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A pursuit differential game of many pursuers and one evader in a nonempty closed convex
compact hyperspace is studied. Pursuit is completed when at least one pursuer coincides
with the evader. Control functions of players are constrained by geometric constraints.
A pursuit game in a set containing a closed convex compact set is solved, and pursuit
is shown to be completed in a pursuit game within a finite-dimensional cube. Parallel
strategy and fictitious pursuers are used to solve the game, and a guaranteed pursuit time
is obtained.
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1. Introduction

Differential game is basically a study about the mathematical strategy of a party to achieve its objective
against an opposing party in the game. It is either pursuit or evasion differential game and was
started by Rufus Isaacs in 1965 [1] and was further elaborated by Petrosjan [2] and Friedman [3].
Pursuit differential game is where a strategy is constructed for pursuer to capture evader (see for
example, [1, 2, 4–11]). In many pursuit games, parallel strategy is used as one of the methods for
pursuer to capture evader. It was first introduced by Petrosjan [2] as an admissible strategy for pursuit
to be completed by any pursuer.

On the other hand, a strategy for evader is constructed in evasion differential game, to avoid being
captured by pursuer (see for example, [12–18]).

Movement of players are controlled by their respective control function which is constrained either
by geometric or integral constraint. Games with geometric constraint, for example, were discussed
in [6, 12–14], and the games with integral constraint in [15–18].

Differential game was studied in various spaces such as Hilbert space (see for example, [5,7,19,20])
and in Rn for some integer n (see for example, [1, 3, 5, 7, 19, 20]). The game is said to have a state
constraint if trajectories of all players are only within a specific subset of Rn, for some integer n. The
following works [4, 8–11] have stated the constraint in the form of convex space in Rn.

The game of pursuit of many pursuers versus one evader in a compact convex set was studied in [4].
In this work, the motions of all players were described by the following differential equation:

ẋi = ui, xi(0) = xi0, |ui| 6 1, i = 0, 1, 2, . . . ,m,

where xi, ui, xi0 ∈ Rn, ui is the control parameter of the ith pursuer and u0 is the control parameter of
the evader. During the game, all players must not leave a given compact convex subset A of Rn and
their control functions are constrained by geometric constraint. It was proven that if the number m of
pursuers is strictly less than the dimension n of the space, then evasion is possible. Otherwise, that is if
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m > n, then pursuit can be completed and the guaranteed pursuit time obtained is d(n3−2n2 +n+1),
where d is the length of the side of the cube.

A two-person differential game in a convex space was then studied in [9] but with integral constraint
on the control function of each player. The motion of players was described in a linear system as follows:

ż(t) = A(t)z +B(t)(v − u), z(0) = z0,

where z, z0, u, v ∈ Rn. The terminal time of the game was prefixed to the time when the pursuer and
evader coincide by reaching a closed convex subset M and the game is completed. This work was then
followed by a study on pursuit differential game of many pursuers and many evaders on a closed convex
set of Rn for n > 2. The study was done by [8] with control function of each player is constrained by
integral constraint, and motion of players were described as follows:

ẋi = ϕ(t)ui, xi(0) = xi0, i = 1, 2, . . . ,m,

ẏj = ϕ(t)vj , yj(0) = yj0, j = 1, 2, . . . , k,

where xi, yj , ui, vj ∈ Rn, ui and vj are control parameters for the pursuers and evaders respectively.
This work used a scalar function ϕ(t) that satisfies the following expression:

a(τ) ,

(∫ τ

0
ϕ2(t)dt

)1/2

<∞, τ > 0, lim
τ→∞

a(τ) = ∞.

It was shown that if the total resource of the pursuers is greater than that of the evaders, then
pursuit can be completed. In this study, the concept of fictitious pursuers were used.

