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A relativisti generalization of Lagrangian and Hamiltonian funtions for the lassial system

of harged partiles is onsidered. Loal Lagrangian expression in the �rst approximation by the

oupling onstant e

2

is obtained. This result is shown to be ambiguous. However, this ambiguity does

not a�et the onsidered approximation. Relativisti Hamiltonian funtion with sreened interation

is found on applying some additional approximations.
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I. INTRODUCTION

It is well known that a omplete desription of rela-

tivisti systems of interating partiles rests upon �eld

theories. However, relativisti e�ets are onsidered to be

small in many appliations. If that is the ase, one an re-

strit oneself to the post-Newtonian (or weakly relativis-

ti) approximation, whih implies us taking into aount

orretions of order 

�2

only ( is the speed of light in

vauum). The �eld degrees of freedom do not a�et this

approximation, therefore the state of the system an be

desribed by partile variables only. This allows to de-

velop the theory resting on Lagrangian (or Hamiltonian)

funtion of the system of partiles as in the nonrelativis-

ti ase. Well known examples are Darwin [1℄, Einstein{

Infeld{Ho�man [2℄ and Kennedy [3℄ Lagrangians whih

desribe harged, gravitating and neutral partiles, re-

spetively.

The post-Newtonian approximation is appliable when

partile veloities are onsiderably smaller than the

speed of light. In the present work this ondition is not

mandatory. At the same time, the radiation e�ets are

negleted. An example of the system in whih this an

be realized is the optially thin relativisti plasma.

The paper is organized as follows. Setion II gives

some onsiderations on the ation integral of the sys-

tem of harged partiles with diret interation as well

as expressions for the ation in Lagrangian and anoni-

al variables. In Setion III relativisti generalization of

Lagrangian funtion of the system of harged partiles

is found using quasistati approximation whih is equiv-

alent to the �rst order approximation by the oupling

onstant. This approximation gives the loal Lagrangian

expression whih is ambiguous. The said ambiguity does

not a�et the onsidered approximation and various ex-

pressions for Lagrangian an therefore be onsidered as

equivalent in �rst approximation by e

2

. In order to ob-

tain a Hamiltonian of the system of harged partiles

some approximations in addition to the �rst approxima-

tion by the oupling onstant are applied in Setion IV.

The random phase approximation hanges many-partile

interations to an e�etive sreened pair interation. The

disussion of the Hamiltonian funtion and approxima-

tions validity is presented in the last setion.

II. ACTION INTEGRAL

Let us onsider a relativisti system of N harged par-

tiles that is loalized in a volume V . The omplete a-

tion integral of suh a system is a sum of the ation S

f

of the �eld produed by harges and ation S

p

of harges

oupled to the �eld, that is:

S = S

p

+ S

f

: (1)

In Lagrangian variables these are

S

f

=

1

8�

Z

dt

Z

dr

"

�

�r'�

1



�A

�t

�

2

� (r�A)

2

#

�

1

8�

Z

dt

Z

dr

�

E

2

�H

2

�

; (2)

S

p

= S

0

+ S

int

=

Z

dt L

0

+

Z

dt

Z

dr

�

1



j �A� �'

�

; (3)

where A ; ' and E ;H are eletromagneti potentials and �elds; � and j are harge and urrent densities, respetively:
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�(r; t) =

X

j

e

j

Æ(r� r

j

(t)); j(r; t) =

X

j

e

j

v

j

(t)Æ(r� r

j

(t)): (4)

L

0

is the free partiles relativisti Lagrangian:

L

0

= �

X

j

m

j



2

�

1� v

2

j

=

2

�

1=2

: (5)

It is onvenient to modify the �eld portion of the ation. If one integrates by parts in (2), then S

f

an be represented

in the form

S

f

=

1

8�

Z

dt

Z

dr

�

�'

�

�'+

1



�

�t

r �A

�

+ A �

�

�A�

1



2

�

2

A

�t

2

�r

�

r �A +

1



�'

�t

���

: (6)

The representations (2) and (6) are equivalent. Indeed,

one an easily make ertain that from the variational

priniple Æ(S

f

+ S

int

) = 0 where S

f

is determined either

by (2) or (6) one an obtain the �eld equations

�A�

1



2

�

2

A

�t

2

�r

�

r �A+

1



�'

�t

�

= �

4�



j ; (7)

�'+

1



�

�t

r �A = �4�� : (8)

Field variables are to be replaed by the solutions of �eld

equations (7) in order to proeed to the theory with di-

ret interation between partiles. Then from (6), (7) one

gets

S

f

=

1

2

Z

dt

Z

dr

�

�' �

1



j �A

�

; (9)

that is S

int

= �2S

f

when the �eld degrees of freedom are

frozen out. This equality was also abtained, for example,

in [4{6℄ as an approximate result, so it is worth empha-

sizing that (9) is an exat relation in the theory of diret

interpartile ation.

