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A relativistic generalization of Lagrangian and Hamiltonian functions for the classical system
of charged particles is considered. Local Lagrangian expression in the first approximation by the
coupling constant e? is obtained. This result is shown to be ambiguous. However, this ambiguity does
not affect the considered approximation. Relativistic Hamiltonian function with screened interaction
is found on applying some additional approximations.
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I. INTRODUCTION

It is well known that a complete description of rela-
tivistic systems of interacting particles rests upon field
theories. However, relativistic effects are considered to be
small in many applications. If that i1s the case, one can re-
strict oneself to the post-Newtonian (or weakly relativis-
tic) approximation, which implies us taking into account
corrections of order ¢=% only (c is the speed of light in
vacuum). The field degrees of freedom do not affect this
approximation, therefore the state of the system can be
described by particle variables only. This allows to de-
velop the theory resting on Lagrangian (or Hamiltonian)
function of the system of particles as in the nonrelativis-
tic case. Well known examples are Darwin [1], Einstein—
Infeld-Hoffman [2] and Kennedy [3] Lagrangians which
describe charged, gravitating and neutral particles, re-
spectively.

The post-Newtonian approximation is applicable when
particle velocities are considerably smaller than the
speed of light. In the present work this condition is not
mandatory. At the same time, the radiation effects are
neglected. An example of the system in which this can
be realized is the optically thin relativistic plasma.

The paper is organized as follows. Section II gives
some considerations on the action integral of the sys-
tem of charged particles with direct interaction as well
as expressions for the action in Lagrangian and canoni-
cal variables. In Section III relativistic generalization of
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Lagrangian function of the system of charged particles
1s found using quasistatic approximation which is equiv-
alent to the first order approximation by the coupling
constant. This approximation gives the local Lagrangian
expression which is ambiguous. The said ambiguity does
not affect the considered approximation and various ex-
pressions for Lagrangian can therefore be considered as
equivalent in first approximation by e?. In order to ob-
tain a Hamiltonian of the system of charged particles
some approximations in addition to the first approxima-
tion by the coupling constant are applied in Section IV.
The random phase approximation changes many-particle
interactions to an effective screened pair interaction. The
discussion of the Hamiltonian function and approxima-
tions validity is presented in the last section.

II. ACTION INTEGRAL

Let us consider a relativistic system of N charged par-
ticles that 1s localized in a volume V. The complete ac-
tion integral of such a system is a sum of the action St
of the field produced by charges and action S, of charges
coupled to the field, that is:

S=8,+5. (1)

In Lagrangian variables these are

8% dt/dr (E* - H?) , (2)

1
szso-i-sint:/dtLo-i-/dt/dI‘(—j'A—PSD)a (3)
C

where A | ¢ and E | H are electromagnetic potentials and fields; p and j are charge and current densities, respectively:

367



L. F. BLAZHYJEVSKYJ, B. V. BUDNYJ, Yu. S. KRYNYTSKYJ

plr,t) =D eid(e—ri(t), i

J

Ly 18 the free particles relativistic Lagrangian:

vt =) evi(t)(r —x;(1)). (4)

J

L():—Z:mjc2 (1—1)]2»/62)1/2 . (5)

It is convenient to modify the field portion of the action. If one integrates by parts in (2), then St can be represented

in the form

Sf:i/dt/dl‘ —p A¢+12V~A + A [AA -
8w c Ot

The representations (2) and (6) are equivalent. Indeed,
one can easily make certain that from the variational
principle (St + Sint) = 0 where St is determined either
by (2) or (6) one can obtain the field equations

1 9%A 19 Ar,
MgV (VoA ) =T @
10

Field variables are to be replaced by the solutions of field
equations (7) in order to proceed to the theory with di-
rect interaction between particles. Then from (6), (7) one

gets
S, —_—1/dt/dr pgo——l' A (9)
=3 c‘] ’

that is Sy = —25; when the field degrees of freedom are
frozen out. This equality was also abtained, for example,
in [4-6] as an approximate result, so it is worth empha-
sizing that (9) is an exact relation in the theory of direct
interparticle action.