On the other hand, the work of [10] studied a pursuit differential game of many pursuers and one
evader with geometric constraint. The work was motivated by [4] with the purpose of improving the
guaranteed pursuit time obtained in [4]. The game was first studied in an n-dimensional cube in which
the method of fictitious pursuers was used and motion of players were described as follows:

ẋi = ui, xi(0) = xi0, |ui| 6 1, i = 1, 2, . . . ,m,

ẏ = v, y(0) = y0, |v| 6 1.

where xi, y, xi0, y0 ∈ Rn. The game was then studied in a nonempty closed bounded convex subset of
Rn contained in the cube. Parallel strategy was used for each pursuer but with a different method of
trajectory from the one in [4]. The guaranteed pursuit time was found to be d

2(n2−n+
√
n+1), where

d is the length of the side of the cube. The time was an improved result from the result in [4].
Pursuit differential game in a convex space was studied by [11] with a different condition on the

control function of each player, which was subjected to coordinate-wise integral constraint. It was a
game in a convex set of many players against one evader. The motion of players were described by:

ẋi = ui, xi(0) = xi0, i = 1, 2, . . . ,m,

ẏ = v, y(0) = y0,

where xi, y, ui, v ∈ R2. The game is said to be completed when at least one pursuer can catch the
evader. Parallel strategy was applied by each pursuer to capture the evader. The sufficient condition
for the completion of the game was obtained and the study also provided a guaranteed pursuit time.

The purpose of the current project is to solve a pursuit game with geometric constraint between
finitely many pursuers against one evader, in a closed convex compact set contained in Rn. The game
is completed when at least one pursuer captures the evader. The first study is on a pursuit game where
the pursuers can move everywhere in a set M that contain a closed convex compact set S, but the
evader can only move within S. In this part, parallel strategy and the concept of fictitious pursuers
are used.

The second part is on a pursuit game where all players are confined within an n-dimensional cube.
A new method of trajectories for pursuers using parallel strategy and concept of fictitious pursuers, is
constructed to obtain a sufficient condition for the pursuit to be completed with a guaranteed pursuit
time.
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The final part of this study use the results in the first two parts to obtain solution of a pursuit
differential game of finitely many pursuers against one evader in a closed convex compact hyperspace,
with an improved guaranteed pursuit time from the one in [10]. We note that in this article, real
pursuer is meant to be pursuer, when it is necessary to distinguish from fictitious pursuer.

2. Notation and preliminary results

In this section we state some necessary basic definitions for this study.

Definition 1. G(A,B) is a game where all pursuers are in space A and evader in space B.

Definition 2. Control function for pursuer in the space A of the game is a measurable function
ui(·) = ui(t), t > 0, if | ui(t) |6 1, t > 0, and the solution xi(·) = xi(t), t > 0 of the initial value
problem ẋi = ui(t), xi(0) = xi0, i ∈ {1, 2, . . . n} satisfies the inclusion

xi(t) ∈ A.

Definition 3. Control function for evader in the space A of the game is a measurable function
v(·) = v(t), t > 0, if | v(t) |6 1, t > 0, and the solution y(·) = y(t), t > 0, of the initial value problem
ẏ = v(t), y(0) = y0, satisfies the inclusion

y(t) ∈ A.

Definition 4. Strategy of the pursuer in the space A of the game is a function Ui : R
n×Rn×H(0, 1) →

H(0, 1), such that Ui = Ui(xi, y, v) for i ∈ {1, 2, . . . , n}, for any control of the evader v(t), if the initial
value problem

ẋi = Ui(xi, y, v(t)), xi(0) = xi0, (1)

ẏ = v(t), y(0) = y0, (2)

has a unique absolutely continuous solution (xi(t), y(t)), t > 0, with xi(t), y(t) ∈ A, t > 0.

Definition 5. Pursuit can be completed at some time τ > 0 by the pursuer xi, if xi(τ) = y(τ) for
some i ∈ {1, 2, . . . , n}.

Definition 6. T is called guaranteed pursuit time if there exist strategies of pursuers U1, U2, . . . , Un
such that for any control of the evader v(·), an equality xi(τ) = y(τ) holds for some i ∈ {1, 2, . . . , n}
and 0 6 τ 6 T , where (xi(t), y(t)) is the solution of (1), (2) at v = v(t), t > 0.