From (1), (3), (9) the ation integral of a relativisti

system of harged partiles within the framework of di-

ret interation an be written as

S =

Z

dt (L

0

+ L

int

) ; (10)

where we have introdued the notation

L

int

=

1

2

Z

dr

�

1



j �A� �'

�

(11)

=

1

2

X

j

e

j

�

1



v

j

(t) �A(r

j

(t); t)� '(r

j

(t); t)

�

:

One an see from the stated above that L

int

an be ex-

pressed via �elds as well:

L

int

=

1

8�

Z

dr

�

H

2

�E

2

�

: (12)

It is lear that the �eld values in (10){(12) are no longer

independent variables.

Let us onsider the same in anonial variables. The

ation integral of partiles in the external �eld is then

desribed by the formulae

S

p

=

Z

dt

X

j

fp

j

� v

j

� ["(�

j

) + e

j

'(r

j

; t)℄g ; (13)

"(�

j

) =

�

m

2

j



4

+ 

2

�

2

j

�

1=2

;

�

j

= p

j

�

e

j



A(r

j

; t) : (14)

The �eld part of the ation is still determined by for-

mula (9) with partile veloities v

j

(in formula (4) for

the urrent density j) expressed via onjugate momenta,

that is

v

j

=



2

�

j

"(�

j

)

: (15)

Thus, integral (10) in anonial variables will read

S =

Z

dt

�

X

j

p

j

� v

j

�H

�

; (16)

where we have introdued the notation

H =

X

j

�

"(�

j

) +

e

j

2"(�

j

)

�

j

� A(r

j

(t); t) +

1

2

e

j

'(r

j

(t); t)

�

: (17)
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Expressions (10), (16) will make sense of the ation in-

tegral desribing the system of harged partiles with

diret interation if one inserts the solutions of poten-

tial equations into (11), (17). Generally the ation found

in this way will be nonloal, i. e., S(t

0

; t) 6= S(t

0

; t

0

) +

S(t

0

; t), (t

0

< t

0

< t). The loal ation an be obtained

(and therefore (11), (17) an be identi�ed with usual La-

grangian or Hamiltonian funtions) approximately only.

III. LAGRANGIAN FUNCTION

In order to obtain the Lagrangian let us onsider po-

tentials ' and A. It is onvenient to use the Coulomb

gauge r �A = 0 and work with Fourier transforms:

�(r; t) =

1

V

X

k

�

k

(t)e

ik�r

;

�

k

(t) =

Z

dr�(r; t)e

�ik�r

:

The fourier transform '

k

(t) of the salar potential is then

de�ned by the formula

'

k

(t) =

4�

k

2

�

k

(t) =

4�

k

2

X

j

e

j

e

�ik�r

j

: (18)

The vetor potential will satisfy the equation

�

k

2

+

1



2

d

2

dt

2

�

A

k

(t) =

4�



j

?

k

(t) ; (19)

where

j

?

k

(t) =

X

j

e

j

e

�ik�r

j

�

v

j

�

^

k (

^

k � v

j

)

�

(20)

is the transversal urrent (hat over vetor denotes a uni-

tary vetor both here and in what follows). One an re-

move the seond time derivative from (19) in the stati

approximation. Then

A

k

(t) =

4�

k

2

j

?

k

(t) : (21)

Turning to Fourier representation in (11) and inserting

the stati potentials (18), (21) in plae of A

k

; '

k

one

�nds after exlusion of the self-ation terms:

L

int

= �

1

2V

X

k

4�

k

2

X

j 6=l

e

j

e

l

e

ik�r

jl

�

�

1�

1



2

h

v

j

� v

l

� (

^

k � v

j

)(

^

k � v

l

)

i

�

: (22)

In oordinate representation (22) will read

L

int

= �

1

2

X

j 6=l

e

j

e

l

r

jl

�

1�

1

2

2

[v

j

� v

l

� (v

j

�
^
r

jl

)(v

l

�
^
r

jl

)℄g : (23)

This is a well-known Darwin interation Lagrangian

whih desribes the post-Newtonian system of harged

partiles.

