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A relativisti
 generalization of Lagrangian and Hamiltonian fun
tions for the 
lassi
al system

of 
harged parti
les is 
onsidered. Lo
al Lagrangian expression in the �rst approximation by the


oupling 
onstant e

2

is obtained. This result is shown to be ambiguous. However, this ambiguity does

not a�e
t the 
onsidered approximation. Relativisti
 Hamiltonian fun
tion with s
reened intera
tion

is found on applying some additional approximations.
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I. INTRODUCTION

It is well known that a 
omplete des
ription of rela-

tivisti
 systems of intera
ting parti
les rests upon �eld

theories. However, relativisti
 e�e
ts are 
onsidered to be

small in many appli
ations. If that is the 
ase, one 
an re-

stri
t oneself to the post-Newtonian (or weakly relativis-

ti
) approximation, whi
h implies us taking into a

ount


orre
tions of order 


�2

only (
 is the speed of light in

va
uum). The �eld degrees of freedom do not a�e
t this

approximation, therefore the state of the system 
an be

des
ribed by parti
le variables only. This allows to de-

velop the theory resting on Lagrangian (or Hamiltonian)

fun
tion of the system of parti
les as in the nonrelativis-

ti
 
ase. Well known examples are Darwin [1℄, Einstein{

Infeld{Ho�man [2℄ and Kennedy [3℄ Lagrangians whi
h

des
ribe 
harged, gravitating and neutral parti
les, re-

spe
tively.

The post-Newtonian approximation is appli
able when

parti
le velo
ities are 
onsiderably smaller than the

speed of light. In the present work this 
ondition is not

mandatory. At the same time, the radiation e�e
ts are

negle
ted. An example of the system in whi
h this 
an

be realized is the opti
ally thin relativisti
 plasma.

The paper is organized as follows. Se
tion II gives

some 
onsiderations on the a
tion integral of the sys-

tem of 
harged parti
les with dire
t intera
tion as well

as expressions for the a
tion in Lagrangian and 
anoni-


al variables. In Se
tion III relativisti
 generalization of

Lagrangian fun
tion of the system of 
harged parti
les

is found using quasistati
 approximation whi
h is equiv-

alent to the �rst order approximation by the 
oupling


onstant. This approximation gives the lo
al Lagrangian

expression whi
h is ambiguous. The said ambiguity does

not a�e
t the 
onsidered approximation and various ex-

pressions for Lagrangian 
an therefore be 
onsidered as

equivalent in �rst approximation by e

2

. In order to ob-

tain a Hamiltonian of the system of 
harged parti
les

some approximations in addition to the �rst approxima-

tion by the 
oupling 
onstant are applied in Se
tion IV.

The random phase approximation 
hanges many-parti
le

intera
tions to an e�e
tive s
reened pair intera
tion. The

dis
ussion of the Hamiltonian fun
tion and approxima-

tions validity is presented in the last se
tion.

II. ACTION INTEGRAL

Let us 
onsider a relativisti
 system of N 
harged par-

ti
les that is lo
alized in a volume V . The 
omplete a
-

tion integral of su
h a system is a sum of the a
tion S

f

of the �eld produ
ed by 
harges and a
tion S

p

of 
harges


oupled to the �eld, that is:

S = S

p

+ S

f

: (1)

In Lagrangian variables these are

S

f

=

1

8�

Z

dt

Z

dr

"

�

�r'�

1




�A

�t

�

2

� (r�A)

2

#

�

1

8�

Z

dt

Z

dr

�

E

2

�H

2

�

; (2)

S

p

= S

0

+ S

int

=

Z

dt L

0

+

Z

dt

Z

dr

�

1




j �A� �'

�

; (3)

where A ; ' and E ;H are ele
tromagneti
 potentials and �elds; � and j are 
harge and 
urrent densities, respe
tively:
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�(r; t) =

X

j

e

j

Æ(r� r

j

(t)); j(r; t) =

X

j

e

j

v

j

(t)Æ(r� r

j

(t)): (4)

L

0

is the free parti
les relativisti
 Lagrangian:

L

0

= �

X

j

m

j




2

�

1� v

2

j

=


2

�

1=2

: (5)

