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ABSTRACT. We study the possible types of future
singularities in the isotropic homogeneous cosmologi-
cal models for the arbitrary equation of state of the
contents of the Universe. We obtain all known types
of these singularities as well as two new types using a
simple approach. No additional singularity types are
possible. We name the new singularities type “Big
Squeeze” and “Little Freeze”. The “Big Squeeze” is
possible only in the flat Universe after a finite time
interval. The density of the matter and dark energy
tends to zero and its pressure to minus infinity. This
requires the dark energy with a specific equation of
state that has the same asymptotical behaviour at low
densities as the generalised Chaplygin gas. The “Little
Freeze” involves an eternal expansion of the Universe.
Some solutions can mimic the ΛCDM model.
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1. Introduction

During almost a century, cosmologists considered
only two possible scenarios of the future of our Uni-
verse – an eternal expansion of open or flat Universe
or future recollapse of the closed Universe with the “Big
Crunch”. Nowadays we know that the Universe con-
tains not only several types of matter, including the
dark matter, baryonic matter and massless particles,
but also the mysterious dark energy (DE). We know
about its existence only for the last few decades. Hon-
estly, we know very little about DE properties, in par-
ticular about the DE equation of state.
Even for the simplest type of the DE equation of

state
p = wρ (1)

with w = const, where p is the pressure and ρ is the
mass density, the Universe can meet its end in abso-
lutely different way. If w < −1 we deal with so-called
phantom energy. In this case during the finite time pe-
riod the matter and energy density, the Hubble param-
eter H and the scale factor of the Universe a increase
to infinity. Such type of possible future singularity was

discovered by Caldwell, Kamionkowski and Weinberg
(2003) and called “Big Rip”.
Note that the latest estimations of the w value do

not reject this possibility. The data on the cosmic
microwave background spectra from the Planck and
WMAP satellites together with ground measurements
and data from baryonic acoustic oscillations (BAO)
provide the estimation w = −1.13+0.23

−0.25 at 95% con-
fidence level (CL). The 9-year data from the WMAP
satellite plus the determination of the Hubble constant
and BAO data provide estimations w = −1.073+0.090

−0.089

for the flat Universe and w = −1.19 ± 0.12 for the
non-flat Universe at 68% CL. Adding 472 type Ia
supernovae data improves these estimations to w =
−1.084± 0.063 and w = −1.122+0.068

−0.067, respectively.
Thus, the possibility of the “Big Rip” sealing the fate

of the Universe is not to be taken lightly. This is not
the only theoretically possible type of cosmological sin-
gularity except “Big Bang” and “Big Crunch”. Their
first classification was carried out by Nojiri, Odintsov
and Tsujikawa (2005). Four possible types were found
for the singularities at t = t0 with finite t0. They in-
clude:

• Type I a, ρ, |p| → ∞ (“Big Rip”)

• Type II a→ a0; ρ→ ρ0; |p| → ∞ (“sudden”)

• Type III a → a0; ρ, |p| → ∞ (it was named “Big
Freeze” lately)

• Type IV a → a0; ρ, |p| → 0 and higher derivatives
of the Hubble parameter H diverge.

There are some singularities with t0 = ∞, too.
The “Little Rip” singularity (Frampton, Ludwick and
Scherrer, 2012) similar to the “Big Rip”, but with eter-
nal expansion is among them.
Some types of singularities were found and demon-

strated for some specific equations of state. Cosmol-
ogists considered the particular cases of the phantom
generalised Chaplygin gas equation of state, tachyon
field, scalar fields with specific potentials, etc. Natu-
rally, a question arose, whether all the possible singu-
larity types have been considered.
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In this article we try to give an exhaustive answer
to this question for the isotropic and homogeneous
Universe. To make it worse, in addition to unknown
DE equation of state we have three possible signs of
space curvature. We are interesting in the complete
list of the possible types of future singularities for an
arbitrary equation of state for three signs of space
curvature. We consider an arbitrary equation of
state p(ρ) without any constrains except ρ ≥ 0. In
particular we do not use the strong energy condition
ρ+ 3p > 0.