It seems natural to onsider the possibility of a rel-

ativisti generalization of Lagrangian (22) when the

weakly relativisti ondition v �  does not apply. One

an proeed from formula (12) after rewriting it in the

form

L

int

=

1

8�V

X

k

(H

k

�H

�k

� E

k

�E

�k

) : (24)

For the purpose of generalization one an use in (24)

the quasistati solutions of the �eld equations instead of

stati ones. The quasistati �elds, i. e. �elds of uniformly

moving harges, are given by formulae [4℄

E

k

=

4�i

k

2

X

j

e

j

e

�ik�r

j

�k+ v

j

(k � v

j

)=

2

s

j

;

H

k

=

4�i

k

2

X

j

e

j

e

�ik�r

j

k� v

j

s

j

;

s

j

= 1� (

^

k � v

j

)

2

=

2

:

Upon using these expressions in (24) one obtains

L

int

= �

1

2V

X

k

4�

k

2

X

j 6=l

e

j

e

l

e

ik�r

jl

�

�

1�

1



2

s

j

s

l

h

v

j

� v

l

� (

^

k � v

j

)(

^

k � v

l

)

i

�

�

1�

1



2

(

^

k � v

j

)(

^

k � v

l

)

��

: (25)

The sum L

0

+ L

int

(L

0

being expressed by (5)) an be

treated as the model Lagrangian that approximately de-

sribes the relativisti system of harged partiles at any

veloities. A similar Lagrangian was previously found

in [5℄ basing on formula (11) and is di�erent from expres-

sion (25). This is explained by the following. The exat

diret interation Lagrangian is obtained after substitut-

ing full solutions of the �eld equations into (11) or (12)

and is nonloal. These nonloal Lagrangians found from

either (11) or (12) are equivalent up to a total derivative.

On the other hand, inserting the quasistati �elds results

in loal expression. The same an be ahieved by neglet-

ing higher derivative terms (
�
r and higher) in the higher
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derivative expansion of the nonloal Lagrangian. After

exluding higher derivatives one gets a di�erent outome

from formulae (11) and (12). Moreover, one an generate

in�nite number of approximate Lagrangians like (25) by

inserting potentials in a ertain gauge into (11) and ex-

luding higher derivatives. Nevertheless, it an be shown

that these expressions are valid in �rst approximation

by the oupling onstant e

2

and are equivalent in this

approximation.

Cosider the nonloal Lagrangian whih desribes the

system of harged partiles after �eld degrees of freedom

having been exluded. This Lagrangian an be written

as higher derivative expansion (whih was �rst done by

Kerner [7℄):

L = L

0

+ e

2

(L

1

+ L

2

) ; (26)

where L

0

is given by (5), L

1

is the part of interation

Lagrangian that depends on partile positions and velo-

ities only, L

2

ontains higher derivative terms. It turns

out that L

2

an always be written as

L

2

=

X

j

�
r

j

��

j

; (27)

where �

j

is a funtion of partile oordinates, veloities

and higher derivatives. This term then an be exluded

from Lagrangian in the �rst order by e

2

on applying er-

tain oordinate transformation (see [8℄ and referenes

therein for a detailed disussion). Namely, let us make

the following oordinate transformation:

r

j

! r

j

+ e

2

X

j

: (28)

Upon expanding by e

2

(26) will read

L = L

0

+ e

2

0

�

L

1

+

X

j

�L

0

�v

j

�

_

X

j

+

X

j

�
r

j

��

j

1

A

+O(e

4

) : (29)

This an be rewritten after the total derivative having

been dropped:

L = L

0

+ e

2

0

�

L

1

�

X

j

d

dt

�

�L

0

�v

j

�

�X

j

+

X

j

�
r

j

��

j

1

A

+ O(e

4

) : (30)

One an now hoose X

j

to satisfy the ondition

d

dt

�

�L

0

�v

j

�

�X

j

=
�
r

j

��

j

; (31)

that is

m

j

q

1� v

2

j

=

2

"

X

j

+

v

j

(v

j

�X

j

)



2

(1� v

2

j

=

2

)

#

= �

j

; (32)

from where

X

j

=

q

1� v

2

j

=

2

m

j

h

�

j

�

v

j



2

(�

j

� v

j

)

i

: (33)

Thus, after making transformation (28) with X

j

of (33)

the Lagrangian (26) will read

L = L

0

+ e

2

L

1

+O(e

4

) ; (34)

that is, higher derivative terms an be omitted in the

�rst order by e

2

.

