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The stress-strain state of a layered composite cylindrical shell under local heating by
the environment due to convective heat exchange has been studied. The equation of
the six-modal theory of thermoelasticity and the two-dimensional equation of thermal
conductivity of inhomogeneous anisotropic shells are used for this purpose. The solution
of the nonstationary heat transfer problem and the quasi-static thermoelasticity problem
for a finite hinged orthogonally reinforced shell of symmetric structure is found by the
methods of integral Fourier and Laplace transforms. Numerical results are given for the
three-layer shell.
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1. Introduction

In the literature [1], there are studies of the thermal stressed state of an isotropic cylindrical shell made
of a functional-gradient material under local thermal heating. The temperature regime of the dental
crown, which is modeled by a cylindrical shell made of isotropic functional-gradient cermets, was also
studied in [2]. In addition, layered cylindrical shells are widely used in many branches of modern
technology, in particular in aerospace construction, to increase the strength and rigidity of structures,
as well as to protect them from low or high temperatures. Therefore, an important engineering task
is to build mathematical models and conduct research on layered structures to analyze their perfor-
mance [3–6]. Temperature fields and stresses in layered structures were studied both on the basis of
three-dimensional equations [7, 8] and two-dimensional ones [9–11]. Analytical [12]]and numerical [13]
methods were used to construct the solutions. The relationship between temperature and mechanical
fields was analyzed in [14]. Thermoelectromechanical analysis was performed in [15] for multilayer
piezoelectric shells. The thermomechanical stability of layered structures was investigated [16]. More
literature on layered composite structures can be found in [3, 4].

The aim of this paper is to investigate the stress-strain state of an orthotropic layered cylindri-
cal shell of regular symmetrical structure under the local heating due to convective heat exchange
with the environment on the basis of two-dimensional equations of heat transfer and equations of
thermoelasticity of the six-modal theory of shells.

2. Problem formulation and basic governing equations

Consider a circular cylindrical shell with a radius of the middle surface R, length l and constant
thickness 2h, composed of perfectly bonded orthotropic layers of the same thickness of the same
thickness, which are located symmetrically with respect to the middle surface. The axes of orthotropy
of each layer are alternately oriented at an angle 0◦ or 90◦ to the axis of the shell. The number of
layers with orientation 0◦ is equal to n1, and of ones with orientation 90◦ is n2. The total number of
layers n = n1 + n2 is odd. The shell is attributed to the orthogonal coordinate system x, θ, z of the
axial, circumferential, and radial coordinates, respectively. The origin is placed in the middle surface
of the layer with orientation 0◦.
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Assume that at the initial moment of time τ = 0, the outer surface z = +h of the shell has the same
temperature as the environment. From the moment of time τ > 0, it is heated by the environment
whose temperature changes according to the law

t+c (x, θ, τ) = t∗ tc(x, θ) t(τ),

where t∗ = const, functions tc(x, θ) and t(τ) reflect the dependence of the environment temperature
on coordinates and time, respectively.

The inner surface z = −h is surrounded with the environment at zero-temperature t−c = 0. Convec-
tive heat exchange with heat transfer coefficient αz takes place between the environment and surfaces
z = ±h.

The temperature field and the stress-strain state of such a shell are investigated on the basis of a
mathematical model of inhomogeneous anisotropic shells [5].

Then to determine the temperature field t(x, θ, z, τ), we formulate the nonstationary equations of
heat conduction in the form as follows:

∆(1)T1 + Λ
(1)
3 /(Rh)T2 − 2αzT1 − 2hcε∂τT1 = −t∗ tc(x, θ) t(τ)αz ,

∆(3)T2 − Λ
(1)
3 /h2 T2 − 2αzT2 − 2/3hcε∂τT2 = −t∗ tc(x, θ) t(τ)αz .

(1)

Here,

∆(k) = Λ
(k)
1 ∂211 + Λ

(k)
2 ∂222; (k = 1, 3) ; t = T1 +

z

h
T2; Ti =

2n− 1

2hi

∫ h

−h
t zi−1dz; (i = 1, 2);

{
Λ
(1)
1 ,Λ

(1)
2

}
=
[
{λ1, λ2}n1 + {λ2, λ1}n2

]2h
n

; Λ
(1)
3 = 2hλ3;

{
Λ
(3)
1 ,Λ

(3)
2

}
=

2h

3

[
{λ1, λ2}

(
1 − n3 − 3n2 + 2

2n3

)
+ {λ2, λ1}

(
n3 − 3n2 + 2

2n3

)]
;

∂1 = ∂/∂x; ∂2 = ∂/∂θ; ∂τ = ∂/∂τ ;

λj is the coefficients of heat conductivity of an orthotropic body; cε is the specific volumetric heat
capacity.

