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Abstra
t. The arti
le develops and proves an exponentially 
onvergent

numeri
al-analyti
al method (the FD-method) for solving Sturm-Liouville

problems with a singular Legendre operator and a singular potential. Ob-

tained within are su�
ient 
onditions for 
onvergen
e of the method and

a priori estimates of its a

ura
y. A detailed algorithm for programmati


implementation of the FD-method is presented and 
ompared with known

algorithms (SLEIGN2).

MSC 2010: Primary: 65L15, 65L20; Se
ondary: 33D15, 68W99

1. Introdu
tion

The results presented in this arti
le 
onstitute a logi
al extension and a

generalization of the results in [1℄ and [2℄, whi
h 
onsider the subje
t of solving

the following Sturm-Liouville problem:

− d

dx

[
(1 − x2)

du(x)

dx

]
+ q(x)u(x) = λu(x), x ∈ (−1, 1), (1)

lim
x→±1

(1 − x2)
du(x)

dx
= 0. (2)

Problems of this kind arise in appli
ations when solving partial di�erential

equations in spheri
al 
oordinates using separation of variables, as is done, e.g.,

with hydrogen-mole
ule ion's equation in [3℄ (see [3, p. 167�170℄).

To re
all, arti
les [1℄, [2℄ develop and prove an exponentially 
onvergent

algorithm (an FD-method) for solving problem (1), (2) for the 
ase when the

fun
tion q(x) is of the 
lass Q0[−1, 1] of pie
ewise 
ontinuous fun
tions that are
bounded on the 
losed interval [−1, 1] and have no more than a �nite number

of jump dis
ontinuities. However, [2℄ shows the results of applying the FD-

method to problem (1), (2) with the potential q(x) = |x+1/3|1/2 +ln(|x−1/3|),
whi
h 
learly does not belong to the 
lass Q0[−1, 1]. Despite the FD-method's


onvergen
e having not been proved for su
h problems the method turns out

Key words. Singular Sturm-Liouville problem, FD-method, 
oe�
ient approximation

methods, Legendre fun
tions, Stenger's formula.
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onvergent. This fa
t has suggested to the authors of [2℄ that the su�
ient


onvergen
e 
onditions for the FD-method for problems of type (1), (2) 
an be

weakened substantially, espe
ially where they 
on
ern the smoothness of the

fun
tion q(x).
The subje
t of this arti
le is the Sturm-Liouville problem (1), (2) with a

fun
tion q(x) from the spa
e L1,ρ(−1, 1), ρ = 1/
√

1 − x2, whi
h 
ontains fun
-

tions f(x), de�ned almost everywhere on the interval (1−, 1) for whi
h it holds

that

‖f‖1,ρ =

1∫

−1

|f(x)|√
1 − x2

dx <∞. (3)

Thus stated, the problem is a generalization of those 
onsidered in [1℄ and [2℄,

su�
iently so we 
ould not apply the proof te
hniques used therein. Instead,

to obtain the su�
ient 
onditions for 
onvergen
e a new approa
h was used

based on an inequality for Legendre fun
tions proposed by V. L. Makarov.

This inequality (see Theorem 2) follows from Theorem 1, analogues of whi
h

the authors were unable to �nd. For this reason the aforementioned theorems

are presented here with a detailed proof as novel and original results.

The arti
le has the following stru
ture: we start out by giving an outline

of the FD-method in se
tion 2 and applying it to the problem at hand. We

pro
eed to prove a general auxiliary result in se
tion 3. In se
tion 4 we give a

theoreti
al justi�
ation of the method as applied to the 
ase at hand and obtain

a proof of its 
onvergen
e. We dis
uss the programmati
 side of the question

in se
tion 5. Finally, we draw some 
on
lusions about what has been done.

2. The FD-method: algorithm
We are going to 
onstru
t a solving algorithm for problem (1), (2) based on

the general idea of the FD-method (see [4℄).

It is easy to see that the di�erential operator L[·] de�ned by the equality

L[u(x)] =
d

dx

[
(1 − x2)

du(x)

dx

]
− q(x)u(x) (4)

is self-adjoint in the Hilbert spa
e

W =
{
f(x) ∈ C2(−1, 1) ∩ L2(−1, 1) | lim

x→±1
(1 − x2)f(x) = 0;

q(x)f(x) ∈ L2(−1, 1)
} (5)

equipped with the 
ommon inner produ
t

< f, g >=

1∫

−1

f(x)g(x)dx (6)

(see [5, p. 55℄). This fa
t implies that there exists an in
reasing sequen
e of

eigenvalues λ0 < λ1 < . . . < λn < . . . and 
orresponding orthogonal eigenfun
-

tions u0(x), u1(x), . . . , un(x), . . . that satisfy equation (1) and 
ondition (2).
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We are looking for the eigensolution un(x), λn to eigenvalue problem (1),(2)

in the form of a series

un(x) =
∞∑

j=0

u(j)
n (x), λn =

∞∑

j=0

λ(j)
n , (7)

where the pair u
(j)
n (x), λ

(j)
n 
an be found as the solution to the following system

of re
urren
e problems:

d

dx

[
(1 − x2)

du
(j)
n (x)

dx

]
+ λ(0)

n u(j)
n (x) =

= −
j−1∑

i=0

λ(j−i)
n u(i)

n (x) + q(x)u(j−1)
n (x), u(−1)

n (x) ≡ 0,

(8)

lim
x→±1

(1 − x2)
du

(j)
n (x)

dx
= 0, j = 0, 1, 2, . . . . (9)