It is 
onvenient to modify the �eld portion of the a
tion. If one integrates by parts in (2), then S

f


an be represented

in the form

S

f

=

1

8�

Z

dt

Z

dr

�

�'

�

�'+

1




�

�t

r �A

�

+ A �

�

�A�

1




2

�

2

A

�t

2

�r

�

r �A +

1




�'

�t

���

: (6)

The representations (2) and (6) are equivalent. Indeed,

one 
an easily make 
ertain that from the variational

prin
iple Æ(S

f

+ S

int

) = 0 where S

f

is determined either

by (2) or (6) one 
an obtain the �eld equations

�A�

1




2

�

2

A

�t

2

�r

�

r �A+

1




�'

�t

�

= �

4�




j ; (7)

�'+

1




�

�t

r �A = �4�� : (8)

Field variables are to be repla
ed by the solutions of �eld

equations (7) in order to pro
eed to the theory with di-

re
t intera
tion between parti
les. Then from (6), (7) one

gets

S

f

=

1

2

Z

dt

Z

dr

�

�' �

1




j �A

�

; (9)

that is S

int

= �2S

f

when the �eld degrees of freedom are

frozen out. This equality was also abtained, for example,

in [4{6℄ as an approximate result, so it is worth empha-

sizing that (9) is an exa
t relation in the theory of dire
t

interparti
le a
tion.

From (1), (3), (9) the a
tion integral of a relativisti


system of 
harged parti
les within the framework of di-

re
t intera
tion 
an be written as

S =

Z

dt (L

0

+ L

int

) ; (10)

where we have introdu
ed the notation

L

int

=

1

2

Z

dr

�

1




j �A� �'

�

(11)

=

1

2

X

j

e

j

�

1




v

j

(t) �A(r

j

(t); t)� '(r

j

(t); t)

�

:

One 
an see from the stated above that L

int


an be ex-

pressed via �elds as well:

L

int

=

1

8�

Z

dr

�

H

2

�E

2

�

: (12)

It is 
lear that the �eld values in (10){(12) are no longer

independent variables.

Let us 
onsider the same in 
anoni
al variables. The

a
tion integral of parti
les in the external �eld is then

des
ribed by the formulae

S

p

=

Z

dt

X

j

fp

j

� v

j

� ["(�

j

) + e

j

'(r

j

; t)℄g ; (13)

"(�

j

) =

�

m

2

j




4

+ 


2

�

2

j

�

1=2

;

�

j

= p

j

�

e

j




A(r

j

; t) : (14)

The �eld part of the a
tion is still determined by for-

mula (9) with parti
le velo
ities v

j

(in formula (4) for

the 
urrent density j) expressed via 
onjugate momenta,

that is

v

j

=




2

�

j

"(�

j

)

: (15)

Thus, integral (10) in 
anoni
al variables will read

S =

Z

dt

�

X

j

p

j

� v

j

�H

�

; (16)

where we have introdu
ed the notation

H =

X

j

�

"(�

j

) +


e

j

2"(�

j

)

�

j

� A(r

j

(t); t) +

1

2

e

j

'(r

j

(t); t)

�

: (17)
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Expressions (10), (16) will make sense of the a
tion in-

tegral des
ribing the system of 
harged parti
les with

dire
t intera
tion if one inserts the solutions of poten-

tial equations into (11), (17). Generally the a
tion found

in this way will be nonlo
al, i. e., S(t

0

; t) 6= S(t

0

; t

0

) +

S(t

0

; t), (t

0

< t

0

< t). The lo
al a
tion 
an be obtained

(and therefore (11), (17) 
an be identi�ed with usual La-

grangian or Hamiltonian fun
tions) approximately only.