From (1), (3), (9) the action integral of a relativistic
system of charged particles within the framework of di-
rect interaction can be written as

S = /dt (Lo + Lint) (10)

where we have introduced the notation

1 1.
Liny = §/d1‘ (EJ A _PSD) (11)

N |
o
Y
| — |
—

<
Y
—
o~
=
—
™
!
—
o~
-
o~
=
S
—
™
Y
—
o~
-
o~
=

One can see from the stated above that Li,; can be ex-
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pressed via fields as well:

o1 2 _ e
Lmt_SF/dr(H E?) . (12)

It is clear that the field values in (10)-(12) are no longer
independent variables.

Let us consider the same in canonical variables. The
action integral of particles in the external field is then
described by the formulae

Sp= [ @Y by vy — m) et} (13

e(mj) = (m?c4 + 6271']2»)1/2 ,

A1) (14)

=D —
i=Pi=
The field part of the action is still determined by for-
mula (9) with particle velocities v; (in formula (4) for
the current density j) expressed via conjugate momenta,

that is
Czﬂ'j

e(my)

(15)

Vj:

Thus, integral (10) in canonical variables will read

S:/dt[ij~Vj—H], (16)

where we have introduced the notation

CE;
(m)

H=2 [EW) ta ;j)

< AW (0,0 + Sesplr ()0 (1)
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Expressions (10), (16) will make sense of the action in-
tegral describing the system of charged particles with
direct interaction if one inserts the solutions of poten-
tial equations into (11), (17). Generally the action found
in this way will be nonlocal, i. e., S(tg,t) # S(to,t") +

S(t), (to < t' < t). The local actlon can be obtained
(and therefore (11), (17) can be identified with usual La-
grangian or Hamiltonian functions) approximately only.

III. LAGRANGIAN FUNCTION

In order to obtain the Lagrangian let us consider po-
tentials ¢ and A. It is convenient to use the Coulomb
gauge V - A = 0 and work with Fourier transforms:

1 ikr
= Vzk:q)k(t)e :
Dy (1) = /drq)(r,t)e_ik'r.

The fourier transform ¢y () of the scalar potential is then
defined by the formula

4 —1 I,
pr(t) = 5 r(t) Z eje” kI (18)

The vector potential will satisfy the equation

1 d? 47
(94 54 ) a0 =it )
where

) =Y eem ™ (v —k(kov))  (20)

J

is the transversal current (hat over vector denotes a uni-
tary vector both here and in what follows). One can re-
move the second time derivative from (19) in the static
approximation. Then

47 ol

Alt) = T3 (1). (21)

Turning to Fourier representation in (11) and inserting
the static potentials (18), (21) in place of Ay, ¢k one
finds after exclusion of the self-action terms:

_ ik-rj;
mt — €j €€ ’
oV Z Z !

k il

1
{1—C—Z{Vj~vl—

(R.vj)(f{.v,)]} o)

In coordinate representation (22) will read

€;€;
_ E gt
mt - 3 { [V] Vi

25 it
= (v r)(ve-r)]} (23)

This is a well-known Darwin interaction Lagrangian
which describes the post-Newtonian system of charged
particles.

It seems natural to consider the possibility of a rel-
ativistic generalization of Lagrangian (22) when the
weakly relativistic condition v < ¢ does not apply. One
can proceed from formula (12) after rewriting it in the
form

1
Lint = AV Zk: (Hy H_x — Ex-E_x) . (24)

For the purpose of generalization one can use in (24)
the quasistatic solutions of the field equations instead of
static ones. The quasistatic fields, 1. e. fields of uniformly
moving charges, are given by formulae [4]

4 -k k-
Ek_ FZZ eje —zkr +V]( V])/

85

bl

4me oo kxvs
Hy = — E eje_lk i ,
ck? & S5
J

s;=1—(k-v;)?/c?.

Upon using these expressions in (24) one obtains

_ ik-rj;
Ling = E E €j€re 7
2v J

il

r- s v -t

1 -
X [1—6—2

vyt (25)

The sum Lo + Lin: (Lo being expressed by (5)) can be
treated as the model Lagrangian that approximately de-
scribes the relativistic system of charged particles at any
velocities. A similar Lagrangian was previously found
in [5] basing on formula (11) and is different from expres-
sion (25). This is explained by the following. The exact
direct interaction Lagrangian is obtained after substitut-
ing full solutions of the field equations into (11) or (12)
and is nonlocal. These nonlocal Lagrangians found from
either (11) or (12) are equivalent up to a total derivative.
On the other hand, inserting the quasistatic fields results
in local expression. The same can be achieved by neglect-
ing higher derivative terms (¥ and higher) in the higher
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derivative expansion of the nonlocal Lagrangian. After
excluding higher derivatives one gets a different outcome
from formulae (11) and (12). Moreover, one can generate
infinite number of approximate Lagrangians like (25) by
inserting potentials in a certain gauge into (11) and ex-
cluding higher derivatives. Nevertheless, it can be shown
that these expressions are valid in first approximation
by the coupling constant e? and are equivalent in this
approximation.