If we put j = 0 in (8) we obtain the equation for the basi
 problem

d

dx

[
(1 − x2)

du
(0)
n (x)

dx

]
+ λ(0)

n u(0)
n (x) = 0. (10)

Taking into a

ount that the eigenfun
tions of operator L[·] (4) are determined

up to a multipli
ative 
onstant we impose an additional requirement on the

solutions of the basi
 problem (10), (9):

1∫

−1

(
u(0)

n (x)
)2
dx = 1, n = 0, 1, 2, . . . (11)

It is well known (see [6, p. 121℄, [7, p. 33℄) that every solution u
(0)
n (x) to

equation (10) (when λ
(0)
n is �xed) 
an be represented through the Legendre

fun
tions Pν(x), Qν(x) :

u(0)
n (x) = APν(x) +BQν(x), A,B ∈ C, (12)

where ν is the solution of the algebrai
 equation ν(ν + 1) = λ
(0)
n , i.e,

ν = −1

2

(
1 ±

√
1 + 4λ

(0)
n

)
. (13)

Now taking into a

ount the formulas that des
ribe the behaviour of Legendre

fun
tions near the singular points ±1 (see [6, p. 163�164℄) and the formulas

that 
onne
t derivatives of the Legendre fun
tions with the asso
iated Legendre

fun
tions (see [6, p. 148℄) we 
an easily 
ompute that

lim
x→−1

(
1 − x2

) dPν(x)

dx
=

2 sin (πν)

π
, lim

x→1

(
1 − x2

) dPν(x)

dx
= 0,

(14)

lim
x→−1

(
1 − x2

) dQν(x)

dx
= cos (πν) , lim

x→1

(
1 − x2

) dQν(x)

dx
= 1.
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From equalities (14) it follows that fun
tion u
(0)
n (x) (12) satis�es 
ondition (9)

if and only if B = 0 and ν = n ∈ N ∪ {0}, whereas 
ondition (11) leads us to

the equality (see [7, p. 42℄)

A−1 =

√
1∫

−1

(Pn(x))2 dx =

√
2

2n+ 1
. (15)

In the other words we have that the pairs

u(0)
n (x) =

√
2n+ 1

2
Pn(x), λ(0)

n = n(n+ 1), n = 0, 1, 2, . . . . (16)

represent eigensolutions of eigenvalue problem (9), (10) and (11). Problems

(8), (9) for j = 1, 2, . . . are solvable if and only if the fun
tions

F (j)
n (x) = −

j−1∑

i=0

λ(j−i)
n u(i)

n (x) + q(x)u(j−1)
n (x), j = 1, 2, . . . (17)

are orthogonal (in the sense of inner produ
t (6)) to the kernel spa
e of the

linear operator

L(0)
n [u(x)] =

d

dx

[
(1 − x2)

du(x)

dx

]
+ λ(0)

n u(x),

i.e, to the fun
tion u
(0)
n (x). This fa
t gives us a simple formula for �nding λ

(j)
n ,

j = 1, 2, . . .:

λ(j)
n =

1∫

−1

u(0)
n (x)

{
−

j−1∑

i=1

λ(j−i)
n u(i)

n (x) + q(x)u(j−1)
n (x)

}
dx, (18)

whereas fun
tions u
(j)
n (x), j = 1, 2, . . . 
an be found via the variation of param-

eters formula (see, e.g., [7, p. 8, 34℄)

u(j)
n (x) = c(j)n u(0)

n (x) +

x∫

−1

Kn(x, ξ)F (j)
n (ξ)dξ, (19)

where

Kn(x, ξ) = Pn(x)Qn(ξ) −Qn(x)Pn(ξ) (20)

and 
onstant c
(j)
n ∈ R 
an be 
hosen arbitrary. In a later se
tion we will 
hoose

it to satisfy the orthogonality 
ondition

〈
u

(0)
n (x), u

(j)
n (x)

〉
= 0.

3. Auxiliary results

In what follows we will need the result stated below in the form of a theorem,

whi
h we 
onsider to be quite elegant.

Theorem 1. Suppose that uI(θ) and uII(θ) are a pair of solutions to the dif-

ferential equation

d2u(θ)

dθ2
+ φ(θ)u(θ) = 0, θ ∈ (a, b) , (21)
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φ(θ) ∈ C1(a, b), φ(θ) > 0,∀θ ∈ (a, b)

that satisfy the following 
ondition:

W (θ) = uI(θ)u
′
II(θ) − u′I(θ)uII(θ) = 1, ∀θ ∈ (a, b). (22)

If there exists a point c ∈ (a, b) su
h that φ′(θ) ≤ 0 ∀θ ∈ (a, c] and φ′(θ) ≥ 0
∀θ ∈ [c, b) then ∣∣∣v(θ, θ̃)

∣∣∣ ≤
√

2φ−1(c),∀θ, θ̃ ∈ (a, b), (23)

v(θ, θ̃)
def
= uI(θ)uII(θ̃) − uI(θ̃)uII(θ).

If φ′(θ) ≤ 0 or φ′(θ) ≥ 0 ∀θ ∈ (a, b) then

∣∣∣v(θ, θ̃)
∣∣∣ ≤ max

{√
φ−1(θ),

√
φ−1(θ̃)

}
,∀θ, θ̃ ∈ (a, b). (24)

Before pro
eeding to the proof of Theorem 1 we should emphasize that the

main idea of the theorem was evoked by the Theorem of Sonin (see [8, p. 166℄).