III. LAGRANGIAN FUNCTION

In order to obtain the Lagrangian let us 
onsider po-

tentials ' and A. It is 
onvenient to use the Coulomb

gauge r �A = 0 and work with Fourier transforms:

�(r; t) =

1

V

X

k

�

k

(t)e

ik�r

;

�

k

(t) =

Z

dr�(r; t)e

�ik�r

:

The fourier transform '

k

(t) of the s
alar potential is then

de�ned by the formula

'

k

(t) =

4�

k

2

�

k

(t) =

4�

k

2

X

j

e

j

e

�ik�r

j

: (18)

The ve
tor potential will satisfy the equation

�

k

2

+

1




2

d

2

dt

2

�

A

k

(t) =

4�




j

?

k

(t) ; (19)

where

j

?

k

(t) =

X

j

e

j

e

�ik�r

j

�

v

j

�

^

k (

^

k � v

j

)

�

(20)

is the transversal 
urrent (hat over ve
tor denotes a uni-

tary ve
tor both here and in what follows). One 
an re-

move the se
ond time derivative from (19) in the stati


approximation. Then

A

k

(t) =

4�


k

2

j

?

k

(t) : (21)

Turning to Fourier representation in (11) and inserting

the stati
 potentials (18), (21) in pla
e of A

k

; '

k

one

�nds after ex
lusion of the self-a
tion terms:

L

int

= �

1

2V

X

k

4�

k

2

X

j 6=l

e

j

e

l

e

ik�r

jl

�

�

1�

1




2

h

v

j

� v

l

� (

^

k � v

j

)(

^

k � v

l

)

i

�

: (22)

In 
oordinate representation (22) will read

L

int

= �

1

2

X

j 6=l

e

j

e

l

r

jl

�

1�

1

2


2

[v

j

� v

l

� (v

j

�
^
r

jl

)(v

l

�
^
r

jl

)℄g : (23)

This is a well-known Darwin intera
tion Lagrangian

whi
h des
ribes the post-Newtonian system of 
harged

parti
les.

It seems natural to 
onsider the possibility of a rel-

ativisti
 generalization of Lagrangian (22) when the

weakly relativisti
 
ondition v � 
 does not apply. One


an pro
eed from formula (12) after rewriting it in the

form

L

int

=

1

8�V

X

k

(H

k

�H

�k

� E

k

�E

�k

) : (24)

For the purpose of generalization one 
an use in (24)

the quasistati
 solutions of the �eld equations instead of

stati
 ones. The quasistati
 �elds, i. e. �elds of uniformly

moving 
harges, are given by formulae [4℄

E

k

=

4�i

k

2

X

j

e

j

e

�ik�r

j

�k+ v

j

(k � v

j

)=


2

s

j

;

H

k

=

4�i


k

2

X

j

e

j

e

�ik�r

j

k� v

j

s

j

;

s

j

= 1� (

^

k � v

j

)

2

=


2

:

Upon using these expressions in (24) one obtains

L

int

= �

1

2V

X

k

4�

k

2

X

j 6=l

e

j

e

l

e

ik�r

jl

�

�

1�

1




2

s

j

s

l

h

v

j

� v

l

� (

^

k � v

j

)(

^

k � v

l

)

i

�

�

1�

1




2

(

^

k � v

j

)(

^

k � v

l

)

��

: (25)

The sum L

0

+ L

int

(L

0

being expressed by (5)) 
an be

treated as the model Lagrangian that approximately de-

s
ribes the relativisti
 system of 
harged parti
les at any

velo
ities. A similar Lagrangian was previously found

in [5℄ basing on formula (11) and is di�erent from expres-

sion (25). This is explained by the following. The exa
t

dire
t intera
tion Lagrangian is obtained after substitut-

ing full solutions of the �eld equations into (11) or (12)

and is nonlo
al. These nonlo
al Lagrangians found from

either (11) or (12) are equivalent up to a total derivative.

On the other hand, inserting the quasistati
 �elds results

in lo
al expression. The same 
an be a
hieved by negle
t-

ing higher derivative terms (
�
r and higher) in the higher
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derivative expansion of the nonlo
al Lagrangian. After

ex
luding higher derivatives one gets a di�erent out
ome

from formulae (11) and (12). Moreover, one 
an generate

in�nite number of approximate Lagrangians like (25) by

inserting potentials in a 
ertain gauge into (11) and ex-


luding higher derivatives. Nevertheless, it 
an be shown

that these expressions are valid in �rst approximation

by the 
oupling 
onstant e

2

and are equivalent in this

approximation.