2. The search for future singularities in
FLRW Universe

We consider the homogeneous isotropic Uni-
verse with the Friedmann-Lemâıtre-Robertson-Walker
(FLRW) metric

ds2 = dt2 − a(t)2
[
dχ2 + F 2(χ)dO2

]
, (2)

where a(t) is the scale factor, dO2 = dΘ2+cos2(Θ)dφ2

is the distance element on a unit sphere, F (χ) = sin(χ)
and k = 1 for the closed Universe, F (χ) = sinh(χ) and
k = −1 for the open one, and F (χ) = χ and k = 0 for
the spatially flat models. We use the system of units
in which G = 1 and c = 1. This Universe is filled by all
kinds of matter and dark energy with a mass density ρ
and an effective pressure p(ρ). In this system of units
the energy density ε coincides with ρ. The Einstein
equations for the metric (2) reduce to the well-known
Friedmann equations. We need the expression for the
Hubble parameter H = a−1da/dt

H2 =
8π

3
ρ− k

a2
(3)

and the hydrodynamical equation or the energy con-
servation equation

dρ

dt
= −3(ρ+ p)H. (4)

The Friedmann equation for the scale factor

d2a

dt2
= −4π

3
a(ρ+ 3p) (5)

follows from the equations (3) and (4).

2.1. Flat model

We start from the flat model with k = 0. The equa-
tion (3) provides the expression H = (8πρ/3)1/2. Af-
ter substituting it into (4) we obtain a simple equation
with the solution

∆t = t0 − t1 = − 1

2(6π)1/2

∫ ρ0

ρ1

dρ

ρ1/2 (ρ+ p(ρ))
. (6)

Here the subscript 1 corresponds to the initial param-
eters (i.e. t1 is “now”) and the subscript 0 corresponds
to the parameters of the Universe in the future at time
t0 after a time interval ∆t. We will denote the instant
of time of any terminal cosmological singularity as t0,
and use (6) to analyse their properties. After find-
ing the dependence ∆t(ρ) we find the inverse function
ρ(∆t) and H(∆t), the integration of the last one gives
ln(a).
The first thing to check is the finiteness of ∆t. If the

integral in (6) diverges we obtain t0 = ∞ and this case
deals with the asymptotic evolution in the future. An
example of such solution is the “Little Rip”.
We are going to go over all possible types of singu-

larity. We consider three possible cases for ρ0. It can
be infinite, finite and nonzero, or equal to zero. Let us
consider it one by one.

2.1.1 Infinite terminal density

Let us start with a well-known “Big Rip” singularity
to illustrate our approach. We consider the equation
of state (1). If w = −1 we deal with the effective cos-
mological constant. According to (4) in this case the
density and the pressure are constant. If w > −1 the
values of ρ and H decrease in time because of (4). If
w < −1 the values of ρ and H increase due to (4) and
become infinite at time t0. Equation (6) gives us in
this case the relations

ρ1 =
1

6π(1 + w)2∆t2
, H =

2

3|1 + w|∆t
. (7)

This is the so-called “Big Rip” case. The scale factor

of the Universe diverges a ∝ ∆t−
2

3|1+w| .
A somewhat similar case is when w is not constant,

but asymptotically tends to −1: ρ/p −−−→
ρ→∞

−1. Let us

assume that it follows the power law

ρ+ p −−−→
ρ→∞

−Aρα (8)

with α < 1, A = const. The integral in (6) is finite
at 1/2 < α < 1. In this case we have the “Big Rip”
withH ∝ ∆t1/(1−2α), ln a ∝ ∆t2(1−α)/(1−2α). It occurs
later and has a sharper shape for the same initial value
ρ1 in comparison with the equation of state (1).
If α < 1/2 the integral in (6) becomes divergent and

we have to put t0 = ∞. This is the so-called “Little
Rip” introduced in (Frampton, Ludwick and Scherrer,
2012). In this case we rewrite (6) in the form

∆t = t− t1 = − 1

2(6π)1/2

∫ ρ(t)

ρ1

dρ

ρ1/2 (ρ+ p(ρ))
. (9)

This case corresponds to an eternally accelerating ex-
pansion of the Universe: H ∝ t1/(1−2α), ln a ∝
t2(1−α)/(1−2α).
In the intermediate case α = 1/2 we must take into

account a possible logarithmic divergence and consider
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the equation of state with the asymptote ρ + p −−−→
ρ→∞

