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In this study, a problem of a magnetohydrodynamic (MHD) induced Navier slip flow over
a non-linear stretching and shrinking sheet with the existence of suction is considered.
Similarity transformation is used to transform the governing nonlinear partial differen-
tial equations into a system of nonlinear ordinary equations. The transformed ordinary
differential equations are then solved by using the Shooting Method in Maple software.
Dual solutions are obtained for certain governing parameters. The results obtained show
that suction improves skin friction, while the slip parameter reduces shear wall stress.
Moreover, it is established that the range of dual solutions for stretching sheet is smaller
compared to the shrinking case.
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1. Introduction

It is reported that the work on the dynamics of the boundary layer flow over a stretching surface was
pioneered by Crane [1], for which he found the exact solution of the two-dimensional Navier–Stokes
equations. Since then, there have been many researches done over a stretching surface over numerous
conditions, to cite a few [2–11]. Meanwhile, the flow of an incompressible fluid due to a shrinking
sheet acquires attention for its abnormal behaviour in the flow dynamics because very little is known
about said sheet, where the velocity on the boundary is moving towards a fixed point. A very specific
unsteady shrinking film solution was discussed by Wang [12]. Miklavcic and Wang [13] studied the
properties of a viscous flow due to a shrinking sheet with suction and found out that the flow is
unlikely to exist unless adequate suction on the boundary is imposed, since vorticity of the shrinking
sheet is not confined within a boundary layer. To maintain boundary layer structure, the flow needs a
certain amount of external suction at the porous sheet. Fang and Zhang [14] obtained a closed formed
analytical solution for steady MHD flow over a porous shrinking subject to applied suction. Next,
Fang et al. [15] found out the exact analytic solution of the thermal boundary layer over a shrinking
sheet with a mass transfer. Moreover, the solution obtained is also an exact solution of the governing
Navier–Stokes equations for that problem, and they reported greatly different solution behavior with
multiple solution branches compared to the corresponding stretching sheet problem. After awhile,
Fang et al. [16] gained the exact solution for the viscous flow over a shrinking sheet with a second
order slip flow model by solving analytically.

In fluid dynamics, magnetohydrodynamics (MHD) is a condition where there is an electrically
conducting fluid in the presence of electric and magnetic field. The earliest researcher to consider
the magnetohydrodynamic flow on non-Newtonian fluid whose magnetic field is perpendicular to the
direction of the flow was Sarpkaya [17]. Then, Pavlov [18] improvised the research by studying the
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MHD boundary layer flow of an electrically conducting fluid due to the stretching of a plane elastic
surface in the presence of a uniform transverse magnetic field and achieved an exact similarity solution
of this problem. Mahabaleshwar et al. [19] examined the MHD flow of an electrically conducting
Newtonian fluid over a super linear stretching sheet in the presence of suction/injection and Navier
slip by using modified Adomain decomposition method (MADM) and Pade approximants, and they
found that Navier’s slip condition can lead to a non-essential growth of the boundary layer thickness
and a decrease in the axial and transverse velocities. Recently, Abdal et al. [20] investigated the
multislip effects on the magnetohydrodynamic (MHD) mixed convection unsteady flow of micropolar
nano-fluids over a stretching/shrinking sheet along with radiation in the presence of a heat source.

Most of the studies support the validity of the Dirichlet–Stokes no-slip condition, that is, the velocity
vanishes on the boundaries. However, it’s all started when Navier [21] presented a slip-with-friction
boundary condition and stated that the component of the fluid velocity tangent to the surface should
be proportional to the rate of strain at the surface. The velocity of component normal to the surface
is zero because mass cannot penetrate an impermeable solid surface. Recent experiments, generally
with typical dimensions of microns or smaller, have demonstrated that the phenomenon of slip actually
occurs.

Over the last few years, various investigations have also been made to study various flow prob-
lems of Newtonian and non-Newtonian fluids with or without the Navier slip boundary condition.
For example, some Navier conditions for the close Stokes–Fourier system from Maxwell conditions
(combining perfect/specular reflection and diffuse/Gaussian reflection) for the Boltzmann equations is
derived by Masmoudi and Saint–Raymond [22]. Iftimie and Sueur [23] investigated inviscid limit of the
incompressible Navier–Stokes equations when the Navier slip-with-friction conditions are prescribed on
impermeable boundaries and developed a descriptive method which able to precisely describe the error,
both in two dimensions and three dimensions. Then, Das and Jana [24] investigated the combination
effects of magnetic field, suction/injection and Navier slip on the entropy generation in an MHD flow
through a porous channel and Matin and Khan [25] proposed the effect of boundary slip on the purely
pressure driven flow of a viscoelastic biofluid through a nanofluidic channel. Then, Tlili et al. [26] focus
on the effects of magnetic field, Navier slip and convective heat of nanofluid flow over a wedge.