Proof. Suppose that the 
onditions of Theorem 1 are ful�lled and for some

c ∈ (a, b) we have that

φ′(θ) ≤ 0 ∀θ ∈ (a, c], φ′(θ) ≥ 0 ∀θ ∈ [c, b). (25)

In su
h a 
ase the auxiliary fun
tion

f1(θ, θ̃) = v2(θ, θ̃) + φ−1(θ)

(
∂v(θ, θ̃)

∂θ

)2

(26)

is non-de
reasing on (a, c] and non-in
reasing on [c, b) with respe
t to its argu-

ment θ, i.e.,

∂f1(θ, θ̃)

∂θ
≥ 0, ∀θ ∈ (a, c];

∂f1(θ, θ̃)

∂θ
≤ 0, ∀θ ∈ [c, b), ∀θ̃ ∈ (a, b). (27)

The latter fa
t easily follows from the equality

∂f1(θ, θ̃)

∂θ
= 2

∂v(θ, θ̃)

∂θ

(
v(θ, θ̃) + φ−1(θ)

∂2v(θ, θ̃)

∂θ2
− 1

2

φ′(θ)
φ2(θ)

(
∂v(θ, θ̃)

∂θ

))
=

= − φ′(θ)
φ2(θ)

(
∂v(θ, θ̃)

∂θ

)2

, ∀θ, θ̃ ∈ (a, b) (28)

and inequalities (25). In mu
h the same way it is easy to verify that

∂f2(θ, θ̃)

∂θ̃
≥ 0, ∀θ̃ ∈ (a, c];

∂f2(θ, θ̃)

∂θ̃
≤ 0, ∀θ̃ ∈ [c, b), ∀θ ∈ (a, b). (29)

where

f2(θ, θ̃) = v2(θ, θ̃) + φ−1(θ̃)

(
∂v(θ, θ̃)

∂θ̃

)2

. (30)

Let us 
onsider the fun
tion f(θ, θ̃) de�ned in the following way:

f(θ, θ̃) =

{
f1(θ, θ̃) when θ ≤ θ̃; θ, θ̃ ∈ (a, c],

f2(θ, θ̃) when θ ≥ θ̃; θ, θ̃ ∈ (a, c].
(31)
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a с b

a

с

b

ϕ-1(θ)

θ

θ
~

f1(θ,θ)

f2(θ,θ)
~

Fig. 1. A graph of f(θ, θ̃), f̄(θ, θ̃) on (a, b)×(a, b). The domain

of f̄(θ, θ̃) is indi
ated with a bold-lined square. It may be of

interest to note that on (a, c)2 ∪ (c, b)2 the right side of estimate

(23) need not 
ontain

√
2; see formulas (34), (35)

From expressions (26) and (30) it follows that f1(θ, θ) = f2(θ, θ) = φ−1(θ). The

latter fa
t means that the fun
tion f(θ, θ̃) (31) is well de�ned and 
ontinuous

on (a, c]2. Expressions (26) and (30) together with inequalities (27), (29) and

identity (22) lead us to the inequalities

f1(θ, θ̃) ≤ f1(θ̃, θ̃) = φ−1(θ̃), ∀θ, θ̃ ∈ (a, c], θ ≤ θ̃, (32)

f2(θ, θ̃) ≤ f2(θ, θ) = φ−1(θ), ∀θ, θ̃ ∈ (a, c], θ ≥ θ̃. (33)

Taking into a

ount expressions (26), (30) from inequalities (32), (33) we 
an

dedu
e that

v2(θ, θ̃) ≤ f(θ, θ̃) ≤ φ−1(c), ∀θ, θ̃ ∈ (a, c]. (34)

Through applying nearly identi
al reasoning to the fun
tion

f̄(θ, θ̃) =

{
f2(θ, θ̃) when θ ≤ θ̃, θ, θ̃ ∈ [c, b),

f1(θ, θ̃) when θ ≥ θ̃, θ, θ̃ ∈ [c, b).

we 
an get the inequalities

v2(θ, θ̃) ≤ f̄(θ, θ̃) ≤ φ−1(c), ∀θ, θ̃ ∈ [c, b). (35)

Now let us return to the fun
tion f1(θ, θ̃) (26). From inequalities (27) it

follows that

v2(θ, θ̃) ≤ f1(θ, θ̃) ≤ f1(c, θ̃) = v2(c, θ̃) + φ−1(c)w2(θ̃), θ, θ̃ ∈ (a, b) (36)

where w(θ̃) = u′I(c)uII(θ̃) − uI(θ̃)u
′
II(c). Taking into a

ount inequalities (34)

and (35) we 
an pro
eed estimating v2(θ, θ̃) as follows:

v2(θ, θ̃) ≤ φ−1(c)(1 + w2(θ̃)), θ, θ̃ ∈ (a, b). (37)

It is not hard to verify that

w2(θ̃) ≤ w2(θ̃) + φ−1(θ̃)

(
dw(θ̃)

dθ̃

)2

≤ w2(c) + φ−1(c)

(
dw(θ̃)

dθ̃

)2
∣∣∣∣∣∣
θ̃=c

= 1.
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Combining the latter inequality with inequality (37) we arrive at sought in-

equality (23).

Inequality (24) 
an be easily derived from inequalities (32), (33) as a limit


ase when c→ b.
The proof is 
omplete. �

Using Theorem 1 we 
an obtain a 
urious and useful inequality pertaining

to the Legendre fun
tions.

It is well known that the Legendre fun
tions Pν(x) and Qν(x) are two linearly
independent solutions to the Legendre di�erential equation (see [6, p. 121℄):

d

dx

[
(1 − x2)

dy(x)

dx

]
+ ν(ν + 1)y(x) = 0, x ∈ (−1, 1). (38)

Furthermore, the fun
tions Pν(x) and Qν(x) possess the property

(1 − x2)(P ′
ν(x)Qν(x) − Pν(x)Q

′
ν(x)) = 1, ∀x ∈ (−1, 1). (39)

It is also known (see [8, p. 67℄) that equation (38) 
an be rewritten in the

equivalent form (21) with

φ(θ) = (2 sin(θ))−2 + (ν + 1/2)2, (40)

u(θ) =
√

sin(θ)y(cos(θ)), a = 0, b = π.