Consider now L

0

being another nonloal Lagrangian

obtained as desribed above. Obviously, L and L

0

di�er

by the total derivative of a funtion depending on oor-

dinates and generally derivatives of any order of the time

oordinates:

L

0

= L

0

+ e

2

(L

0

1

+ L

0

2

) ; (35)

L = L

0

+ e

2

d

dt

F

�

r;

d

n

r

dt

n

�

; (36)

L

0

1

and L

0

2

having the same sense as in (26). It is easy

to see that the loal part of Lagrangian (26) L

lo

�

L

0

+e

2

L

1

is equivalent up to the total derivative e

2

dF=dt

to the following expression

L

0

+ e

2

(L

0

1

� L

�

2

) ;

where L

�

2

ontains higher derivatives from e

2

dF=dt.

On applying the orresponding oordinate transforma-

tion (28) the latter formula reads

L

0

+ e

2

L

0

1

+O(e

4

) � L

0

lo

+ O(e

4

) :

Therefore, Lagrangians L

lo

and L

0

lo

an be regarded

as equivalent in the �rst approximation by the oupling

onstant e

2

.
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IV. HAMILTONIAN FUNCTION

Now we are going to make the similar alulations in

anonial variables. Although a vetor potential is still

desribed by expressions (19), (20), partile veloities v

j

in (20) have to be reformulated in terms of onjugate

momenta aording to (15). So we obtain a ompliated

nonlinear equation for A

k

(t). In order to solve it some

simpli�ations need to be applied.

1. Linearization. Let us expand "(�) in (15) into Tay-

lor series by the powers of harge value. In the linear

approximation we will have:

v

j

=



2

p

j

"

j

�

e

j

"

j

"

A(r

j

)�



2

p

j

"

2

j

(A(r

j

) � p

j

)

#

; (37)

"

2

j

� m

2

j



4

+ 

2

p

2

j

: (38)

The last term of (37) an be averaged by momentum

orientations writing p

�

j

p

�

j

=

1

3

p

2

j

Æ

��

(�; � = [x; y; z℄ ; Æ

��

is Kroneker delta). Representing A(r

j

) by its Fourier

expansion one an see that the transversal urrent (20)

will read

j

?

k

=

X

j



2

e

j

"

j

e

�ik�r

j

h

p

j

�

^

k

�

^

k � p

j

�i

�

X

j

e

2

j

"

j

 

1�



2

p

2

j

3"

2

j

!

�

1

V

X

q

h

A

q

�

^

k

�

^

k �A

q

�i

e

i(q�k)�r

j

� j

(0)

k

� j

(1)

k

(A) : (39)

Upon inserting this into equation for A

k

one �nds the

vetor potential as a funtion of partile oordinates and

momenta.We will use the simplest stati expression (21).

Then the equation for A

k

will be the following:

k

2

A

k

=

4�



h

j

(0)

k

+ j

(1)

k

(A)

i

: (40)

It is also neessary to linearize the funtion H. On ex-

panding (17) by the powers of e

j

it will read

H =

X

j

"

j

+

1

2V

X

k

X

j

e

j

e

ik�r

j

�

'

k

�



"

j

(p

j

�A

k

)

�

+ O(e

3

j

) : (41)

Note that quadrati in e

j

terms in (17) are reiproally

anelled.

2. One may apply the random phase approximation

whih means that the only term onsidered in j

(1)

k

(A)

is the one with q = k. It is easy to see now that

j

(1)

k

= {

2

A

k

, where

{

2

=

X

j

4�e

2

j

V "

j

 

1�



2

p

2

j

3 "

2

j

!