Cosider the nonlo
al Lagrangian whi
h des
ribes the

system of 
harged parti
les after �eld degrees of freedom

having been ex
luded. This Lagrangian 
an be written

as higher derivative expansion (whi
h was �rst done by

Kerner [7℄):

L = L

0

+ e

2

(L

1

+ L

2

) ; (26)

where L

0

is given by (5), L

1

is the part of intera
tion

Lagrangian that depends on parti
le positions and velo
-

ities only, L

2


ontains higher derivative terms. It turns

out that L

2


an always be written as

L

2

=

X

j

�
r

j

��

j

; (27)

where �

j

is a fun
tion of parti
le 
oordinates, velo
ities

and higher derivatives. This term then 
an be ex
luded

from Lagrangian in the �rst order by e

2

on applying 
er-

tain 
oordinate transformation (see [8℄ and referen
es

therein for a detailed dis
ussion). Namely, let us make

the following 
oordinate transformation:

r

j

! r

j

+ e

2

X

j

: (28)

Upon expanding by e

2

(26) will read

L = L

0

+ e

2

0

�

L

1

+

X

j

�L

0

�v

j

�

_

X

j

+

X

j

�
r

j

��

j

1

A

+O(e

4

) : (29)

This 
an be rewritten after the total derivative having

been dropped:

L = L

0

+ e

2

0

�

L

1

�

X

j

d

dt

�

�L

0

�v

j

�

�X

j

+

X

j

�
r

j

��

j

1

A

+ O(e

4

) : (30)

One 
an now 
hoose X

j

to satisfy the 
ondition

d

dt

�

�L

0

�v

j

�

�X

j

=
�
r

j

��

j

; (31)

that is

m

j

q

1� v

2

j

=


2

"

X

j

+

v

j

(v

j

�X

j

)




2

(1� v

2

j

=


2

)

#

= �

j

; (32)

from where

X

j

=

q

1� v

2

j

=


2

m

j

h

�

j

�

v

j




2

(�

j

� v

j

)

i

: (33)

Thus, after making transformation (28) with X

j

of (33)

the Lagrangian (26) will read

L = L

0

+ e

2

L

1

+O(e

4

) ; (34)

that is, higher derivative terms 
an be omitted in the

�rst order by e

2

.

Consider now L

0

being another nonlo
al Lagrangian

obtained as des
ribed above. Obviously, L and L

0

di�er

by the total derivative of a fun
tion depending on 
oor-

dinates and generally derivatives of any order of the time


oordinates:

L

0

= L

0

+ e

2

(L

0

1

+ L

0

2

) ; (35)

L = L

0

+ e

2

d

dt

F

�

r;

d

n

r

dt

n

�

; (36)

L

0

1

and L

0

2

having the same sense as in (26). It is easy

to see that the lo
al part of Lagrangian (26) L

lo


�

L

0

+e

2

L

1

is equivalent up to the total derivative e

2

dF=dt

to the following expression

L

0

+ e

2

(L

0

1

� L

�

2

) ;

where L

�

2


ontains higher derivatives from e

2

dF=dt.

On applying the 
orresponding 
oordinate transforma-

tion (28) the latter formula reads

L

0

+ e

2

L

0

1

+O(e

4

) � L

0

lo


+ O(e

4

) :

Therefore, Lagrangians L

lo


and L

0

lo



an be regarded

as equivalent in the �rst approximation by the 
oupling


onstant e

2

.
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IV. HAMILTONIAN FUNCTION

Now we are going to make the similar 
al
ulations in


anoni
al variables. Although a ve
tor potential is still

des
ribed by expressions (19), (20), parti
le velo
ities v

j

in (20) have to be reformulated in terms of 
onjugate

momenta a

ording to (15). So we obtain a 
ompli
ated

nonlinear equation for A

k

(t). In order to solve it some

simpli�
ations need to be applied.