In the other words, we have that fun
tions

uI(θ) =
√

sin(θ)Pν(cos(θ)), uII(θ) =
√

sin(θ)Qν(cos(θ)) (41)

satisfy equations (21), (40) and identity (22), whi
h is equivalent to identity

(39). Also, it is easy to see that the fun
tion φ(θ) (40) ful�ls all the require-

ments of Theorem 1 with c = π/2. Therefore, Theorem 1 provides us with the

estimation√
sin(θ)sin(θ̃) ·

∣∣∣Pν(cos(θ))Qν(cos(θ̃) − Pν(cos(θ̃))Qν(cos(θ)
∣∣∣ ≤

≤
√

2φ−1(π/2) ≤
√

2
1
4 +

(
ν + 1

2

)2 ,

∀θ, θ̃ ∈ (0, π) and the following 
orollary:

Theorem 2. For every ν ∈ R the inequality

4
√

(1 − x2)(1 − ξ2) |Pν(x)Qν(ξ) − Pν(ξ)Qν(x)| ≤
√

2
1
4 +

(
ν + 1

2

)2 (42)

holds true for all x, ξ ∈ (−1, 1).

4. The FD-method: theoreti
al justifi
ation
In this se
tion we are going to investigate the question of 
onvergen
e of

the proposed FD-method, i.e, to �nd the su�
ient 
onditions that provide the


onvergen
e of series (7).

Let us 
onsider a general eigenvalue problem
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d

dx

[
(1 − x2)

du(x, τ)

dx

]
− τq(x)u(x, τ) = −λ(τ)u(x, τ), x ∈ (−1, 1), τ ∈ [0, 1],

(43)

lim
x→±1

(1 − x2)
du(x, τ)

dx
= 0, ∀τ ∈ [0, 1]. (44)

The problem (1), (2) is its partial 
ase for τ = 1. If we suppose that the

eigenvalue λn(τ) and the 
orresponding eigenfun
tion un(x, τ) 
an be expressed

in the form of a series

λn(τ) =

∞∑

i=0

λ(i)
n τ i, un(x, τ) =

∞∑

i=0

u(i)(x)τ i ∀x ∈ (−1, 1), τ ∈ [0, 1]

and the di�erential formulas

dun(x, τ)

dx
=

∞∑

i=0

du
(i)
n (x)

dx
τ i,

d2un(x, τ)

dx2
=

∞∑

i=0

d2u
(i)
n (x)

dx2
τ i ∀x ∈ (−1, 1), τ ∈ [0, 1]

hold we immediately arrive at the 
on
lusion that the unknown 
oe�
ients

λ
(i)
n , u

(i)
n (x), i = 0, 1, 2, . . . 
an be found as solutions to problems (8), (9). To

justify formulas (7) we only need to mention that if we set τ = 1 problem (43),

(44) will be redu
ed to problem (1), (2).

Now let us go ba
k to formula (19). Without loss of generality we 
an obtain

the values of c
(j)
n using the orthogonality 
ondition:

cjn = −
1∫

−1

u(0)
n (x)

x∫

−1

Kn(x, ξ)F (j)
n (ξ)dξdx. (45)

It is not hard to verify that if c
(j)
n is found a

ording to formula (45) then

〈
u(0)

n (x), u(j)
n (x)

〉
def
=

1∫

−1

u(0)
n u(j)

n (x)dx = 0, ∀j ∈ N

and formula (18) 
an be substantially simpli�ed:

λ(j)
n =

1∫

−1

q(x)u(0)
n (x)u(j−1)

n (x)d, j ∈ N. (46)

Using the norm ‖ · ‖1,ρ introdu
ed in (3) and formula (46) we 
an estimate

|λ(j)
n | as follows:

∣∣∣λ(j)
n

∣∣∣ =

∣∣∣∣∣∣

1∫

−1

q(x)√
1 − x2

4
√

1 − x2u(j−1)
n (x)

4
√

1 − x2u(0)
n (x)dx

∣∣∣∣∣∣
≤ (47)
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≤ ‖q‖1,ρ‖u(j−1)
n ‖∞,1/

√
ρ‖u(0)

n ‖∞,1/
√

ρ,

where ‖f‖∞,1/
√

ρ
def
= max

x∈[−1,1]
|f(x)

√
ρ| = max

x∈[−1,1]
| 4
√

1 − x2f(x)|. Theorem 7.3.3

from [8℄ allows us to estimate ‖u(0)
n ‖∞,1/

√
ρ as follows:

‖u(0)
n ‖∞,1/

√
ρ =

√
n+ 1/2 max

0≤θ≤π

√
sin(θ) |Pn(cos(θ))| ≤

√
2(n + 1/2)

πn
. (48)

Combining the latter inequality with (47) we get the estimation

∣∣∣λ(j)
n

∣∣∣ ≤
√

2(n+ 1/2)

πn
‖q‖1,ρ‖u(j−1)

n ‖∞,1/
√

ρ. (49)

Using estimation (48) and formula (45) we 
an estimate |c(j)n | as follows:
∣∣∣c(j)n