To determine the stress-strain state of the shell, we employ the equilibrium equation in terms of
generalized displacements u, v, w, γ1, γ2, γ3:

Li1u+ Li2v + Li3w + Li4γ1 + Li5γ2 + Li6γ3 = bi, (i = 1, 2, . . . , 6), (2)

where the differential operators Lij (Lij = Lji) and free terms bi of the system have the form:

L11 = A11∂
2
11 +A66/R

2∂222, L12 = (A12 +A66)/R ∂212,

L13 = A12/R ∂1, L14 = 0, L15 = 0, L16 = A13 ∂1,

L22 = A66 ∂
2
11 +A22/R

2∂222 − k′A44/R
2,

L23 = (A22 + k′A55)/R2∂2, L24 = 0, L25 = k′A55/R, L26 = A23/R ∂2,

L33 = −k′A44∂
2
11 + (A22 − k′A55∂

2
22)/R2, L34 = −k′A44∂1, L35 = −k′A55/R ∂2, L36 = A23/R,

L44 = D11∂
2
11 +D66/R

2 ∂222 − k′A44, L45 = (D12 +D66)/R ∂212,

L46 = D12/R ∂1, L55 = D66∂
2
11 +D22/R

2∂222 − k′A55,

L56 = D22/R
2∂2, L66 = −k′D44∂

2
11 − k′D55/R

2∂222 +A33 +D22/R
2,

b1 = At11∂1T1, b2 = At22/R∂2T1, b3 = At22/R T1,

b4 = Dt
11/h ∂1T2, b5 = Dt

22/(Rh) ∂2T2, b6 = At33T1 +Dt
22/(Rh)T2.

Here, the stiffness coefficients Aij, Dij and Atii, D
t
ii were calculated by formulas for an odd number of

layers that are symmetrically arranged with respect to the middle surface of the shell.
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{A11, A22} = [{c11, c22}n1 + {c22, c11}n2]
2h

n
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where cij are the coefficients of elasticity of the orthotropic body [1]; βti = cijα
t
j is the coefficients of

thermoelasticity; αtj is the coefficients of linear thermal expansion; k′ stands for the shear coefficient [17].

3. Problem solving method

For the unambiguity of the solution of systems of equations of heat conduction (1) and thermoelastic-
ity (2), we impose the boundary conditions for the key functions on edges x = 0 and x = l of the shell
in the form:

T1 = T2 = 0, (3)

w = v = 0; γ3 = γ2 = 0; N1 = M1 = 0. (4)

The corresponding initial conditions at the initial moment of time τ = 0 are as follows:

T1(x, θ, 0) = 0, T2(x, θ, 0) = 0. (5)

The system of heat conduction equations (1) for integral characteristics T1 and T2 of temperatures
is solved by the methods of Laplace integral transform by time τ under initial conditions (5) and finite
double Fourier transform by coordinates x, θ under boundary conditions (3). Then the solutions of
the system of equations (1) can be given as

T1 =
t∗Bi

2

∞∑
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∞∑

m=0

Qmn

2∑

i 6=j
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pi − pj
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2
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∞∑
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Here,
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2
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cεh2
, δ = h

R , H
(k)
j =

Λ
(k)
j

2hλ0
, λ0 is a characteristic coefficient of thermal

conductivity;
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0
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−π
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{
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(7)
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Zi(τ
′) =

∫ τ ′

0
t(v) e−pi(τ

′−v)dv, (i = 1, 2). (8)

The system of equilibrium equations (2) under boundary conditions (4) is also solved by the method
of double Fourier transform. As a result, we obtain a system of algebraic equations to determine the
Fourier coefficients, and then in terms of these coefficients, we express the generalized displacements