−Aρ1/2(ln ρ)β . At β > 1 we deal with the uncon-
ventional “Big Rip” with ln ρ ∝ ∆t1/(1−β), at β < 1
we deal with the “Little Rip” with ln ρ ∝ t1/(1−β).
At β = 1 we consider the equation of state with the
asymptotic ρ + p −−−→

ρ→∞
−Aρ1/2(ln ρ)(ln ln ρ)γ . There

is the “Big Rip” with ln ln ρ ∝ ∆t1/(1−γ) at γ < 1 and
the “Little Rip” with ln ln ρ ∝ t1/(1−γ) at γ > 1.

So far we considered cases with a −−−→
ρ→∞

∞, but

this is not required. For example, a type III singu-
larity has finite t0 and a0 values, but ρ,H, |p| −−−→

t→t0
∞.

Let us consider this type of singularity. From H =
a−1da/dt −−−→

t→t0
∞ and a(t) −−−→

t→t0
a0 we see that a(t)

is regular, but da/dt diverges at t = t0. This is possible
if the scale factor has a power-law asymptote

a(t) −−−→
t→t0

a0 −B(t0 − t)λ (10)

with 0 < λ < 1. This yilds H −−−→
t→t0

λB(t0 − t)λ−1/a0.

From (3) we obtain for this case ρ(t) ∝ (t0 − t)2(λ−1).
After substituting these expressions in (4) we get ρ(t)+
p(t) ∝ (t0− t)λ−2. This corresponds to the equation of
state (8) with α = 2−λ

2−2λ , λ = 2α−2
2α−1 . In this case α > 1

and |p| ∝ ρα ≫ ρ in the vicinity of the singularity.

Let us consider this type of singularity directly from
(6). If ρ −−−→

t→t0
∞ but ρ/p −−−→

ρ→∞
0, e.g. p(ρ) −−−→

ρ→∞
−Aρα with α > 1, A = const we also have a singularity
with H ∝ ∆t1/(1−2α), ln a ∝ ∆t2(1−α)/(1−2α) = ∆tλ.
Note that at α < 1 we get the “Big Rip” case consid-
ered above. But in the case of the “Big Freeze” singu-
larity the scale factor tends to some constant value.

If we deal with the power law (10) for the scale factor
with some noninteger λ > 1 we have no “Big Freeze”
singularity, but some higher derivatives of H diverge.
If 1 < λ < 2 both parts of the Friedmann equation
(5) diverge, if λ > 2 both of them tend to zero. This
case corresponds to ρ −−−→

t→t0
0, |p| −−−→

t→t0
∞ and we will

consider it later.

Is a version of the “Big Freeze” with t0 = ∞ pos-
sible? It could be named the “Little Freeze” simi-
larly to the situation with the “Big Rip” and the “Lit-
tle Rip”. In this case instead of (10) we consider an
asymptotic behaviour of the scale factor in the form
a(t) −−−→

t→∞
a0 − Btλ with λ < 0. According to (3)

and (4) we have in this case ρ(t) ∝ t2λ−2 −−−→
t→∞

0 and

p(t) ∝ tλ−2 −−−→
t→∞

0. This possibility will be consid-

ered later, too.

2.1.2 Finite terminal density

Let us consider singularities with a nonsingular
ρ −−−→

t→t0
ρ0 ̸= 0. In this case all nontrivial solutions

require p + ρ factor to diverge or vanish according to

(6). In the first case |p| → ∞, the second one corre-
sponds to the crossing the line ρ+p = 0. It corresponds
to the equation of state of the cosmological constant,
separating the phantom energy domain with an effec-
tive w < −1 from the domain of not so exotic matter
w > −1. We will see that the possibility of such cross-
ing depends on the parameters of the equation of state.
We start with considering solutions with finite t0.