Cosider the nonlocal Lagrangian which describes the
system of charged particles after field degrees of freedom
having been excluded. This Lagrangian can be written
as higher derivative expansion (which was first done by

Kerner [7]):

L=1Lo+e* (L1 + La), (26)

where Lg is given by (5), Ly is the part of interaction
Lagrangian that depends on particle positions and veloc-
ities only, Lo contains higher derivative terms. It turns
out that Lo can always be written as

Ly=) ¥ &, (27)

J

where ®; is a function of particle coordinates, velocities
and higher derivatives. This term then can be excluded
from Lagrangian in the first order by e? on applying cer-
tain coordinate transformation (see [8] and references
therein for a detailed discussion). Namely, let us make
the following coordinate transformation:

r; —r; + 62X]’ . (28)

Upon expanding by e? (26) will read

OLo
_ 2 .
L=~Lo+e L1+Zj:a—vj'xy
+ ij.cbj +0(eh) . (29)
j

This can be rewritten after the total derivative having
been dropped:

d (AL
— 2 ,
L=Lo+e Ll—z dt<avj).xj

J

+ > i@ | +O() (30)

J
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Omne can now choose X; to satisfy the condition

d [0Lg ..
{0 X =B 1
dt <3Vj) j =T ®5, (31)
that 1s
m; vi(vj - X;)
,/l—vf/czl ! Cz(l_vf/cz) ! (52)
from where
1—wv?/c2
J '
Xp= e - Y] o)

m;

Thus, after making transformation (28) with X; of (33)
the Lagrangian (26) will read

L=1Lo+e’Ly +0(e?) (34)

that is, higher derivative terms can be omitted in the
first order by e2.

Consider now L’ being another nonlocal Lagrangian
obtained as described above. Obviously, L and L’ differ
by the total derivative of a function depending on coor-
dinates and generally derivatives of any order of the time
coordinates:

L' =Lo+e* (L} +15) (35)

d d"r
. 2
L=IL+e —th (r, —dt”) , (36)

L} and LY having the same sense as in (26). It is easy
to see that the local part of Lagrangian (26) L =
Lo+e2L is equivalent up to the total derivative e2d F'/dt
to the following expression

Lo+e* (L) —L3%) ,

where L% contains higher derivatives from e2dF/dt.
On applying the corresponding coordinate transforma-
tion (28) the latter formula reads

Lo+ el +0(e*) = Lj,. + O(e?) .
Therefore, Lagrangians Li,. and L{ . can be regarded
as equivalent in the first approximation by the coupling
constant e?.
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IV. HAMILTONIAN FUNCTION

Now we are going to make the similar calculations in
canonical variables. Although a vector potential is still
described by expressions (19), (20), particle velocities v;
in (20) have to be reformulated in terms of conjugate
momenta according to (15). So we obtain a complicated
nonlinear equation for Ag(t). In order to solve it some
simplifications need to be applied.

1. Linearization. Let us expand £(7) in (15) into Tay-
lor series by the powers of charge value. In the linear
approximation we will have:

2

CZP, ces cp;
vi= 2 = =LA@ - 5 (A@) b | (37)
J J J
5? = m?c4 + czp§ . (38)

The last term of (37) can be averaged by momentum
orientations writing p;p}’ = %p?éw (v =1[2,y,2], 0
is Kronecker delta). Representing A(r;) by its Fourier
expansion one can see that the transversal current (20)

will read

)

J

X % {Aq—k (k.Aq)} cila—k)r;
q
=i - i) . (39)

Upon inserting this into equation for Ak one finds the

vector potential as a function of particle coordinates and
momenta. We will use the simplest static expression (21).
Then the equation for Ak will be the following:

47 7. .
KAk = — [i” +5(A)] . (40)

It is also necessary to linearize the function H. On ex-
panding (17) by the powers of e; it will read