∣∣∣ =

∣∣∣∣∣∣

1∫

−1

1√
1 − x2

4
√

1 − x2u(0)
n (x)

x∫

−1

4
√

(1 − x2)(1 − ξ2)√
1 − ξ2

Kn(x, ξ) ×

×
[
−

j−1∑

i=0

λ(j−i)
n

4
√

1 − ξ2u(i)
n (ξ) + q(ξ) 4

√
1 − ξ2uj−1

n (ξ)

]
dξdx

∣∣∣∣∣ ≤

≤
√

2π2

n+ 1/2

√
2(n + 1/2)

πn

[
j−1∑

i=0

|λ(j−i)
n |‖u(i)

n ‖∞,1/
√

ρ + ‖q‖1,ρ‖u(j−1)
n ‖∞,1/

√
ρ

]
=

=
2π

√
π

√
n
√
n+ 1/2

[
j−1∑

i=0

|λ(j−i)
n |‖u(i)

n ‖∞,1/
√

ρ + ‖q‖1,ρ‖u(j−1)
n ‖∞,1/

√
ρ

]
.

To obtain the latter inequality we used the evident equality

1∫

−1

dx√
1 − x2

= π

and the result of Theorem 2.

Now we are in a position to estimate ‖u(j)
n ‖∞,1/

√
ρ. We 
an do this in the

following way (see formula (19)):

‖u(j)
n ‖∞,1/

√
ρ ≤ |c(j)n |

√
2(n+ 1/2)

πn
+

+ max
x∈[−1,1]





x∫

−1

4
√

1 − x2 4
√

1 − ξ2√
1 − ξ2

|Kn(x, ξ)|dξ×

×
[

j−1∑

i=0

|λ(j−i)
n |‖u(i)

n ‖∞,1/
√

ρ + ‖q‖1,ρ‖u(j−1)
n ‖∞,1/

√
ρ

]}
≤ (50)

≤ |c(j)n |
√

2(n+ 1/2)

πn
+
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+

√
2π

n+ 1/2

[
j−1∑

i=0

|λ(j−i)
n |‖u(i)

n ‖∞,1/
√

ρ + ‖q‖1,ρ‖u(j−1)
n ‖∞,1/

√
ρ

]
=

=
√

2π

(
3n+ 1

n(n+ 1/2)

)[j−1∑

i=0

|λ(j−i)
n |‖u(i)

n ‖∞,1/
√

ρ + ‖q‖1,ρ‖u(j−1)
n ‖∞,1/

√
ρ

]
.

Combining inequalities (49) and (50) we arrive at the following estimate:

‖u(j)
n ‖∞,1/

√
ρ ≤

≤ αn

[
βn

j−1∑

i=0

‖u(j−i−1)
n ‖∞,1/

√
ρ‖u(i)

n ‖∞,1/
√

ρ + ‖u(j−1)
n ‖∞,1/

√
ρ

]
,

(51)

where

αn = αn(n) =

√
2π(3n+ 1)

n(n+ 1/2)
‖q‖1,ρ ≤ 3

√
2π

n
‖q‖1,ρ,

βn = βn(n) =

√
2(n + 1/2)

πn
≤
√

3

π
< 1.

Using substitution

‖uj
n‖∞,1/

√
ρ = αj

nvj (52)

we 
an rewrite inequality (51) in the form of

vj ≤
j−1∑

i=0

vivj−i−1 + vj−1, j = 1, 2, . . . , v0 = ‖u(0)
n ‖∞,1/

√
ρ. (53)

Let us 
onsider a sequen
e of positive real numbers {Vi}i=0,1,... de�ned by

the re
urren
e formula

Vj+1 =

j∑

i=0

ViVj−i + Vj, j = 0, 1, 2, . . . , V0 = 1. (54)

Comparing (53) with (54) and taking into a

ount inequality (48) we 
an

arrive at the 
on
lusion that

vj ≤ Vj , j = 0, 1, 2, . . . . (55)

Re
all that ‖uj
n‖∞,1/

√
ρ ≤ αj

nVj = αj
nVj(n). If for some n = n0 ∈ N the series

∞∑
i=0

αj
nVj(n) is 
onvergent then a

ording the inequalities (55), (47) and equality

(52) the series (7) are 
onvergent, i.e., the FD-method is 
onvergent. Now we

are going to �nd the smallest n0 of the kind mentioned above. For this purpose

let us 
onsider the series

f(z) =

∞∑

j=0

zjVj (56)

and �nd its radius of 
onvergen
e.

Taking into a

ount re
urren
e equalities (54) one 
an verify that fun
tion

f(z) (56) satis�es the fun
tional equation

f(z) = zf2(z) + zf(z) + 1
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or, in a more 
onvenient form,

zf2(z) + (z − 1)f(x) + 1 = 0. (57)

Solving equation (57) with respe
t to fun
tion f(z) we obtain

f(z) =
1

2z

(
1 − z −

√
1 − z

γ

√
1 − γz

)
, γ = 3 − 2

√
2. (58)

From formula (58) we see that the radius of 
onvergen
e R for series (56) is

equivalent to γ :

R = γ = 3 − 2
√

2. (59)

Thus, if

3 − 2
√

2 ≥ 3
√

2π

n
‖q‖1,ρ ≥ αn (60)

the FD-method is 
onvergent.

For a su�
iently large n inequality (60) will always be satis�ed. This means

that for su�
iently large values of n the FD-method will always be 
onvergent.

To be spe
i�
, the FD-method will be 
onvergent for all n > n0, where N ∋
n0 ≥ 3

√
2π

3−2
√

2
‖q‖1,ρ.

Furthermore, formula (58) allows us to �nd the 
oe�
ients Vj, j ∈ N expli
-

itly. For this purpose we need to expand the right-hand side of formula (58)

into a power series with respe
t to z :

f(z) =
1

2z


1 − z −


√γ − z

2
√
γ
−

∞∑

p=2

(2p − 3)!!