Both cases could be described by a single power-law
asymptote of the equation of state

ρ+ p(ρ) −−−→
ρ→ρ0

C(ρ− ρ0)
µ (11)

with C = const.
At µ < 0 the modulus of the pressure tends to in-

finity, at µ > 0 the ρ + p reaches zero. The finiteness
of t0 is possible only at µ < 1. In this case we have
ρ(t) − ρ0 ∝ ∆t1/(1−µ), ρ(t) + p(t) ∝ ∆tµ/(1−µ). The
singularity with µ < 0 and |p| −−−→

ρ→ρ0
∞ is referred to

as the type II or sudden singularity. The value of H
tends to finite H0, so the scale factor linearly increases.
The achievement of ρ+p = 0 condition in finite time

is possible if 0 < µ < 1. Thus, the Universe can change
the type of its equation of state from phantom energy
to a more ordinary one, but only for such kind of the
asymptote of the equation of state.
At µ > 1 we obtain t0 = ∞, i.e. the asymptotic

approximation of ρ + p = 0 condition. The evolution
of such a Universe at the terminal stage practically co-
incides with the evolution of the flat Universe with a
cosmological constant and without any other types of
matter. There is no spacetime singularity in this case.
Using the approximation (11) we obtain the asymp-
totes ρ(t)− ρ0 ∝ t1/(1−µ), ρ(t)+ p(t) ∝ tµ/(1−µ) → 0 at
t→ ∞. This solution can mimic the ΛCDM model.

2.1.3 Zero terminal density

This last possibility assumes ρ0 = H0 = 0, which
means that a scale factor tends to some extremum.
But this does not means an asymptotic expansion or
contraction of the Universe is impossible. One simple
example is the case a ∝ tη, 0 < η < 1 when the Uni-
verse keeps expanding, but H decreases and tends to
zero.
Let us consider the power-law asymptote of the equa-

tion of state
ρ+ p −−−→

ρ→0
−Dρν (12)

and substitute it into (6). The integral in (6) is finite
at ν < 1/2, which yilds finite t0. In this case ρ ∝
∆t2/(1−2ν) −−−→

t→t0
0, H ∝ ∆t1/(1−2ν) −−−→

t→t0
0, ρ + p ∝

∆t2ν/(1−2ν). If 0 < µ < 1/2, pressure tends to zero.
This is a type IV singularity. If λ = 1 + 1/(1 − 2ν)
is a noninteger number, the higher derivatives of H ∝
∆tλ−1 diverge. The condition 0 < µ < 1/2 means
λ > 2, so the first derivative of H is finite, as well as
both sides of the Friedmann equation (5). The value of
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Table 1: Possible cosmological singularities except “Big Bang” and “Big Crunch”

T Nickname EoS ρ0 |p0| p0 + ρ0 a0 ρ p+ ρ a
t→ t0, ∆t = t0 − t→ 0

I “Big Rip” (1), w < −1 ∞ ∞ −∞ ∞ ∝ ∆t−2 ∝ ∆t−2 a ∝ ∆t−2/(3|1+w|)

I “Big Rip” (8), 1/2 < α < 1 ∞ ∞ −∞ ∞ ∝ ∆t2/(1−2α) ∝ ∆t2α/(1−2α) ln a ∝ ∆t2(1−α)/(1−2α)

III “Big Freeze” (8), α > 1 ∞ ∞ −∞ a0 ∝ ∆t2/(1−2α) ∝ ∆t2α/(1−2α) λ = (2α− 2)/(2α− 1)
II “sudden” (11), µ < 0 ρ0 ∞ −∞ a0 ρ− ρ0 ∝ ∆tA ∝ ∆tµA a→ a0 −H0∆t
IV (12), 0 < ν < 1/2 0 0 0 a0 ∝ ∆t2/(1−2ν) ∝ ∆t2ν/(1−2ν) λ = (2− 2ν)/(1− 2ν)
New “Big Squeeze” (12), ν < 0 0 ∞ −∞ a0 ∝ ∆t2/(1−2ν) ∝ ∆t2ν/(1−2ν) λ = (2− 2ν)/(1− 2ν)

t→ ∞
“Little Rip” (8), 0 < α < 1/2 ∞ ∞ −∞ ∞ ∝ t2/(1−2α) ∝ t2α/(1−2α) ln a ∝ t2(1−α)/(1−2α)

“Little Rip” (8), α < 0 ∞ ∞ 0 ∞ ∝ t2/(1−2α) ∝ t2α/(1−2α) ln a ∝ t2(1−α)/(1−2α)

“Little Freeze” (12), 1/2 < ν < 1 0 0 0 a0 ∝ t2/(1−2ν) ∝ t2ν/(1−2ν) a→ a0 −BtB

“Little Freeze” (12), ν > 1 0 0 0 ∞ ∝ t2/(1−2ν) ∝ t2ν/(1−2ν) ln a ∝ t2(ν−1)/(2ν−1)

λ is the same as in (10). We can introduce the effective
barotropic index w = p/ρ ∝ ∆t(2ν−2)/(1−2ν) → ∞.