Motivated by the above-mentioned studies, this research extends the work done Mahabaleshwar
et al. [19] by including both the shrinking and suction parameters. The governing partial differen-
tial equations are first transformed into a system of ordinary differential equations, and then solved
numerically by using the built-in Shooting method in MAPLE.

2. Problem Formulation

Stretching /

Shrinking sheet

Electrically-conducting liquid

Force-2Force-1
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y

x

H H H H0 0 0 0

Fig. 1. Schematic of the stretching/shrinking problem.

Consider a steady-state laminar non-
compressible viscous fluid flow over a non
linear stretching or shrinking sheet with the
existence of magnetic field, Navier slip con-
dition and suction using boundary layer ap-
proximation, where the lateral surface ve-
locity is proportional to the distance x from
the origin. The sheet is stretched/shrunk
in a nonlinear way along the x-axis and y-
direction is taken for fluid flow with the ori-
gin fixed, as shown in Fig. 1. It is assumed
that the sheet is stretched/shrunk with the

velocity λu(x), where λ is for stretching (λ > 0) or shrinking (λ < 0) parameter, a non-uniform trans-
verse magnetic field of strength H0 is applied normal to the sheet, and the induced magnetic field is
neglected due to small magnetic Reynolds number, Re.
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Under these assumptions, the fundamental laminar boundary layer equations for the stretching and
shrinking flow can be written as

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂v

∂y
= ν

∂2u

∂y2
− σH2(x)

ρ
u. (2)

We take Rm ≪ 1, where Rm is the magnetic Reynolds number and ν is the fluid kinematic viscosity
which is constant for this case, fluid density ρ and electrical conductivity σ, and therefore defining the
magnetic field as

H(x) = H0 x
n−1
2 . (3)

Here, we define the sheet as permeable and lateral mass transfer with a certain velocity distribution
vw(x) is given. The boundary conditions corresponding to the non linear stretching and shrinking
sheet are given below

u(x, 0) − λ c xn = k ν
∂u

∂y
(x, 0), vw(x, 0) = vw(x),

u(x,∞) = 0.

(4)

We take (x, y) as the respective normal directions with corresponding velocities (u, v). A continuous
surface with non linear stretching and shrinking speed is pressed into a laminar boundary layer flows
along the x direction are u(x, 0) = λ c xn, where the stretching and shrinking rate λc is constant
(λ > 0 for stretching sheet and vise versa) and n is the nonlinear constant, vw(x) is the mass velocity
with vw(x) < 0 for suction, vw(x) > 0 for injection and vw(x) = 0 is the case when the surface is
impermeable.

The conservation of mass satisfied the physical stream function ψ(x, y) and can be expressed as

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (5)

Next, η =

√
c(n+1)

2ν x
n−1
2 y is defined as asimilarity variable and consequently the axial and transverse

velocities can be written as

u = c xnf ′(η), v = −
√
c ν(n+ 1)

2
x

n−1
2 f(η) +

[
n− 1

n+ 1

]
η f ′(η). (6)

Using the above transformations, Eq. (1) is satisfied, while Eq. (2) can be expressed as

f ′′′ + ff ′′ − βf2 −Qf ′ = 0, (7)

while the boundary conditions (4) are reduced to

f(0) = s, f ′(0) = λ+ Γf ′′(0),

f ′(η) = 0 as η → ∞.
(8)

where s = − vw(x)
√

c(n+1)
2ν

x
n−1
2

represents suction (s > 0) or injection (s < 0) parameter, λ > 0 is for the

stretching sheet and λ < 0 is for the shrinking sheet, and Γ = k ν

√
c(n+1)

2ν x
n−1
2 is the Navier’s slip

parameter.
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The physical quantity of practical interest is the skin friction coefficient Cf , which is given by

Cf =
τw
ρ u2

, (9)

where τw is a shear stress in x-direction and is noted by

τw = µ

(
∂u

∂y

)
(10)

with µ refers to the fluid dynamic viscosity for the fluid. Using (6), (9) and (10), we have

√
(n+ 1)

2
(Re)1/2Cf = f ′′(0), (11)

where Re = ν
ux is a Reynold’s number.

3. Results and Discussion

The problem of nonlinear ordinary differential equation (7) along with the boundary condition (8) have
been figured out numerically using the Shooting Method via Maple software. Initially, the accuracy of
this method has been validated by comparing the present results with the values obtained from previous
literature. Table 1 represents the excellent comparison for the values of f ′′(0) with the increasing of
Chandrasekhar number, Q. This comparison proved that the method used in this problem is accurate
and precise.

