustrates how the onvergene rate of the FD-method inreases

exponentially for eah subsequent eigenvalue λn.

Solving the same problem was attempted using the well-known SLEIGN2

software pakage. The rightmost olumns of Tables 2, 4 show the margin of

error in the results it produes ompared to the present implementation of the

FD-method.
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Tabl. 1. The results obtained using SLEIGN2

n λn,sl2 TOL IFLAG

0 −1.98326983D + 00 0.46748D − 08 1
1 0.855187683D + 00 0.73426D − 07 1
2 0.489606686D + 01 0.35447D − 07 1
3 0.104183770D + 02 0.40228D − 07 1
4 0.188163965D + 02 0.61329D − 11 1

Tabl. 2. Convergene for the eigenvalue λ0

m
m
λ0

∥∥∥u(m)
0 (x)

∥∥∥ m
η 0 |

m
λ0 − λ0,sl2|

0 -1.8538570587 0.2270941786 0.4851738751 0.1294127713

1 -2.0002817053 0.0478946893 0.0863600316 0.0170118753

2 -1.9826820263 0.0140616365 0.0200439342 0.0005878037

3 -1.9827492251 0.0032752573 0.0044828399 0.0005206049

4 -1.9832100727 0.000281665 0.0004743141 0.0000597573

5 -1.9831500665 0.0001734894 0.0002452252 0.0001197635

6 -1.9831433619 9.61416137299e-05 0.0001358145 0.0001264681

7 -1.9831424182 2.99030462249e-05 4.5191830517e-05 0.0001274118

8 -1.9831451284 5.71179849936e-06 9.49092804135e-06 0.0001247016

9 -1.9831441732 3.7195952769e-07 8.68014240854e-07 0.0001256568

m
m
λ0

∥∥∥u(m)
0 (x)

∥∥∥ m
η0 |

m
λ0 − λ0,sl2|

50 -1.983144271 3.6458910063e-24 5.42202004605e-24 0.000125559

51 -1.983144271 1.45758164365e-24 2.17584093998e-24 0.000125559

52 -1.983144271 3.59257473326e-25 5.46661601878e-25 0.000125559

53 -1.983144271 2.29601032831e-26 5.40330904597e-26 0.000125559

54 -1.983144271 4.24716018236e-26 6.37606340182e-26 0.000125559

55 -1.983144271 2.6000804557e-26 3.86695510098e-26 0.000125559

56 -1.983144271 9.47336776012e-27 1.41695598924e-26 0.000125559

57 -1.983144271 2.02349833941e-27 3.116321958e-27 0.000125559

58 -1.983144271 1.81719782215e-28 3.7965999043e-28 0.000125559

59 -1.983144271 3.43816989604e-28 5.133026339e-28 0.000125559

60 -1.983144271 1.8365375822e-28 2.7327040704e-28 0.000125559

Computations for further eigenvalues were also performed and ompared to

the results from SLEIGN2 (see Tables 3, 4).

For the eigenvalue λ0 and m = 30 the hoie of subdivision mattered sig-

ni�antly. Numerial experiments show that the subdivision points are best

plaed near the singularities of q(x) (see Table 5).

7. Conlusions

The artile lays out the struture of and provides a theoretial justi�ation

for the FD-method as applied to solving the Sturm-Liouville problem (1), (2).
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Tabl. 3. The values obtained for λ0, . . . , λ4 at m = 30

n
m
λn |λ(m)

n |
∥∥∥u(m)

n (x)
∥∥∥

0 -1.98314427097744064 1.46303698262e-17 1.26598694672e-15

1 0.857270328373118208 1.63565545758e-17 8.83118381572e-16

2 4.893950682679907660 1.72618520779e-18 1.22013435336e-18

3 10.42051129625743390 5.71577711655e-26 4.58227541331e-25

4 18.81639652150898795 1.30790575077e-32 5.43628701044e-32

Tabl. 4. Auray results for λ0, . . . , λ4 at m = 30

n
m
λn

m
ηn |

m
λ0 − λ0,sl2|

0 -1.98314427097744064 1.9052706379e-15 0.000125559

1 0.857270328373118208 6.92114145514e-16 0.0020826454

2 4.893950682679907660 2.72086325283e-18 0.0021161773

3 10.42051129625743390 2.28096722974e-25 0.0021342963

4 18.81639652150898795 5.26360265358e-32 0.0000000215

Tabl. 5. The values obtained for λ0 at m = 30 with di�erent subdivisions

Subdivision

m
λ0 |

m
λ0 − λ0,sl2|

N = 1, none -1.9318815213501200317 0.051388309

N = 4, uniform -1.9776298960768203497 0.005639934

N = 4, {−1,−1
3 , 0,

5
12 , 1} -1.9831442710817836887 0.000125559

In Theorem 3 onvergene is proven for the ase when q(x) satis�es ondition
(3) and estimates for the onvergene rate are given expliitly.

Speial attention should also be drawn to Theorem 1. The authors were un-

able to �nd analogous results in the existing literature. To their best knowledge

the theorem and its proof onstitute a novel and original result.

The presented method suggests at least two ways for further re�nement.

First, by onsidering a separate approximation for the potential on eah subin-

terval of [−1, 1] (as done for pieewise ontinuous potential problems in [2℄).

Seond, by modifying the algorithm for onurrent omputation. The authors

hope to explore these possibilities in future publiations.

The algorithm was implemented in software as a funtion library (a Python

module). The implementation an be integrated into larger systems or used

as is in applied sienes. The soure ode for the funtion library along with

example Python ode that uses it an be obtained from

https://github.om/imathsoft/legendrefdnum.
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