: (42)

So the vetor potential in anonial variables in the stati

ase is given by

A

k

=

4�

k

2

+ {

2

X

j

e

j

"

j

e

�ik�r

j

�

p

j

�

^

k (

^

k � p

j

)

�

: (43)

To obtain the Hamiltonian funtion of the system of

diretly interating partiles it is now enough to apply

expressions (18), (43) in (41) and exlude divergent self-

energy terms. The result an be written as

H =

X

j

"

j

+

1

2

X

j 6=l

�

H

C

jl

+H

R

jl

�

+

X

j

�

1

2

H

C

jj

+

1

2

H

R

jj

� U

j

�

; (44)

where

H

C

jl

=

1

V

X

k

4�e

j

e

l

k

2

e

ik�r

jl

(45)

being the Coulomb interation energy,

H

R

jl

= �

1

V

X

k

4�e

j

e

l

k

2

+ {

2

e

ik�r

jl



2

"

j

"

l

h

(p

j

� p

l

) � (

^

k � p

j

)(

^

k � p

l

)

i

(46)

is the energy of relativisti interations. U

j

is the self-energy of a harged partile. In the onsidered approximation
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it is determined by the formula:

U

j

=

1

2V

X

k

4�e

2

j

k

2

"

1�



2

"

2

j

�

p

2

j

� (

^

k � p

j

)

2

�

#

: (47)

It is easy to see that

1

2

�

H

C

jj

+H

R

jj

�

� U

j

=

2�e

2

j



2

"

2

j

V

X

k

�

1

k

2

�

1

k

2

+ {

2

�

h

p

2

j

� (

^

k � p

j

)

2

i

=

1

3

{e

2

j



2

p

2

j

"

2

j

: (48)

Therefore, the last sum of (44) is nonzero. So the self-

energy exlusion in Hamiltonian variables is no longer

redued to the trivial neglet of j = l terms. Sine H

R

jj

depends on the { parameter it is a�eted by the number

of partiles in the system. Eah partile's self-energy at

the same time must not depend on their total amount.

This is expression (48) whih determines the di�erene

between those energies. After joining this ontribution

and the �rst term in (44) we an write:

H =

X

j

H

�

j

+

1

2

X

j 6=l

�

H

C

jl

+H

R

jl

�

; (49)

where

H

�

j

= "

j

+

1

3

{e

2

j



2

p

2

j

"

2

j

; (50)

and H

C

jl

, H

R

jl

are expressed by formulae (45), (46).

V. DISCUSSION

Formula (49) an be regarded as relativisti general-

ization of the weakly relativisti Hamiltonian. It is om-

pliated by the \sreening radius" {

�1

dependene on

momenta of all partiles. In appliations, however, one

an replae {

2

by a ertain mean value using for ex-

ample the free partiles distribution funtion. Then {

makes sense of some marosopi parameter. Performing

the sum over k in (46) one �nds that

H

R

jl

= �

e

j

e

l



2

r

jl

p

�

j

p

�

l

"

j

"

l

�

��

({r

jl

) ; (51)

where

�

��

(x) = (Æ

��

� x̂

�

x̂

�

) e

�x

+ (Æ

��

� 3x̂

�

x̂

�

)

�

e

�x

x

+

e

�x

x

2

�

1

x

2

�

: (52)

As one an see, there is the term p

�

j

p

�

l

(Æ

��

� r̂

�

r̂

�

) =r

3

jl

in

H

R

jl

in addition to the terms with the sreening exponent.

This term whih is typial for dipole interation dissa-

pears after averaging by r

jl

diretions, i. e. the e�etive

relativisti interation is sreened on average only.

Let us make some notes on the applied approxima-

tions. Lagrangian and Hamiltonian funtions obtained

in previous setions are valid in the �rst approximation

by the oupling onstant, whih allows the exlusion of

higher derivatives from the theory. From quantum ele-

trodynamis it is known that radiation e�ets have a

higher order of e

2

than elasti sattering, so in the same

approximation one an neglet self-energy terms as well.

This approximation is expeted to be aeptable, for ex-

ample, for optially thin plasma and breaks in the region

T & m

2

, where radiation e�ets annot be omitted. It

is neessary to note that there are other ways of dealing

whith ompliations due to retarded eletromagneti in-

teration, one of whih is introduing grassman valued

partile harges [9,10℄.

One may ask whether it is orret in the �rst ap-

proximation by e

2

to have the sreening denominator

dependent on the oupling onstant. In this onnetion

it is neessary to larify that approximation by the ou-

pling onstant applies here to the diret interation be-

tween two partiles. The statistial many-partile ef-

fet of sreening must be onidered in order to avoid

divergenies due to a long range harater of the in-

teration (see, e. g., [11{13℄). An indiret aounting

of many-partile interations results in relativisti two-

partile interation sreening and the free partile energy

renormalization in Hamiltonian funtion. Indeed equa-

tion (40) an be solved by suessive approximations

taking j

(1)

k

(A) as perturbation. It is lear that after in-

serting the solution found by suh a method into (44)

one obtains series for the relativisti interation. More-

over, the n-th series member will ontain n+1 sums over

partile indies, that is, the relativisti interation has a

many-partile harater [14℄. These many-partile inter-

ations an be replaed by e�etive pair interation in

the random phase approximation when only interations

with the same transmitted momentum are onsidered.