1. Linearization. Let us expand "(�) in (15) into Tay-

lor series by the powers of 
harge value. In the linear

approximation we will have:

v

j

=




2

p

j

"

j

�


e

j

"

j

"

A(r

j

)�




2

p

j

"

2

j

(A(r

j

) � p

j

)

#

; (37)

"

2

j

� m

2

j




4

+ 


2

p

2

j

: (38)

The last term of (37) 
an be averaged by momentum

orientations writing p

�

j

p

�

j

=

1

3

p

2

j

Æ

��

(�; � = [x; y; z℄ ; Æ

��

is Krone
ker delta). Representing A(r

j

) by its Fourier

expansion one 
an see that the transversal 
urrent (20)

will read

j

?

k

=

X

j




2

e

j

"

j

e

�ik�r

j

h

p

j

�

^

k

�

^

k � p

j

�i

�

X

j


e

2

j

"

j

 

1�




2

p

2

j

3"

2

j

!

�

1

V

X

q

h

A

q

�

^

k

�

^

k �A

q

�i

e

i(q�k)�r

j

� j

(0)

k

� j

(1)

k

(A) : (39)

Upon inserting this into equation for A

k

one �nds the

ve
tor potential as a fun
tion of parti
le 
oordinates and

momenta.We will use the simplest stati
 expression (21).

Then the equation for A

k

will be the following:

k

2

A

k

=

4�




h

j

(0)

k

+ j

(1)

k

(A)

i

: (40)

It is also ne
essary to linearize the fun
tion H. On ex-

panding (17) by the powers of e

j

it will read

H =

X

j

"

j

+

1

2V

X

k

X

j

e

j

e

ik�r

j

�

'

k

�




"

j

(p

j

�A

k

)

�

+ O(e

3

j

) : (41)

Note that quadrati
 in e

j

terms in (17) are re
ipro
ally


an
elled.

2. One may apply the random phase approximation

whi
h means that the only term 
onsidered in j

(1)

k

(A)

is the one with q = k. It is easy to see now that

j

(1)

k

= {

2

A

k

, where

{

2

=

X

j

4�e

2

j

V "

j

 

1�




2

p

2

j

3 "

2

j

!

: (42)

So the ve
tor potential in 
anoni
al variables in the stati



ase is given by

A

k

=

4�


k

2

+ {

2

X

j

e

j

"

j

e

�ik�r

j

�

p

j

�

^

k (

^

k � p

j

)

�

: (43)

To obtain the Hamiltonian fun
tion of the system of

dire
tly intera
ting parti
les it is now enough to apply

expressions (18), (43) in (41) and ex
lude divergent self-

energy terms. The result 
an be written as

H =

X

j

"

j

+

1

2

X

j 6=l

�

H

C

jl

+H

R

jl

�

+

X

j

�

1

2

H

C

jj

+

1

2

H

R

jj

� U

j

�

; (44)

where

H

C

jl

=

1

V

X

k

4�e

j

e

l

k

2

e

ik�r

jl

(45)

being the Coulomb intera
tion energy,

H

R

jl

= �

1

V

X

k

4�e

j

e

l

k

2

+ {

2

e

ik�r

jl




2

"

j

"

l

h

(p

j

� p

l

) � (

^

k � p

j

)(

^

k � p

l

)

i

(46)

is the energy of relativisti
 intera
tions. U

j

is the self-energy of a 
harged parti
le. In the 
onsidered approximation
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it is determined by the formula:

U

j

=

1

2V

X

k

4�e

2

j

k

2

"

1�




2

"

2

j

�

p

2

j

� (

^

k � p

j

)

2

�

#

: (47)

It is easy to see that

1

2

�

H

C

jj

+H

R

jj

�

� U

j

=

2�e

2

j




2

"

2

j

V

X

k

�

1

k

2

�

1

k

2

+ {

2

�

h

p

2

j

� (

^

k � p

j

)

2

i

=

1

3

{e

2

j




2

p

2

j

"

2

j

: (48)

Therefore, the last sum of (44) is nonzero. So the self-

energy ex
lusion in Hamiltonian variables is no longer

redu
ed to the trivial negle
t of j = l terms. Sin
e H

R

jj

depends on the { parameter it is a�e
ted by the number

of parti
les in the system. Ea
h parti
le's self-energy at

the same time must not depend on their total amount.