(2p)!!
γ1/2−pzp


×

×


 1√

γ
−

√
γz

2
−

∞∑

p=2

(2p − 3)!!

(2p)!!
γp−1/2zp




 = (61)

=
1

2z

(
−z+

∞∑

j=1

zj

[
(2j − 3)!!

(2j)!!
(γj + γ−j)−

−
j−1∑

p=1

(2p − 3)!!

(2p)!!

(2j − 2p − 3)!!

(2j − 2p)!!
γ2p−j

])
=

= 1 +
1

2

∞∑

j=2

zj−1


(2j − 3)!!

(2j)!!
(γj + γ−j) −

j−1∑

p=1

(2p − 3)!!

(2p)!!

(2j − 2p − 3)!!

(2j − 2p)!!
γ2p−j


 .

Here we de�ne (2p)!! as 2× 4× . . .× 2p and (2p+ 1)!! as 1× 3× . . .× (2p+ 1),

(−1)!!
def
= 1.

From (61) we have that

Vj−1 =
1

2


(2j − 3)!!

(2j)!!
(γj + γ−j) −

j−1∑

p=1

(2p − 3)!!

(2p)!!

(2j − 2p − 3)!!

(2j − 2p)!!
γ2p−j


,

j = 2, 3, . . . .

(62)



EXPONENTIALLY CONVERGENT NUMERICAL-ANALYTICAL METHOD ... 83

Using the fa
t that Vj ≥ 0 and Stirling's formula we 
an estimate Vj−1 in the

following way:

Vj−1 ≤ (2j − 3)!!

2(2j)!!
=

(2j − 1)!!

2(2j − 1)(2j)!!
=

=
(2j)!

2(2j − 1)((2j)!!)2
=

(2j)!

22j+1(2j − 1)(j!)2
<

<
2
√
πj(2j)2je−2j+1/(24j)

22j+1(2j − 1)(
√

2πjjje−j)2
=

e1/(24j)

2(2j − 1)
√
πj

<
1

(2j − 1)
√
πj
. (63)

Using inequalities (49), (55) and (63) together with equality (52) we 
an easily

estimate ‖u(j)
n ‖∞,1/

√
ρ and |λ(j)

n | :

‖u(j)
n ‖∞,1/

√
ρ ≤ αj

nVj ≤
(

3
√

2π

n
‖q‖1,ρ

)j
1

(2j + 1)
√
π(j + 1)

, (64)

∣∣∣λ(j)
n

∣∣∣ ≤
(

3
√

2π

n

)j−1

(‖q‖1,ρ)
j 1

(2j − 1)
√
πj

(65)

Inequalities (64), (65) now allow us to formulate the theorem about 
onver-

gen
e of the FD-method.

Theorem 3. Let

n0 =

[
3
√

2π

3 − 2
√

2
‖q‖1,ρ

]
∗ + 1

and

α̃n =
3
√

2π

n
‖q‖1,ρ.

The FD-method des
ribed by formulas (7), (16), (19), (20), (45) and (46) 
on-

verges to the eigensolution (un(x);λn) of problem (1), (2) for all n > n0. Fur-

thermore, for the n > n0 the following estimations of the method's 
onvergen
e

rate hold true:

∥∥∥un(x)− m
un(x)

∥∥∥
∞,1/

√
ρ
≤ α̃m+1

n

(2m+ 3)
√
π(m+ 2)(1 − α̃n)

, (66)

∣∣∣λn−
m
λn

∣∣∣ ≤ ‖q‖1,ρ
α̃m

n

(2m+ 1)
√
π(m+ 1)(1 − α̃n)

, (67)

where

m
un(x) =

m∑

j=0

u(j)
n (x),

m
λn=

m∑

j=0

λ(j)
n . (68)

∗
Here [·] denotes the integer part of a real number.
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5. The FD-method: software implementation

In the se
tion below we dis
uss the software implementation that was pro-

du
ed of the present method and des
ribe expli
itly the algorithm used in this

implementation.

The software implementation was written in the Python programming lan-

guage version 2.7 using the libraries NumPy, S
iPy, mpmath and matplotlib.

The use of the NumPy library has allowed us to have �oating-point variables

with up to quadruple pre
ision

†
. We fa
ed a te
hni
al problem when trying to


ompute the values of Legendre Qn fun
tion for an argument that's su�
iently


lose to ±1 using S
iPy's lqmn to 
ir
umvent whi
h we had to resort to 
alling

the 
orresponding fun
tion legenq of the mpmath library. This pro
ess involves


onverting the argument of legenq from the data type numpy.longdouble to

mpf and ba
k again with su�
ient pre
ision.

In the algorithm we use the tanh rule and Stenger's formula in order to

approximate integration in (18), (19):

∫ b

a
f(x)dx =

∫ +∞

−∞
f

(
a+ bet

1 + et

)
(b− a)dt

(e−t/2 + et/2)2
≈ (69)

≈ hsinc

K∑

i=−K

f

(
a+ beihsinc

1 + eihsinc

)
b− a

(e−ihsinc/2 + eihsinc/2)2
,

∫ zj

a
f(x)dx ≈ hsinc

K∑

i=−K

δ
(−1)
j−i f

(
a+ beihsinc

1 + eihsinc

)
b− a

(e−ihsinc/2 + eihsinc/2)2
(70)

where δ
(−1)
i = 1

2 +
∫ i
0

sin(πt)
πt dt, i = −2K . . . 2K, hsinc =

√
2π
K .