3. Main result

3.1. Pursuit game in a set containing a closed convex compact set

In this subsection, we study a pursuit game where fictitious pursuers can move within a set which is
beyond the area of movement allowed for real pursuers and evader, which is a closed convex compact
set. It is proved that pursuit can be completed in this game. It is also shown that, the guaranteed
pursuit time of this game is the same for the guaranteed pursuit time of the pursuit game confined in
the area of trajectories of the real pursuers and the evader.

Theorem 1. Let M be a set containing a closed convex compact set S and y(t) ∈ S for t > 0. Then
pursuit can be completed in G(M,S).

Proof. Suppose S ⊂ M and y(t) ∈ S for t > 0. Now consider game G(S, S) which means xi(t) ∈ S
for i = 1, 2, . . . , n and y(t) ∈ S for t > 0. Note that S is contained in M and pursuers could only
move within S for game G(S, S) using parallel strategy. Therefore, in order to maintain the parallel
movement of pursuers against evader at all time, we introduce fictitious pursuers x̂1, x̂2, . . . , x̂n that
can move inside or outside of S, but still within M , such that
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xi(t) = F (x̂i(t)), i = 1, 2, . . . , n, (3)

for time t > 0, and the function F : M → S is a projection function defined by the equation:

|F (x̂i) − x̂i| = min
a∈S

|a− x̂i|, x̂i ∈M. (4)

By (4), it is clear that the line xix̂i is a normal line at point xi, on the border of S. Indeed, if
x̂i ∈ S, then |F (x̂i) − x̂i| = min

a∈S
|a − x̂i| = 0 which implies x̂i = F (x̂i) = xi. In other words, when

movement of real pursuers are in S then fictitious pursuers coincide with the real pursuers, that is, if
x̂i(t) ∈ S then x̂i(t) = xi(t) = F (x̂i(t)). On the other hand, when fictitious pursuers are outside S but
still within M , the real pursuers will move according to the function F defined in equation (4).

As a note, the dynamics of the fictitious pursuer are defined by the following equations:

˙̂xi = ûi, x̂i0 = xi0, |ûi| 6 1, i = 1, 2, . . . , n, (5)

where x̂i(t), ûi ∈M .
We note that the strategy of x̂i in M is the same parallel strategy as that of xi in S.
By the property of function F , xi(t) is an absolutely continuous function and hence differentiable

almost everywhere in S. Thus, the control ui(t) of xi(t) is as follows:

ẋi(t) =
d

dt
xi(t) =

d

dt
F (x̂i(t)) = ui(t), i = 1, 2, . . . , n. (6)

Indeed, the control ui(t) in S is admissible, that is |ui(t)| 6 1 as shown below:

|ui(t)| = lim
h→0+

∣∣∣∣
xi(t + h) − xi(t)

h

∣∣∣∣

= lim
h→0+

∣∣∣∣
F (x̂i(t+ h)) − F (x̂i(t))

h

∣∣∣∣

6 lim
h→0+

∣∣∣∣
x̂i(t + h) − x̂i(t)

h

∣∣∣∣

= |ûi(t)|
6 1.

(7)

Finally, by the parallel strategy, pursuit can be completed in game G(M,S). �

The second theorem justifies the use of fictitious pursuers in finding the guaranteed pursuit time
for the pursuit game in our study.

Theorem 2. The guaranteed pursuit time for G(S, S) and G(M,S) are the same.