{u, γ1} =

∞∑

n=0

∞∑

m=0

{
Umn,Γ1mn

}
cos

πn

l
x cosmθ,

{v, γ2} =

∞∑

n=1

∞∑

m=1

{
Vmn,Γ2mn

}
sin

πn

l
x sinmθ,

{w, γ3} =
∞∑

n=1

∞∑

m=0

{
Wmn,Γ3mn

}
sin

πn

l
x cosmθ. (9)

According to the found generalized displacements (9) and temperature characteristics (6), we de-
termine the components of internal forces and moments

N1 = A11
∂u

∂x
+
A12

R

(
∂v

∂θ
+ w

)
+A13γ3 −At11T1,

N2 = A12
∂u

∂x
+
A22

R

(
∂v

∂θ
+ w

)
+A23γ3 −At22T1,

M1 = D11
∂γ1
∂x

+
D12

R

(
∂γ2
∂θ

+ γ3

)
− Dt

11

h
T2,

M2 = D12
∂γ1
∂x

+
D22

R

(
∂γ2
∂θ

+ γ3

)
− Dt

22

h
T2. (10)

4. Solutions for cosinusoidal variable environmental temperature, which increases to a
given temperature at a finite speed

Consider the case when the functions of the distribution of environment temperature tc(x, θ) and t(τ)
have the form [18]

tc(x, θ) =
1

4

[
1 − cos

[x− (x0 − d)]

d

](
1 + cos

πθ

η

)
N(x)N(θ), (11)

t(τ) = 1 − e−βτ . (12)

Here, N(x) = S− (x− (x0 − d))−S+ (x− (x0 + d)); N (θ) = S− (θ + η)−S+ (θ − η); β = const is the
parameter that characterizes the rate of temperature rise;

S+(x) =

{
1, x > 0
0, x 6 0

and S−(x) =

{
1, x > 0
0, x < 0

are unit step-functions; 2d and 2η are the width and angle of the heating area; (x0, 0) are the coordinates
of the center of this area.

From relations (7) and (11), we obtain the following expressions for Fourier coefficients Qnm:

Qnm =
2

π2

(
n

(l/d)2 − n2
+

1

n

)(
m

(π/η)2 −m2
+

1

m

)
sin

πnd

l
sin

πnx0
l

sinmη,

for m 6= π/η, n 6= l/d,
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Qnm =
1

πn

(
m

(π/η)2 −m2
+

1

m

)
sin

πx0
d

sinmη, for m 6= π/η, n = l/d,

Qnm =
1

πm

(
n
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+

1

n

)
sin

πnd

l
sin

πnx0
l

, for m = π/η, n 6= l/d,

Qnm =
1

2nm
sin

πx0
d
, for m = π/η, n = l/d,

Qn0 =
η

π2

(
n

(l/d)2 − n2
+

1

n

)
sin

πnd

l
sin

πnx0
l

, for n 6= l/d,

Qn0 =
η

2πn
sin

πx0
d
, for n = l/d.

The time function Zi(τ
′) is found by formulas (8) using expression (12) in the form

Zi(τ
′) =

1

pi

(
1 − e−piτ

′
)

+
1

β − pi

(
e−βτ

′ − e−piτ
′
)
.

According to the expressions of integral characteristics T1 and T2 of temperature found on the basis
of relations (6), (7) from relations (9), (10), we write the expressions of generalized displacements U ,
V , W and components N1 and N2 of efforts and M1 and M2 moments.

5. Numerical research

The calculations were performed for a three-layer shell of symmetrical structure (90◦/0◦/90◦). The
material of the layers is a graphite-epoxy composite with the following physical and mechanical proper-
ties [3, 14]: ν12 = ν23 = 0.25; E1 = 172.72 GPa; E2 = E3 = 6.909 GPa; G12 = G13 = 3.45 GPa; G23 =
1.38 GPa; αt1 = 3.34 · 10−6 1/K; αt2 = αt3 = 26.1 · 10−6 1/K; λ1 = 36.42 W/mK; λ2 = λ3 = 0.96 W/mK,
where index “1” indicates the properties of the material along the reinforcing fibers, and indices “2, 3”
indicate the properties in the perpendicular direction. The values of other parameters are as follows:
h/R = 0.05; l/R = 3; η = π/4; d/l = (R/l) sin η; x0 = l/2; λ0 = λ2; k