This results in the geometri progression whih leads to

the sreening denominator in (46). Relativisti intera-
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tions sreening is a typial property of statistial sys-

tems. Classial and quantum mehanial problems usu-

ally imply the partile number N to be small. Moreover,

N and V are not onneted in any way. That is why

{ ! 0 when V !1 and expression (49) is signi�antly

simpli�ed. Sine �

��

(x) �!

x!0

(Æ

��

+ x̂

�

x̂

�

) =2 it is easy

to make sertain that Hamiltonian will read

H =

X

j

"

j

+

1

2

X

j 6=l

e

j

e

l

r

jl

�

1

2

X

j 6=l

e

j

e

l

r

jl



2

[p

j

� p

l

+ (
^
r

jl

� p

j

)(
^
r

jl

� p

l

)℄

2"

j

"

l

: (53)

In a weakly relativisti approximation one obtains from

the last formula familiar Darwin Hamiltonian. In statis-

tial mehanis one has to perform the thermodynami

limit N ! 1, V ! 1, N=V = onst so {

2

6= 0. Evi-

dently, the alulation of marosopi properties has to

be based on the Hamiltonian (49) or its weakly relativis-

ti approximation. In the weakly relativisti approxima-

tion obtained relations are signi�antly simpli�ed. If that

is the ase then

{

2

'

X

j

4�e

2

j

=m

j



2

� {

2

w

:

So the one-partile Hamiltonian (50) an be represented

in the form

H

�

j

= m

j



2

+

p

2

j

2m

�

j

�

p

4

j

8m

3

j



2

; (54)

m

�

j

= m

j

 

1�

2e

2

j

{

w

3m

j



2

!

; (55)

and it is enough to replae the partile energy "

j

in (46)

by the rest energy. Suh an approximate weakly rela-

tivisti Hamiltonian was obtained by one of the authors

in [15℄ using the Legendre transformation. The same re-

lations were found in [16℄ by means of anonial Bogoli-

ubov's u{v-transformation. Similar results an also be

reeived after taking into aount the spins of partiles

and for the system of neutral atoms [13℄. Basing on the

�eld theory a weakly relativisti Hamiltonian funtion

with the sreened interation of urrents was obtained

in [17℄ as well (however, the relativisti ontributions re-

sponsible for the mass renormalization of (54) were not

taken into aount). A weakly relativisti approximation

of Hamiltonian (49) was onstruted in [18℄ resting on

the �eld approah. The �eld variables exlusion method

used in [18℄ is di�erent from that of [17℄. The sreening

e�et in the nonrelativisti magneti interation Hamil-

tonian was onsidered in [6,19℄ with some appliations

having been disussed. It is worth mentioning that the

sreening of magneti interations in the Hamiltonian of

the system of harged partiles for the �rst time was

pointed out by Bohm and Pines in [20℄.
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FUNKC�Õ LA�RAN�A � GAM�L^TONA REL�TIV�STS^KOÕ SISTEMI

ZAR�D�ENIH QASTINOK

L. F. Bla�ivs~ki�, B. V. Budni�, �. S. Krini~ki�

L~v�vs~ki� na�onal~ni� un�versitet �men� �vana Franka, kafedra teoretiqnoÝ f�ziki,

vul. Dragomanova, 12, L~v�v, 79005, UkraÝna

Rozgl�nuto rel�tiv�sts~ke uzagal~nenn� funk�� La�ran�a � Gam�l~tona dl� klasiqnoÝ sistemi za-

r�d�enih qastinok. Otrimano lokal~ni� viraz dl� la�ran���na v perxomu nabli�enn� za konstanto�

vzamod�Ý e

2

. Pokazano, wo e� rezul~tat neodnoznaqni�. C� neodnoznaqn�st~, odnak, ne pro�vl�t~s� v

rozgl�nutomu nabli�enn�. P�sl� zastosuvann� dodatkovih nabli�en~ zna�deno rel�tiv�sts~ku funk��

Gam�l~tona z ekranovano� vzamod��.
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