Proof. Suppose pursuit can be completed in G(M,S) with guaranteed time T . Hence, there exist
strategies û1, û2, . . . , ûn in M by fictitous pursuers x̂1, x̂2, . . . , x̂n such that x̂i(τ) = y(τ) for some
i ∈ {1, 2, . . . , n} and 0 6 τ 6 T , where x̂i(t) ∈ M for t ∈ [0, T ], i = 1, 2, . . . , n. However, y(τ) ∈ S,
and so we obtain y(τ) = x̂i(τ) = xi(τ) ∈ S and thus pursuit is achieved in G(S, S) with the same
guaranteed pursuit time T . �

3.2. Many pursuers and one evader game in an n-dimensional cube

In this subsection, we begin by solving a pursuit game within a geometrical structure in the form of
an n-dimensional cube with the center at the origin. The guaranteed pursuit time is obtained thru a
new method in applying parallel strategy for the pursuers.

The pursuit differential game of geometric constraint with many pursuers against one evader, where
movement of all players are confined within a cube N of side a, is defined as follows:

For n > 3,

N =

{
(q1, q2, . . . , qn)

∣∣∣
−a
2

6 qi 6
a

2
, i = 1, 2, . . . , n, a > 0

}
. (8)
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The center of the cube defined in our project is the origin, unlike the cube in [10]. Motion of players
are described by the following differential equation;

xi : ẋi = ui, xi(0) = xi0, |ui| 6 1, i = 1, 2, . . . , n,

y : ẏ = v, y(0) = y0, |v| 6 1,
(9)

where xi, y, ui, v, xi0, y0 ∈ N . Note that from (9), the maximum speed of each player is assumed to
be 1. The following theorem is to be proven.

Theorem 3. For n > 3, the guaranteed pursuit time in the pursuit differential game of n pursuers
against one evader in the cube N is the time

T =
a

2

(√
n+ n

√
n− 1 + n

)
.

Proof.

I. Constructed Strategy.
We divide the motion of each pursuer into two stages. The strategy of movement of each pursuer
is different from the one in [10], especially in Stage 2. The difference here is largely based on
movement of players to catch the projection of the evader in a space, rather than on the side of
cube.
Stage 1.
To consider the guaranteed pursuit time, we first assume that xi0 6= (0, 0, . . . , 0) for i = 1, 2, . . . , n
and each pursuer xi starts from time zero. Also, all pursuers move on the time interval [0, |xi0|]
along their respective distinct straight line towards the center O = (0, 0, . . . , 0) of the cube N . The
control function of each xi in this stage is then defined as follows:

ui(t) = − xi0
|xi0|

, 0 6 t 6 |xi0| , i = 1, 2, . . . , n. (10)

Note that |xi0| 6= 0 since xi0 6= (0, 0, . . . , 0) and also at time ti = |xi0|, the pursuer xi reaches
the point O. The control function ui(t) is a unit vector which means, each pursuer moves with
maximum speed 1.
Stage 2.
Stage 2 describes a new method of constructing the strategy for pursuer xi when t > ti. In [10],
movement of pursuers after reaching the center of its cube, are on the side of the cube but here,
each pursuer moves from the origin O of N and captures the projection of the evader on the
(n− 1)-dimensional cube Qi, i ∈ {1, 2, . . . , n} defined as follows:

Qi =
{

(s1, s2, . . . , sn)
∣∣∣ si = 0,−a

2
6 sj 6

a

2
, sj ∈ R, j 6= i, j ∈ {1, 2, . . . , n}

}
. (11)

From the definition above, note that the length of the diagonal of Qi is a
√
n− 1 and thus, at any

time of the game, the distance of each pursuer from the center O of N is at most a
√
n−1
2 .

Also observe that the center of each Qi is the same as the center O ofN , and eachQi is perpendicular
to qi-axis, i ∈ {1, 2, . . . , n}.
Now for t > ti, pursuer xi moves from stage 1 to stage 2. Hence, time ti = |xi0| is
called switch time and xi moves from the center of Qi and capture the projection of the
evader y on Qi. We consider the projection zi(t) of y(t) = (y1(t), y2(t), . . . , yn(t)) on Qi
as zi(t) = (y1(t), y2(t), . . . , yi−1(t), 0, yi+1(t), . . . , yn(t)), with yi(ti) = yi0, and zi0 = zi(ti) =
(y10, y20, . . . , yi−1,0, 0, yi+1,0, . . . , yn0).
Also for t > ti, the velocity of the evader on Qi is v(t) = (v1(t), v2(t), . . . , vn(t)), and the velocity
wi(t) of projection zi(t) is wi(t) = (v1(t), v2(t), . . . , vi−1(t), 0, vi+1(t), . . . , vn(t)).
The pursuit differential game in Qi is then described by the following equations:
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xi : ẋi = ui, xi(ti) = xi0, |ui| 6 1, i = 1, 2, . . . , n,