1 S c
H= ZEj + szejelk'rj (Sﬁk - —(p;- Ak))
i P €
+ 0(6?) . (41)

Note that quadratic in e; terms in (17) are reciprocally
cancelled.
2. One may apply the random phase approximation

which means that the only term considered in jf{l)(A)
is the one with q = k. It is easy to see now that

jil) = x? Ay, where

4me? c?p?
7= Ll1-—L] . 42
g ZJ: Ve; ( 3e (42)

So the vector potential in canonical variables in the static
case 1s given by

dme

Ax= 55 Z—j e~ (py—k(k-py)) - (43)
J

To obtain the Hamiltonian function of the system of
directly interacting particles it 18 now enough to apply
expressions (18), (43) in (41) and exclude divergent self-
energy terms. The result can be written as

1 C R loc, 1ur
H=) ej+5> (Hi+Hp)+3 <§Hjj+§Hjj—Uj ) (44)
J J#l J
where
1 dmese;
C _ jel ikr;
Hjl = V k—ze ! (45)
k
being the Coulomb interaction energy,
1 drese; o ¢ R R

HR = —— 7fzk~rjz_[ i) — (kpy) (k- 46
Jt V ek + 2 ciel (p; -pi) — (k-pj)(k-pr) (46)

is the energy of relativistic interactions. U; is the self-energy of a charged particle. In the considered approximation

371



L. F. BLAZHYJEVSKYJ, B. V. BUDNYJ, Yu. S. KRYNYTSKYJ

it is determined by the formula:

1 Ae? c? R
U; = o Z kzj [1 T2 (P? — (k- Py)z)] (47)
k J
It is easy to see that
1, R 2mesc? 1 1 . 5 , D3
5 (Hij + Hj3) = Uj = 2V Zk: (R [p] (k- pj)7| = 33¢; &2 (48)

Therefore, the last sum of (44) is nonzero. So the self-
energy exclusion in Hamiltonian variables is no longer
reduced to the trivial neglect of j = [ terms. Since H]Rj
depends on the s parameter it is affected by the number
of particles in the system. Each particle’s self-energy at
the same time must not depend on their total amount.
This is expression (48) which determines the difference
between those energies. After joining this contribution
and the first term in (44) we can write:

L1
=S S gy w
J J#
where
c’p?
Hf =¢j+ g%e? 623 ’ (50)
J
and Hﬁ, Hﬁ are expressed by formulae (45), (46).

V. DISCUSSION

Formula (49) can be regarded as relativistic general-
1zation of the weakly relativistic Hamiltonian. It 1s com-
plicated by the “screening radius” »~' dependence on
momenta of all particles. In applications, however, one
can replace s»? by a certain mean value using for ex-
ample the free particles distribution function. Then s«
malkes sense of some macroscopic parameter. Performing
the sum over k in (46) one finds that

2 Mo
ejec” PPy

HR = _ D, (seri) | 51
gl v £iel 2 (%I'Jl) (51)
where
q);w(x) = (6W - i’ui’l/) e”
b (G — B [ e = L (52)
w Sy z 2 x?)
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As one can see, there is the term p;p;’ (0w — Puty) /r?l in
H;} in addition to the terms with the screening exponent.
This term which is typical for dipole interaction dissa-
pears after averaging by r;; directions, i. e. the effective

relativistic interaction is screened on average only.

Let us make some notes on the applied approxima-
tions. Lagrangian and Hamiltonian functions obtained
in previous sections are valid in the first approximation
by the coupling constant, which allows the exclusion of
higher derivatives from the theory. From quantum elec-
trodynamics it is known that radiation effects have a
higher order of e? than elastic scattering, so in the same
approximation one can neglect self-energy terms as well.
This approximation is expected to be acceptable, for ex-
ample, for optically thin plasma and breaks in the region
T > mc?, where radiation effects cannot be omitted. It
is necessary to note that there are other ways of dealing
whith complications due to retarded electromagnetic in-
teraction, one of which is introducing grassman valued
particle charges [9,10].