Table 1. Comparison of f ′′(0) for
s = 0, λ = 1, β = 1, Γ = 0.

Q Present results [19]

0 −1.00066 −1.00018
1 −1.41421 −1.41421
5 −2.44948 −2.44943
10 −3.31662 −3.31656

The effects of stretching or shrinking parameter λ, suction
parameter s, slip parameter Γ and the nonlinear parameter β
towards the skin friction coefficient f ′′(0) and velocity profiles
f ′(η) are represented in graphs. In addition, the variations of
skin friction coefficient f ′′(0) with stretching/shrinking λ and
suction parameter s are also illustrated. The addition of suction
and shrinking sheet to the previous problem considered by [19]
is seen to produce more than one solution.

Table 2. Values of λc for different
values of s when Γ = 0.5, Q = 0.1,

β = 1.

Table 3. Values of sc for different
values of λ when Γ = 0.5, Q = 0.1,

β = 1.

Table 4. Values of λc for different
values of Γ when s = 2.5, Q = 0.1,

β = 1.

s (λc, f
′′(0))

2.3 (−2.3155, 1.8803)
2.5 (−2.8007, 2.3815)
2.7 (−3.3401, 2.9108)

λ (sc, f
′′(0))

−0.5 (1.0755, 0.2216)
−0.75 (1.3499, 0.3900)
−1 (1.6111, 0.5211)

Γ (λc, f
′′(0))

0.1 (−1.8764, 2.1986)
0.5 (−2.8007, 2.3815)
0.75 (−3.4018, 2.4175)

Fig. 2 illustrates the skin friction coefficient f ′′(0) with stretching/shrinking parameter λ for some
values of suction s when Γ = 0.5, Q = 0.1 and β = 1, while Fig. 3 represents f ′′(0) with s for some
values of λ when Γ = 0.5, Q = 0.1, β = 1. Moreover, the variations of f ′′(0) with λ for different values
of slip Γ when s = 2.5, Q = 0.1, β = 1 are shown in Fig. 4. Based on these illustrations, it is obviously
shown that there are two visible solutions for both shrinking (λ < 0) and stretching (λ > 0) cases
whereas the solid lines represent the first solution and the dotted lines represent the second solution.
The critical values of λ and s are represented by λc and sc, respectively. It indicates the existence of
multiple solutions for λc < λ and sc < s while unique solution when λ = λc and s = sc. The boundary
layer separates from the surface in the no solution area, therefore, there is no more solution since the
boundary layer approximation method is no longer used.
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Fig. 2 demonstrates the effect of suction parameter s for s > 0 on skin friction coefficients f ′′(0).
The values of f ′′(0) for the first solution are moderately increasing with the step up of suction values
and contrarily for second solution. The wall shear stress increases as s increases for the first solution
while it works oppositely for the second solution. In addition, it is observed that the values of |λc|
increase when s increases. The shrinking case gives larger values for f ′′(0) compared with the stretching
sheet case. Opposite flow of fluid caused by the slow motion of flow along the shrinking sheet which
consequently effect the separation of boundary layer and therefore raising the skin friction coefficient.
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Fig. 2. Variations of f ′′(0) with λ for different values
of s when Γ = 0.5, Q = 0.1, β = 1.

Fig. 3. Variations of f ′′(0) with s for different values
of λ when Γ = 0.5, Q = 0.1, β = 1.

Fig. 3 illustrates the variation of f ′′(0) with suction s for some values of shrinking parameter λ
when Γ = 0.5, Q = 0.1, β = 1. The figure demonstrate the increasing trend of skin coefficient for first
and second solution which can be seen in Table 3. It is also can be noticed that both first and second
solutions only exist on interval sc < s where sc is the critical value of suction. Unique solution only
can be observed on s = sc and no solution exists when s < sc. Moreover, the increasing of stretching
or shrinking parameter |λ| cause the critical value of suction which needed to keep the boundary layer
together is also increases. As the suction increases, the value of shear wall stress is decreasing.
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Fig. 4. Variations of f ′′(0) with λ for different values
of Γ when s = 2.5, Q = 0.1, β = 1.

The influence of slip boundary condition pa-
rameter, Γ on the skin friction coefficient is
shown in Fig. 4. The values are noticed to de-
crease with the increasing of Γ in the initial
segment of dual solutions for f ′′(0). However
as λ increasing, both solutions express declining
trend. As shown in the Table 4, the values of
|λc| increases as the value of slip parameter Γ in-
creases. The wall shear stress decreases when the
slip parameter increases, thus the weakening of
fluid adhesion strength occur because of the vor-
ticity generated by shrinking sheet is reduced.