zi : żi = wi, zi(ti) = zi0, |wi| 6 1,
(12)

where xi, zi, ui, wi, xi0, zi0 ∈ Qi.
Observe that |wi|2 = |v|2 − v2i for i = 1, 2, . . . , n. Let τi be the first time when xi(τi) = zi(τi), that
is, the time when xi captures the projection zi of the evader in Qi. Next, we specify the strategy
of xi in Qi when xi(t) 6= zi(t) as

ui = wi − (wi, ei)ei + ei
√

1 − |wi|2 + (wi, ei)2, ti < t 6 τi, (13)

where ei = zi0
|zi0| .

Now let Qi = {(s1, s2, . . . , sn) | si = 0, sj ∈ R, j 6= i, j ∈ {1, 2, . . . , n}} be an unbounded (n − 1)-
dimensional hyperplane that contain Qi. By Theorem 1, the pursuit can be completed in G(Qi, Qi),
that is, zi(t

′) = xi(t
′) for some t′ > ti.

Now, since Qi is an (n − 1)-dimensional cube and the length of its diagonal is a
√
n− 1, then for

t > ti, we have the dot product

(zi(t) − xi(t), ei) 6
a
√
n− 1

2
.

This implies that if xi travel the distance of a
√
n−1
2 , then the projection zi of the evader is already

captured at time t′, meaning that pursuit is completed and thus,

|xi(t′)| 6
a
√
n− 1

2
. (14)

Therefore,

(xi(t
′), ei) 6

a
√
n− 1

2
.

For t > τi, pursuer xi will pursue the real evader y within the hypercube N and use the following
strategy,

ui = ξi
√

1 − |wi|2, (15)

where

ξi =

{
1, yi(τi) > 0,

−1, yi(τi) < 0.

II. Guaranteed Pursuit Time.
Next, we calculate the guaranteed pursuit time for the game within the cube. In stage 1, the
distance D1 between all pursuers and the center O of N is estimated from above as

D1 6
1

2
a
√
n. (16)

All pursuers move along distinct respective straight lines at the same time from their respective
initial positions to the center O of N . Since 0 < |xi0| 6 1

2a
√
n, each pursuer is at the center O of

N by the time T1 = 1
2a

√
n, where each pursuer moves with maximum speed 1.

In stage 2, strategies (13) and (15) are parallel strategies of which pursuit can be completed. Recall
that τi is the time such that zi(τi) = xi(τi) for i = 1, 2, . . . , n. To obtain the guaranteed pursuit
time for the whole game, we assume zi0 6= 0 for i = 1, 2, . . . , n.
Now, for ti < t 6 τi, the total distance D2 between the pursuers and the projections of the evader
is estimated from above as follows:

D2 6
n∑

i=1

a
√
n− 1

2
=

1

2
an

√
n− 1, (17)

where the diagonal of Qi for i = 1, 2, . . . , n is a
√
n− 1.
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For t > τi, the total distance D3 between the pursuers and the evader is estimated from above as
follows:

D3 6
n∑

i=1

a

2
=
an

2
. (18)

Note that the length of the side of N is a.
By strategies (13) and (15) and noting that 0 6

√
1 − |wi|2 6 1, these distance decreases at the

rate of α(t) which is calculated as follows:

α(t) =
n∑

i : ti<t6τi

(√
1 − |wi|2 + (wi, ei)2

)
+

n∑

i : t>τi

(√
1 − |wi|2

)

>
n∑

i : t>τi

(1 − |wi|2)

=

n∑

i : t>τi

[
1 −

(
|v|2 − v2i

)]

> 1.