One may ask whether it is correct in the first ap-
proximation by e? to have the screening denominator
dependent on the coupling constant. In this connection
it 1s necessary to clarify that approximation by the cou-
pling constant applies here to the direct interaction be-
tween two particles. The statistical many-particle ef-
fect of screening must be concidered in order to avoid
divergencies due to a long range character of the in-
teraction (see, e. g., [11-13]). An indirect accounting
of many-particle interactions results in relativistic two-
particle interaction screening and the free particle energy
renormalization in Hamiltonian function. Indeed equa-
tion (40) can be solved by successive approximations
taking jf{l)(A) as perturbation. It is clear that after in-
serting the solution found by such a method into (44)
one obtains series for the relativistic interaction. More-
over, the n-th series member will contain n+ 1 sums over
particle indices, that is, the relativistic interaction has a
many-particle character [14]. These many-particle inter-
actions can be replaced by effective pair interaction in
the random phase approximation when only interactions
with the same transmitted momentum are considered.
This results in the geometric progression which leads to
the screening denominator in (46). Relativistic interac-
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tions screening is a typical property of statistical sys-
tems. Classical and quantum mechanical problems usu-
ally imply the particle number N to be small. Moreover,
N and V are not connected in any way. That is why

1
Ze,‘f.el -5

TR J#l

o= Zaj

In a weakly relativistic approximation one obtains from
the last formula familiar Darwin Hamiltonian. In statis-
tical mechanics one has to perform the thermodynamic
limit N — oo, V. — oo, N/V = const so »? # 0. Evi-
dently, the calculation of macroscopic properties has to
be based on the Hamiltonian (49) or its weakly relativis-
tic approximation. In the weakly relativistic approxima-
tion obtained relations are significantly simplified. If that
is the case then

2 2/ 2 2
o~ E dmei [mjc” = s,
J

So the one-particle Hamiltonian (50) can be represented
in the form

2 4

. 9 D D
Hj =mjc” + 277‘1% — Smécz , (54)

J J
. ) Qegzw 55
m] = m] - 3mj62 ; ( )

cjerc? [,

2 — 0 when V — oo and expression (49) is significantly
simplified. Since @, (x) —()J (Opw + 2,2,) /2 1t is easy
T

to make sertain that Hamiltonian will read

“pr+ (v py) (- pr))
26j61 ’

(53)

and it is enough to replace the particle energy ¢; in (46)
by the rest energy. Such an approximate weakly rela-
tivistic Hamiltonian was obtained by one of the authors
in [15] using the Legendre transformation. The same re-
lations were found in [16] by means of canonical Bogoli-
ubov’s u—v-transformation. Similar results can also be
received after taking into account the spins of particles
and for the system of neutral atoms [13]. Basing on the
field theory a weakly relativistic Hamiltonian function
with the screened interaction of currents was obtained
in [17] as well (however, the relativistic contributions re-
sponsible for the mass renormalization of (54) were not
taken into account). A weakly relativistic approximation
of Hamiltonian (49) was constructed in [18] resting on
the field approach. The field variables exclusion method
used in [18] is different from that of [17]. The screening
effect in the nonrelativistic magnetic interaction Hamil-
tonian was considered in [6,19] with some applications
having been discussed. It is worth mentioning that the
screening of magnetic interactions in the Hamiltonian of
the system of charged particles for the first time was
pointed out by Bohm and Pines in [20].
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®YHKIIIL JIATPAHXXA U TAMIJIbTOHA PEJISITUBICTCHKOI CUCTEMMU
SAPAINKEHNX YACTUHOK

JI. ®. Braxunescokuii, b. B. Bygauit, 10. C. Kpununpkmit
JIveiecorulti naytonarvruti ynicepcumem iment leana Ppanxa, xagdedpa meopemunror Pizuxuy,
eyn. Hpazomanosa, 12, Jlveis, 79005, Vipaina

Posrnanyro penarusicrchke y3arasbHeHHs GyHKIE Jlarpamka it [amiibroHa ojid KJIacHIHOl CUCTEMH 3a-
paAmKenrx dactuHoK. OTpUMaHO JIOKAJILHUM BUpa3 [Jid JlarpaHKisHa B MepuioMy HabJIMKeHHI 3a KOHCTAHTOIO
Bsaemomii e?. [lokasano, mo melf pesymbTar HeomHosHadHmi. s HeomHOsHAYHICTD, OOHAK, He IPOSBIACTLCA B
po3smidaayToMy HabsmKeHHl. [licjia 3acTocyBaHHA TOJATKOBUX HabAMKeHb 3HaWOEHO PeaATHBICTCHKY (pDYHKIIIO
laminbTOHA 3 €KPAHOBAHOIO B3aEMOJIIETO.
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