′ = 5/6; Bi = 0.2; τ ′ = 10.
Calculated the dimensionless displacements w′ = w

Rαt
1t

∗ , u′ = u
Rαt

1t
∗ , tractions N ′

i = 10Ni

E1hαt
1t

∗ and

moments M ′
i = Mi

E1h2αt
1t

∗ , (i = 1, 2), for four values of the dimensionless parameter β: 0.01, 0.05, 0.1

and 10.
Figure 1 illustrates the variation of the radial deflections w′ along the guide x′ = 0.5 and the

generator θ = 0, respectively. The maximum values of deflection are attained at the center of the
heating area. Along the guide, the deflection is oscillatory; along the generator, it is monotonous.
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Fig. 1. The variation of the radial deflections w′ along the guide x′ = 0.5 and the generator θ = 0.
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The dependence of normal tractions N ′
1 −N ′

2 on both circumferential θ and axial x′ coordinates is
given in Figs. 2, 3.

It is obtained that the normal fractions in the center of the heating area are always compressive.
The change N ′

1 along the guide and N ′
2 along the generator has an oscillating character, and they reach

the maximum positive values at the boundary of the heated and unheated areas N ′
1.
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Fig. 2. The dependence of normal fractions N ′
1 on both circumferential θ and axial x′ coordinates.
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Fig. 3. The dependence of normal fractions N ′
2 on both circumferential θ and axial x′ coordinates.
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Fig. 4. The variation of bending moments M ′
1 along both the guide and the generation one, starting from the

center of the heating region.
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The variation of bending moments M ′
1 and M ′

2 along both the guide and the generation one, starting
from the center of the heating region, is shown in Figs. 4, 5. It is obtained that the nature of their
change is monotonic both in the direction of the guide and in the direction of the generator: from
the maximum negative values in the center of the heating area to zero values in the unheated region.
Maximum values M ′

1 are greater than M ′
2.
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Fig. 5. The variation of bending moments M ′
2 along both the guide and the generation one, starting from the

center of the heating region.
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Fig. 6. The variation of the tangential displacements v′ and u′ along both the guide x′ = 0.5 (0 6 θ 6 2π) and
the generator θ = 0 (0 6 x′ 6 1).

Fig. 6 illustrates the variation of the tangential displacements v′ and u′ along both the guide x′ = 0.5
(0 6 θ 6 2π) and the generator θ = 0 (0 6 x′ 6 1). These displacements reach maximum values at the
boundary of the heated and unheated areas, and in their midpoints change the sign to the opposite.

6. Conclusions

On the basis of the linear theory of thermoelasticity of inhomogeneous anisotropic shells with six
degrees of freedom, the stress-strain state of a layered orthogonally reinforced closed cylindrical shell
with a finite length, which is heated by the environment whose temperature varies exponentially and
cosinusoidally. The solution of the problems of heat transfer and thermoelasticity is obtained in a
closed form using integral Fourier and Laplace transforms. The dependence of radial and tangential
displacements, normal forces and bending moments on axial and circular coordinates for different values
of the coefficient that characterizes the effect of sudden heating are investigated. As this coefficient
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increases, the values of physical quantities determining the stress-strain state increase. It is established
that the stratification of shells leads to a decrease in stresses and to an increase in displacements, which
is a consequence of less effective stiffness of inhomogeneous shells.
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Напружено-деформований стан шаруватої цилiндричної оболонки
за локального конвективного нагрiвання

Мусiй Р. С., Жидик У. В., Турчин Я. Б., Свiдрак I. Г., Байбакова I. M.

Нацiональний унiверситет “Львiвська полiтехнiка”,
вул. C. Бандери, 12, Львiв, 79013, Україна

Дослiджено напружено-деформований стан шаруватої композитної кругової цилiнд-
ричної оболонки за локального нагрiвання довкiллям через конвективний теплооб-
мiн. Для цього використано рiвняння шестимодальної теорiї термопружностi i дво-
вимiрне рiвняння теплопровiдностi неоднорiдних анiзотропних оболонок. Методами
iнтегральних перетворень Фур’є i Лапласа знайдено розв’язок нестацiонарної задачi
теплопровiдностi та квазiстатичної задачi термопружностi для скiнченної шарнiрно
опертої ортогонально армованої оболонки симетричної структури. Числовi результа-
ти наведено для тришарової оболонки.

Ключовi слова: термопружнiсть, шаруватi матерiали, температурне наванта-
ження, цилiндрична оболонка.
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