If µ < 0 we have |p| −−−→
t→t0

∞. This is a new type of

the future singularity, which we name “Big Squeeze”.
It combines certain properties of the sudden singularity
and the type IV singularity. It corresponds to 1 < λ <
2 in (10). The first derivative of H and both sides of
the Friedmann equation (5) diverge. The asymptotics
near this singularity type are ρ ∝ ∆t2/(1−2ν) −−−→

t→t0
0,

H ∝ ∆t1/(1−2ν) −−−→
t→t0

0, |p| ∝ ∆t2ν/(1−2ν) −−−→
t→t0

∞,

a −−−→
t→t0

a0+const∆t
(2−2ν)/(1−2ν) → a0. It requires the

equation of state (12) with negative ν. The example
is the generalized Chaplygin gas which occurs in some
cosmological theories.

At 1/2 < ν < 1 the integral in (6) diverges and
t0 = ∞. In this case ρ ∝ t2/(1−2ν) −−−→

t→∞
0, H ∝

t1/(1−2ν) −−−→
t→∞

0, ρ + p ∝ t2ν/(1−2ν) −−−→
t→∞

0, a −−−→
t→∞

a0 − Bt(2ν−2)/(2ν−1). This is the mentioned above so-
lution which could be named the “Little Freeze”. In
this case the effective barotropic index w = p/ρ ∝
t(2ν−2)/(1−2ν) → ∞.

At ν = 1/2 we can take into account the possible
logarithmic factor and consider the asymptotic equa-
tion of state ρ + p −−−→

ρ→0
−Dρ1/2(ln ρ)β . At β > 1

we deal with the unconventional type IV singularity
with ln ρ ∝ ∆t1/(1−β), at β < 1 we deal with the
“Little Freeze” with ln ρ ∝ t1/(1−β). At β = 1 we
consider the equation of state with the asymptotic
ρ+ p −−−→

ρ→0
−Aρ1/2(ln ρ)(ln ln ρ)γ , etc.

At ν > 1 we deal with the expanding Universe and
ln a ∝ t(2ν−2)/(2ν−1) −−−→

t→∞
∞ at D > 0 in spite of

H ∝ t1/(1−2ν) −−−→
t→∞

0. This is the new “Little Freeze”

case. The higher derivatives ofH diverge. At ν = 1 the
Universe expands according to power law a ∝ t2/3D.
The effective barotropic index w = p/ρ→ −1.

2.2. Open and closed models

The second term in the right-hand side of (3) does
not affects the properties of the singularities with
ρ,H → ∞ and ρ → ρ0 ̸= 0,H → H0 ̸= 0. The only
exception is the “Big Crunch” singularity with a → 0
which we do not study in this paper.

But we must revise a possibility of the existence and
the properties of singularities with H → 0 or ρ→ 0. A
simple analysis shows that in all cases we have no new
type of singularity. The equation of state (12) with
ν < 1 could provide the type IV or the “Big Squeeze”
singularities only for the flat model.

3. Conclusion

We tabulate all main cases of the cosmological
singularities in Table 1. T and EoS mean type and
equation of state, λ corresponds to (10), A = 1/(1−µ),
B = 2(1 − ν)/(1 − 2ν). The terminal values denoted
ρ0 and a0 are finite and nonzero. Note that the “Big
Squeeze” and the type IV cases are possible only for
the flat Universe. The asymptote (11) of the equation
of state at 0 < µ < 1 corresponds to changing the type
of energy from phantom one to ordinary one or vice
versa. At µ > 1 it provides an eternal near-ΛCDM
expansion of the Universe.
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