(19)

Hence by stage 1 and 2, the total time T ′ taken by n pursuers to catch the evader is estimated
from above as:

T ′ 6
D1 +D2 +D3

1

6
a

2

(√
n+ n

√
n− 1 + n

) (20)

and hence, the guaranteed pursuit time is T = a
2

(√
n+ n

√
n− 1 + n

)
. �

3.3. Guaranteed pursuit time of the game in a closed convex compact set

Any closed convex compact set S can be contained in the hypercube N defined by (8). Motion of the
real pursuers and the evader only occur within S but the fictitious pursuers can move either inside or
outside of S but still within N at all time. If a fictitious pursuer x̂i for i ∈ {1, 2, . . . , n} is inside S
then it coincides with the real pursuer xi and they move as one player. On the other hand, if x̂i is
outside S but still inside N , the corresponding real pursuer xi will move according to the projection
of x̂i in S as described by (3). Therefore, we have game G(S, S) and G(N,S). We note that x̂i0 = xi0
for i = 1, 2, . . . , n and the strategy of x̂i and xi is the same as described by (13). Now, we state our
main result which is the guaranteed pursuit time in G(S, S).

Theorem 4. Let S be a closed convex compact set of diameter a which is contained in a hypercube
N of side a in Rn. Then, a guaranteed pursuit time in the pursuit differential game G(S, S) of n
pursuers against one evader in S for n > 3, is the time

T =
a

2

(√
n+ n

√
n− 1 + n

)
.

Proof. Since S ⊂ N , then by Theorem 2 and Theorem 3, the result is obtained. �

4. Conclusion

In this project, it is proven that pursuit can be completed for a pursuit game that occur in a set that
contain a closed convex compact set, with its guaranteed pursuit time, is the same as the guaranteed
pursuit time for the pursuit game confined within the closed convex compact set. This result leads to our
finding of the guaranteed pursuit time T for a pursuit differential game in any closed convex compact
hyperspace by solving a pursuit problem within a hypercube with side a and of n-dimension that
contain the convex hyperspace. The guaranteed pursuit time obtained is T = a

2

(√
n+ n

√
n− 1 + n

)
.

Mathematical Modeling and Computing, Vol. 9, No. 1, pp. 9–17 (2022)



16 Alias I. A., Jaman K., Ibragimov G.

Acknowledgement

The present research is fully supported by the National Fundamental Research Grant Scheme FRGS
of the Ministry of Higher Education Malaysia, FRGS/1/2020/STG06/UPM/02/2.

[1] Isaacs R. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control
and Optimization. John Wiley and Sons, New York (1965).

[2] Petrosjan L. A. Pursuit games with a Survival Zone. Vestnic Leningard State Univ. 13, 75–85 (1967), (in
Russian).

[3] Friedman A. Differential Games. John Wiley & Sons, New York (1971).

[4] Ivanov R. Simple Pursuit–Evasion on Compact. Doklady Akademii Nauk SSSR. 254 (6), 1318–1321 (1980).

[5] Berkovitz L. D. Differential Game of Generalized Pursuit and Evasion. SIAM Journal on Control and
Optimization. 24 (3), 361–373 (1986).

[6] Chikrii A. A. Simple Pursuit of One Evader by a Group. Cybernetics and Systems Analysis. 28 (3),
438–444 (1992).

[7] Petrosyan L. A. Differential Games of Pursuit. World Scientific, Singapore, London (1993).

[8] Ibragimov G., Khakestari M., Kuchkarov A. S. Solution of a Linear Pursuit–Evasion Differential Game
with Closed and Convex Terminal Set. Journal of Mathematical and Fundamental Sciences. 44 (1), 1–12
(2012).