This is expression (48) whi
h determines the di�eren
e

between those energies. After joining this 
ontribution

and the �rst term in (44) we 
an write:

H =

X

j

H

�

j

+

1

2

X

j 6=l

�

H

C

jl

+H

R

jl

�

; (49)

where

H

�

j

= "

j

+

1

3

{e

2

j




2

p

2

j

"

2

j

; (50)

and H

C

jl

, H

R

jl

are expressed by formulae (45), (46).

V. DISCUSSION

Formula (49) 
an be regarded as relativisti
 general-

ization of the weakly relativisti
 Hamiltonian. It is 
om-

pli
ated by the \s
reening radius" {

�1

dependen
e on

momenta of all parti
les. In appli
ations, however, one


an repla
e {

2

by a 
ertain mean value using for ex-

ample the free parti
les distribution fun
tion. Then {

makes sense of some ma
ros
opi
 parameter. Performing

the sum over k in (46) one �nds that

H

R

jl

= �

e

j

e

l




2

r

jl

p

�

j

p

�

l

"

j

"

l

�

��

({r

jl

) ; (51)

where

�

��

(x) = (Æ

��

� x̂

�

x̂

�

) e

�x

+ (Æ

��

� 3x̂

�

x̂

�

)

�

e

�x

x

+

e

�x

x

2

�

1

x

2

�

: (52)

As one 
an see, there is the term p

�

j

p

�

l

(Æ

��

� r̂

�

r̂

�

) =r

3

jl

in

H

R

jl

in addition to the terms with the s
reening exponent.

This term whi
h is typi
al for dipole intera
tion dissa-

pears after averaging by r

jl

dire
tions, i. e. the e�e
tive

relativisti
 intera
tion is s
reened on average only.

Let us make some notes on the applied approxima-

tions. Lagrangian and Hamiltonian fun
tions obtained

in previous se
tions are valid in the �rst approximation

by the 
oupling 
onstant, whi
h allows the ex
lusion of

higher derivatives from the theory. From quantum ele
-

trodynami
s it is known that radiation e�e
ts have a

higher order of e

2

than elasti
 s
attering, so in the same

approximation one 
an negle
t self-energy terms as well.

This approximation is expe
ted to be a

eptable, for ex-

ample, for opti
ally thin plasma and breaks in the region

T & m


2

, where radiation e�e
ts 
annot be omitted. It

is ne
essary to note that there are other ways of dealing

whith 
ompli
ations due to retarded ele
tromagneti
 in-

tera
tion, one of whi
h is introdu
ing grassman valued

parti
le 
harges [9,10℄.

One may ask whether it is 
orre
t in the �rst ap-

proximation by e

2

to have the s
reening denominator

dependent on the 
oupling 
onstant. In this 
onne
tion

it is ne
essary to 
larify that approximation by the 
ou-

pling 
onstant applies here to the dire
t intera
tion be-

tween two parti
les. The statisti
al many-parti
le ef-

fe
t of s
reening must be 
on
idered in order to avoid

divergen
ies due to a long range 
hara
ter of the in-

tera
tion (see, e. g., [11{13℄). An indire
t a

ounting

of many-parti
le intera
tions results in relativisti
 two-

parti
le intera
tion s
reening and the free parti
le energy

renormalization in Hamiltonian fun
tion. Indeed equa-

tion (40) 
an be solved by su

essive approximations

taking j

(1)

k

(A) as perturbation. It is 
lear that after in-

serting the solution found by su
h a method into (44)

one obtains series for the relativisti
 intera
tion. More-

over, the n-th series member will 
ontain n+1 sums over

parti
le indi
es, that is, the relativisti
 intera
tion has a

many-parti
le 
hara
ter [14℄. These many-parti
le inter-

a
tions 
an be repla
ed by e�e
tive pair intera
tion in

the random phase approximation when only intera
tions

with the same transmitted momentum are 
onsidered.