Below we also use the following auxiliary notation:

zi =
a+ behsinci

1 + ehsinci
, µi =

b− a

(e−ihsinc/2 + eihsinc/2)2
, (71)

and refer to A−1
as de�ned in (15).

In order to measure how 
lose an obtained approximation is to the exa
t

solution we used the fun
tional

m
ηn =



∫ 1

−1

[
(1 − x2)

d
m
un(x)

dx
+

∫ x

−1

(
m
λn − q(ξ)

)
m
un(ξ)dξ

]2

dx




1
2

referred to in the algorithm as the residual.

The developed software library implements the 
apa
ity to subdivide the

interval (a, b) on whi
h numeri
al integration takes pla
e into subintervals (a =
x0, x1), . . . , (xN−1, xN = b) in a uniform as well as a non-uniform manner. A

†
If the 
ode 
alled upon by S
iPy and NumPy is 
ompiled for the x86_64 ar
hite
ture. For

reasons to do the GCC 
ompiler the same numpy.longdouble type we use results in 80-bit

pre
ision on 32-bit pro
essors.
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Algorithm 1: IntAB(values)

Data: values, hsinc, zj , µj

Result: s
begin

s := 0;

for j := −K . . . K do

p := µj;

forea
h v in values do

if v is a fun
tion then

p := p v(zj);

else

// v is an array

p := p v[j];

end

end

s := s+ p;

end

s := hsinc s;

end

Algorithm 2: IntAZ(j;values)

Data: j, values, hsinc, zj , µi, δ
(−1)
i

Result: r
begin

s := 0;

for i := −K . . .K do

p := µiδ
(−1)
j−i ;

forea
h v in values do

if v is a fun
tion then

p := p v(zi);

else

// v is an array

p := p v[i];

end

end

s := s+ p;

end

s := hsinc s;

end
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Algorithm 3: Main

Data: n � the number of the eigenvalue we want to �nd, m � the order of

the FD-method (the number of steps taken), K, hsinc, zi, µi, δ
(−1)
i

Result:

m
λn,

m
ηn,

m
un(x), d

m
un

dx (x),
{∥∥∥u(i)

n (x)
∥∥∥
}m

i=0

begin

// We initialize L as a one-dimensional array of 2K + 1

zeros and F, U and DU as two-dimensional arrays of 2K +

1 by 2K + 1 zeros.

L := zeros(−K . . .K);

F,U,DU := zeros(−K . . .K,−K . . .K);

L[0] = n(n+ 1);

for i := −K . . .K do

U [0][i] = Pn(x);

DU [0][i] = dPn(x);

end

for d := 1, 2 . . . m do

// Compute the 
orre
tion for the eigenvalue

L[d] := A−2
IntAB(U [0], U [d − 1], q);

// Compute F

for i := −K . . .K do

F [d][i] := U [d− 1][i] q(zi);

for j := 0 . . . d− 1 do
F [d][i] := F [d][i] − L[d− j]U [j][i];

end

end

// Compute the 
orre
tion for the eigenfun
tion

for i := −K . . .K do

U [d][i] := Qn(zi)IntAZ(i;F [d], Pn) − Pn(zi)IntAZ(i;F [d], Qn);
DU [d][i] :=
dQn(zi)IntAZ(i;F [d], Pn) − dPn(zi)IntAZ(i;F [d], Qn);

end

// Orthogonality

I = A−2
IntAB(U [d], U [0]);

for i := −K . . .K do

U [d][i] := U [d][i] − I U [0][i];

DU [d][i] := DU [d][i] − I DU [0][i];

end

// Compute the residual

CompRes;

end

m
λn :=

∑m
i=0 L[i];

end
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separate set of zi, µi is generated for ea
h (xi−1, xi), i ∈ {0, 1, . . . , N} in that


ase. Sin
e q(x) is sampled at the points zi, whi
h are at their densest at

the ends of the interval, one 
ould bene�t from subdividing the interval at the

singularity points of q(x). For the sake of simpli
ity we shall omit this detail

in the des
ription of the algorithm that follows.

As the values of δ
(−1)
i do not depend on q(x) or how the interval is subdivided

they were pre
omputed and stored in a �le to be loaded by the library at

runtime.

Note: when in the algorithm we say �F [i][j]� we refer to a parti
ular element

of the two-dimensional array F that has the index i, j. However, when we refer

to �F [i]� what we mean is the values F [i][−K], F [i][−K +1], . . . , F [i][K] taken
as a one-dimensional array.

The main 
omputing routine is des
ribed in Algorithm 3. It referen
es the

subroutines IntAB and IntAZ de�ned in Algorithms 1, 2.

6. Numeri
al experiments

Using the above algorithm we applied the FD-method to problem (1), (2)

with the potential

q(x) = ln

(∣∣∣∣
(

5

12
− x

)(
1

3
+ x

)∣∣∣∣
)
.

First, the software was run to approximate the value of λ0 with m = 60 steps

of the FD-method to demonstrate the rate of 
onvergen
e. In this and subse-

quent runs the quadrature formulas (69), (70) had K at 250 and for numeri
al

integration (−1, 1) was subdivided into four subintervals using the set of points

{−1,−1
3 , 0,

5
12 , 1}. The importan
e of using the latter kind of subdivision is

illustrated below.
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∥∥∥
)

Fig. 2. A log-s
ale graph that shows the 
onvergen
e rate for λ0, . . . , λ4

Figure 2 illustrates how the 
onvergen
e rate of the FD-method in
reases

exponentially for ea
h subsequent eigenvalue λn.