[9] Ibragimov G., Satimov N. A Multiplayer Pursuit Differential Game on a Closed Convex Set with Integral
Constraints. Abstract and Applied Analysis. 2012, Article ID 460171, 12 pages (2012).

[10] Alias I. A., Ramli R., Ibragimov G., Narzullaev A. Simple Motion Pursuit Differential Game of Many Pur-
suers and One Evader on Convex Compact Set. International Journal of Pure and Applied Mathematics.
102 (4), 733–745 (2015).

[11] Ferrara M., Ibragimov G., Salimi M. Pursuit–Evasion Game of Many Players with Coordinate-wise Integral
Constraints on a Convex Set in the Plane. Atti della Accademia Peloritana dei Pericolanti. Classe di Scienze
Fisiche, Matematiche e Naturali. 95 (2), A6-1–A6-6 (2017).

[12] Chernous’ko F. L., Zak V. L. On Differential games of Evasion from Many Pursuers. Journal of Optimiza-
tion Theory and Applications. 46 (4), 461–470 (1985).

[13] Borowko P., Rzymowski W., Stachura A. Evasion from Many Pursuers in the Simple Motion Case. Journal
of Mathematical Analysis and Applications. 135 (1), 75–80 (1988).

[14] Chodun W. Differential Games of Evasion with Many Pursuers. Journal of Mathematical Analysis and
Applications. 142 (2), 370–389 (1989).

[15] Ibragimov G., Salleh Y. Simple Motion Evasion Differential Game of Many Pursuers and One Evader with
Integral Constraints on Control Functions of Players. Journal of Applied Mathematics. 2012, Article ID
748096, 10 pages (2012).

[16] Alias I. A., Ibragimov G., Rakhmanov A. Evasion Differential Game of Infinitely Many Evaders from In-
finitely Many Pursuers in Hilbert Space. Dynamic Games and Applications. 6 (2), 1–13 (2016).

[17] Ibragimov G., Ferrara M., Kuchkarov A., Pansera B. A. Simple Motion Evasion Differential Game of Many
Pursuers and Evaders with Integral Constraints. Dynamic Games and Applications. 8, 352–378 (2018).

[18] Ibragimov G., Ferrara M., Ruziboev M., Pansera B. A. Linear Evasion Differential Game of One Evader
and Several Pursuers with Integral Constraints. International Journal of Game Theory. 50, 729–750
(2021).

[19] Krasovskii N. N., Subbotin A. I. Game-Theoretical Control Problems. Springer, New York (1988).

[20] Pontryagin L. S. Selected works. Nauka, Moscow (1988), (in Russian).

Mathematical Modeling and Computing, Vol. 9, No. 1, pp. 9–17 (2022)



Pursuit differential game of many pursuers and one evader in a convex hyperspace 17

Диференцiальна гра переслiдування одного утiкача багатьма
переслiдувачами в опуклому гiперпросторi

Алiас I. А., Джаман К., Iбрагiмов Г.

Кафедра математики та статистики,
Iнститут математичних дослiджень,

Унiверситет Путра Малайзiї,
43400 UPM Серданг, Селангор, Малайзiя

Дослiджено диференцiальну гру переслiдування одного утiкача багатьма переслiду-
вачами в непорожньому замкненому опуклому компактному гiперпросторi. Переслi-
дування вважається завершеним, якщо хоча б один переслiдувач спiвпадає з утiка-
чем. Функцiї керування гравцями обмеженi геометрично. Розв’язується гра переслi-
дування у множинi, що мiстить замкнений опуклий компактний набiр, i показано,
що переслiдування завершується у межах скiнченновимiрного куба. Для розв’язання
гри використовуються паралельна стратегiя та фiктивнi переслiдувачi, що забезпечує
гарантований час переслiдування

Ключовi слова: диференцiальна гра, паралельна стратегiя, переслiдування, куб,
опукла множина.

Mathematical Modeling and Computing, Vol. 9, No. 1, pp. 9–17 (2022)