Figs. 5–9 demonstrate the velocity profiles for some values of s, Q, β, λ and Γ. All figures follow
the pattern of the profile asymptotically. It can be noticed that the boundary layer thickness for the
second solution is bigger than the first solution. The values of f ′(η) are all negatives throughout the
profiles.

The effects of suction s on velocity profiles is shown in Fig. 5. As the value of suction increases,
there is an increment in the value of f ′(η) in the first solution while there is reduction for second
solution. The boundary layer thickness for first solution is noticeable to be smaller as s increases,
oppositely for second solution. Suction able to reduce the thickness of boundary layer which in the
end force the flow of fluid to move slower and closer to boundary, thus elevate the velocity gradient at
the sheet surface.
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Fig. 5. Velocity profiles f ′(η) for several values of s
when Γ = 0.5, Q = 0.1, β = 1, λ = −1.

Fig. 6. Velocity profiles f ′(η) for several values of Q
when s = 2.5 Γ = 0.5, β = 1, λ = −1.

Fig. 6 shows the velocity profiles of several values of Q which is Chandrasekhar number on f ′(η).
The increment in Q causes the f ′(η) in first solution increase while contrarily for second solution. The
boundary layer thickness seems to be smaller when values of Q increases. However, it works differently
for second solution whereas, the boundary layer thickness becomes larger for second solution. The
velocity profiles is improved and reduced the thickness of boundary layer because of the existence of
Lorentz force.
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Fig. 7. Velocity profiles f ′(η) for several values of β
when Γ = 0.5, Q = 0.1, s = 2.5, λ = −1.

Fig. 8. Velocity profiles f ′(η) for several values of λ
when s = 2.5, Γ = 0.5, Q = 0.1, β = 1.

The velocity profiles of several values of nonlinear parameter, β is shown in Fig. 7. It is also known
as Casson parameter. As the values of β increases, f ′(η) in first solution increases and decrease in
second solution. The thickness of boundary layer decrease when the values of β increases. The yield
stress is smaller compared to the viscosity and deformation when the values of β increases.
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Fig. 8 displays the influence of shrinking/stretching
parameter λ on the velocity profile f ′(η). In the
shrinking case where λ < 0, the increasing of |λ|
caused the value of f ′(η) to reduce in first solution
and increase in second solution. Thus, the thickness
of boundary layer becomes larger in the first solution
when |λ| increases. Moreover, the increasing value of
|λ| allows more fluid flow towards the opposite direc-
tion in the sheet. Therefore, the velocity moves away
and the thickness of boundary layer improved.

Next, Fig. 9 illustrates the velocity profiles f ′(η)
for different values of slip parameter Γ for the shrink-
ing sheet (λ < 0) case. From the figure shown, it can
be seen that for the values of velocity profile f ′(η)
increases with the increment in the value of slip pa-
rameter Γ. On another hand, the values of velocity
profiles f ′(η) for second solution increases in certain
initial range of η and decrease after that range. Basi-
cally, this means the increment value of slip permits
more fluid flow through the surface, thus decreasing
the thickness of boundary layer and enhancing the velocity gradient of the first solution.

4. Conclusion

In this research, the effect of MHD flow over stretching or shrinking sheet with suction and Navier slip
is theoretically and numerically studied. The problem was solved by using the Shooting Method in
Maple software. The effects of the governing parameters toward the skin friction coefficient and velocity
profile are illustrated in graphs and discussed in detail. Following those results, we can conclude that:

1) The increment of λ and s increases the values of skin coefficient friction.
2) The increment of Γ decreases the values of skin coefficient friction.
3) The velocity profiles escalate with the increasing s, λ, β, Γ and Q.
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вплив всмоктування внаслiдок нелiнiйного

розтягування/стиснення шару
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У цьому дослiдженнi розглянуто проблему магнiтогiдродинамiчного (МГД) iндуко-
ваного потоку, враховуючи всмоктування та ковзання Нав’є, на шарi, який може
нелiнiйно розтягуватися або стискатися. Перетворення подiбностi використано для
перетворення головних нелiнiйних диференцiальних рiвнянь у частинних похiдних
до системи нелiнiйних звичайних рiвнянь. Пiсля цього, перетворенi звичайнi дифе-
ренцiальнi рiвняння розв’язуються за допомогою методу стрiльби в Maple Software.
Подвiйнi розв’язки отриманi для певних керуючих параметрiв. Отриманi результати
показують, що всмоктування покращує поверхневе тертя, тодi як параметр ковзан-
ня зменшує напруження зсуву стiнки. Крiм того, виявлено, що область подвiйного
розв’язку у випадку шару, який розтягується, є меншою у порiвняннi зi шаром, який
стискається.

Ключовi слова: МГД, ковзання Нав’є, розтягування/стиснення шару, нелiнiйний,
подвiйний розв’язок.
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