This results in the geometri
 progression whi
h leads to

the s
reening denominator in (46). Relativisti
 intera
-
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tions s
reening is a typi
al property of statisti
al sys-

tems. Classi
al and quantum me
hani
al problems usu-

ally imply the parti
le number N to be small. Moreover,

N and V are not 
onne
ted in any way. That is why

{ ! 0 when V !1 and expression (49) is signi�
antly

simpli�ed. Sin
e �

��

(x) �!

x!0

(Æ

��

+ x̂

�

x̂

�

) =2 it is easy

to make sertain that Hamiltonian will read

H =

X

j

"

j

+

1

2

X

j 6=l

e

j

e

l

r

jl

�

1

2

X

j 6=l

e

j

e

l

r

jl




2

[p

j

� p

l

+ (
^
r

jl

� p

j

)(
^
r

jl

� p

l

)℄

2"

j

"

l

: (53)

In a weakly relativisti
 approximation one obtains from

the last formula familiar Darwin Hamiltonian. In statis-

ti
al me
hani
s one has to perform the thermodynami


limit N ! 1, V ! 1, N=V = 
onst so {

2

6= 0. Evi-

dently, the 
al
ulation of ma
ros
opi
 properties has to

be based on the Hamiltonian (49) or its weakly relativis-

ti
 approximation. In the weakly relativisti
 approxima-

tion obtained relations are signi�
antly simpli�ed. If that

is the 
ase then

{

2

'

X

j

4�e

2

j

=m

j




2

� {

2

w

:

So the one-parti
le Hamiltonian (50) 
an be represented

in the form

H

�

j

= m

j




2

+

p

2

j

2m

�

j

�

p

4

j

8m

3

j




2

; (54)

m

�

j

= m

j

 

1�

2e

2

j

{

w

3m

j




2

!

; (55)

and it is enough to repla
e the parti
le energy "

j

in (46)

by the rest energy. Su
h an approximate weakly rela-

tivisti
 Hamiltonian was obtained by one of the authors

in [15℄ using the Legendre transformation. The same re-

lations were found in [16℄ by means of 
anoni
al Bogoli-

ubov's u{v-transformation. Similar results 
an also be

re
eived after taking into a

ount the spins of parti
les

and for the system of neutral atoms [13℄. Basing on the

�eld theory a weakly relativisti
 Hamiltonian fun
tion

with the s
reened intera
tion of 
urrents was obtained

in [17℄ as well (however, the relativisti
 
ontributions re-

sponsible for the mass renormalization of (54) were not

taken into a

ount). A weakly relativisti
 approximation

of Hamiltonian (49) was 
onstru
ted in [18℄ resting on

the �eld approa
h. The �eld variables ex
lusion method

used in [18℄ is di�erent from that of [17℄. The s
reening

e�e
t in the nonrelativisti
 magneti
 intera
tion Hamil-

tonian was 
onsidered in [6,19℄ with some appli
ations

having been dis
ussed. It is worth mentioning that the

s
reening of magneti
 intera
tions in the Hamiltonian of

the system of 
harged parti
les for the �rst time was

pointed out by Bohm and Pines in [20℄.
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FUNKC�Õ LA�RAN�A � GAM�L^TONA REL�TIV�STS^KOÕ SISTEMI

ZAR�D�ENIH QASTINOK

L. F. Bla�i
vs~ki�, B. V. Budni�, �. S. Krini
~ki�

L~v�vs~ki� na
�onal~ni� un�versitet �men� �vana Franka, kafedra teoretiqnoÝ f�ziki,

vul. Dragomanova, 12, L~v�v, 79005, UkraÝna

Rozgl�nuto rel�tiv�sts~ke uzagal~nenn� funk
�� La�ran�a � Gam�l~tona dl� klasiqnoÝ sistemi za-

r�d�enih qastinok. Otrimano lokal~ni� viraz dl� la�ran���na v perxomu nabli�enn� za konstanto�

vza
mod�Ý e

2

. Pokazano, wo 
e� rezul~tat neodnoznaqni�. C� neodnoznaqn�st~, odnak, ne pro�vl�
t~s� v

rozgl�nutomu nabli�enn�. P�sl� zastosuvann� dodatkovih nabli�en~ zna�deno rel�tiv�sts~ku funk
��

Gam�l~tona z ekranovano� vza
mod�
�.
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