Solving the same problem was attempted using the well-known SLEIGN2

software pa
kage. The rightmost 
olumns of Tables 2, 4 show the margin of

error in the results it produ
es 
ompared to the present implementation of the

FD-method.
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Tabl. 1. The results obtained using SLEIGN2

n λn,sl2 TOL IFLAG

0 −1.98326983D + 00 0.46748D − 08 1
1 0.855187683D + 00 0.73426D − 07 1
2 0.489606686D + 01 0.35447D − 07 1
3 0.104183770D + 02 0.40228D − 07 1
4 0.188163965D + 02 0.61329D − 11 1

Tabl. 2. Convergen
e for the eigenvalue λ0

m
m
λ0

∥∥∥u(m)
0 (x)

∥∥∥ m
η 0 |

m
λ0 − λ0,sl2|

0 -1.8538570587 0.2270941786 0.4851738751 0.1294127713

1 -2.0002817053 0.0478946893 0.0863600316 0.0170118753

2 -1.9826820263 0.0140616365 0.0200439342 0.0005878037

3 -1.9827492251 0.0032752573 0.0044828399 0.0005206049

4 -1.9832100727 0.000281665 0.0004743141 0.0000597573

5 -1.9831500665 0.0001734894 0.0002452252 0.0001197635

6 -1.9831433619 9.61416137299e-05 0.0001358145 0.0001264681

7 -1.9831424182 2.99030462249e-05 4.5191830517e-05 0.0001274118

8 -1.9831451284 5.71179849936e-06 9.49092804135e-06 0.0001247016

9 -1.9831441732 3.7195952769e-07 8.68014240854e-07 0.0001256568

m
m
λ0

∥∥∥u(m)
0 (x)

∥∥∥ m
η0 |

m
λ0 − λ0,sl2|

50 -1.983144271 3.6458910063e-24 5.42202004605e-24 0.000125559

51 -1.983144271 1.45758164365e-24 2.17584093998e-24 0.000125559

52 -1.983144271 3.59257473326e-25 5.46661601878e-25 0.000125559

53 -1.983144271 2.29601032831e-26 5.40330904597e-26 0.000125559

54 -1.983144271 4.24716018236e-26 6.37606340182e-26 0.000125559

55 -1.983144271 2.6000804557e-26 3.86695510098e-26 0.000125559

56 -1.983144271 9.47336776012e-27 1.41695598924e-26 0.000125559

57 -1.983144271 2.02349833941e-27 3.116321958e-27 0.000125559

58 -1.983144271 1.81719782215e-28 3.7965999043e-28 0.000125559

59 -1.983144271 3.43816989604e-28 5.133026339e-28 0.000125559

60 -1.983144271 1.8365375822e-28 2.7327040704e-28 0.000125559

Computations for further eigenvalues were also performed and 
ompared to

the results from SLEIGN2 (see Tables 3, 4).

For the eigenvalue λ0 and m = 30 the 
hoi
e of subdivision mattered sig-

ni�
antly. Numeri
al experiments show that the subdivision points are best

pla
ed near the singularities of q(x) (see Table 5).

7. Con
lusions

The arti
le lays out the stru
ture of and provides a theoreti
al justi�
ation

for the FD-method as applied to solving the Sturm-Liouville problem (1), (2).
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Tabl. 3. The values obtained for λ0, . . . , λ4 at m = 30

n
m
λn |λ(m)

n |
∥∥∥u(m)

n (x)
∥∥∥

0 -1.98314427097744064 1.46303698262e-17 1.26598694672e-15

1 0.857270328373118208 1.63565545758e-17 8.83118381572e-16

2 4.893950682679907660 1.72618520779e-18 1.22013435336e-18

3 10.42051129625743390 5.71577711655e-26 4.58227541331e-25

4 18.81639652150898795 1.30790575077e-32 5.43628701044e-32

Tabl. 4. A

ura
y results for λ0, . . . , λ4 at m = 30

n
m
λn

m
ηn |

m
λ0 − λ0,sl2|

0 -1.98314427097744064 1.9052706379e-15 0.000125559

1 0.857270328373118208 6.92114145514e-16 0.0020826454

2 4.893950682679907660 2.72086325283e-18 0.0021161773

3 10.42051129625743390 2.28096722974e-25 0.0021342963

4 18.81639652150898795 5.26360265358e-32 0.0000000215

Tabl. 5. The values obtained for λ0 at m = 30 with di�erent subdivisions

Subdivision

m
λ0 |

m
λ0 − λ0,sl2|

N = 1, none -1.9318815213501200317 0.051388309

N = 4, uniform -1.9776298960768203497 0.005639934

N = 4, {−1,−1
3 , 0,

5
12 , 1} -1.9831442710817836887 0.000125559

In Theorem 3 
onvergen
e is proven for the 
ase when q(x) satis�es 
ondition
(3) and estimates for the 
onvergen
e rate are given expli
itly.

Spe
ial attention should also be drawn to Theorem 1. The authors were un-

able to �nd analogous results in the existing literature. To their best knowledge

the theorem and its proof 
onstitute a novel and original result.

The presented method suggests at least two ways for further re�nement.

First, by 
onsidering a separate approximation for the potential on ea
h subin-

terval of [−1, 1] (as done for pie
ewise 
ontinuous potential problems in [2℄).

Se
ond, by modifying the algorithm for 
on
urrent 
omputation. The authors

hope to explore these possibilities in future publi
ations.

The algorithm was implemented in software as a fun
tion library (a Python

module). The implementation 
an be integrated into larger systems or used

as is in applied s
ien
es. The sour
e 
ode for the fun
tion library along with

example Python 
ode that uses it 
an be obtained from

https://github.
om/imathsoft/legendrefdnum.
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