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ABSTRACT. Geometrodynamics of charged black
holes (BH) described by the system of Maxwell-
FEinstein equations is considered. We start from
a spherically symmetric metric, a reduced action,
and a Lagrangian written in characteristic variables.
The configuration space (CS) metric, Hamiltonian,
momentum and electromagnetic constraints are
constructed. The system has conservation laws of
charge q and mass m. The action functional is
transformed into a Jacobi-type functional in CS with a
metric conformal to the CS metric. A transformation
of field variables is introduced which brings the CS
metric to the "Lorentzian"form. The resulting CS
metric is the metric of a flat nonholonomic section
of a 4-dimensional space. In the new variables, the
squared momenta of the system has the Lorentz form.
On this basis, quantization is considered. Thanks to
the structure of the CS, the momentum operators,
the DeWitt equations, and the mass and charge
operators are constructed. The equations system of
CBH quantum states with certain q and m is
constructed. For comparison, we consider the CBH
reduced model limited in the T-region. In such the
simplified formulation, the T-model equations are
integrated and lead to the CBH with continuous
spectrum of m and q.

Keywords: spherically symmetric configurations,
configuration space, Hamiltonian constraint, DeWitt
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AHOTAIIISA. Posrigmaerhbess  3araJbHUil  ITiaxis
JI0O TEOMETPOJMHAMIKN 3apsiZKEHUX YOPHUX JPOK
(391d), mo omucyiorbcs chEePUIHO-CUMETPUIHUMU
KOH(DIryparisiMiu TpaBiTarlifHOro Ta eJeKTPOMArHiT-
Horo mojiB. Mu BUXOAUMO 3 METPHUKHU, PEIyKOBAHOL
Jil Ta JlarpaHKiaHa, 3alMCAHUX Y XaPaKTEPUCTUTHUX
3MiHHEX. BBOIATHECA y3arajbHEHI IMIBHJIKOCTI Ta MeT-
puka koudirypamniitaoro npocropy (KII). Byayorbesa
raMiJIbTOHOBA, IMITYJIbCHA Ta €JIEKTPOMATHITHA B’s3i.
Cucrema Mae 3aKOHU 30€pEXKEHHST 3apsijLy ( Ta Mach

m. BukopucToByioun ramibTOHOBY B’sI3b Ta 3aKOHU
30epeKeHHsl, 3HAXOJATbCS BHUPA3U IS IMITYJILCIB
qepe3 KoHdiryparmiitai 3miHHi Ta q 1 m. 3 piBHAHB
I IMITYJIbCiB Y (DYHKIIOHAJBHUX MOXITHUX Bim il
Oynyerbes yuxmionan mii. IMoximai mil mo q i m
NpU3BOAATL 0 piBHgAHBb TpaekTopiit B KII. [laumi
dbyHKITIOHAJ il TIepeTBOPIOETHCA HA (DYHKITIOHAJ JTil
tuny Akobi B KII 3 Merpukoro, KoHGOPMHOT 110 METPU-
ku KII. BBomuThcst mepeTBOpeHHsT TOJTHOBUX 3MIHHUX,
ski 3B07aTH MeTpuky KII mo "nopennesoro"sumy. Ile
puBoJie HesliHiitHy cucremy piBusab 3UJI o miniitnol,
Jie BCl KOMIIOHEHTH M0Jis Ioaiisitorbes. OepkaHa
Merpuka KII MoxKe pO3IIIsiIaTCst Ik METPUKA ILIIOCKO-
o HETOJIOHOMHOTO Tiepepisy 4-BuMipHOro mpocropy. B
HOBUX 3MIHHUX KBaJpaT IMITYJIbCIB CHCTEMH Ma€ TeXK
Jlopewrtis Burisia. Ha 11iit oCHOBI pO3IISIa€THCST KBAH-
TyBaHHs cucreMu. 3aBisku cTpykrypi KII Bmaerbest
MOOy/IyBaTH KOPEKTHI ONIEPATOPH IMITYJILCIB, PIBHAHHS
HeBiTTa Ta omeparopu Macu Ta 3apdaay. DBymayerbcs
cucreMa pPiBHAHDb y (YHKIIOHAJBHUX IOXITHUX JIJIst
kBanToBux crauis 3YJ] i3 meBummu ¢ i m. g
MOPIBHAHHS PO3IJISIIIAETHCS peykoBana Moneab 39/,
obmexenoi B T-obmacti. ¥V Takiit crporreniit mocra-
HOBII piBHAHHSA T-MOJIEsi IHTErPYIOTHCA 1 TPU3BOJIATD
no momemi 3Y/[ i3 GesmepepBHUME CrieKTpaMu m i
q. IlobymoBa penykoBana T-Momesr HaMidae MUISXH
TIOJTAJIBITIOTO JOCJIIJI2KEHHSI 3araJIbHOI CUCTEMH PIBHIHD
KBaHTOBOI reoMerpoauHaMiku 3/,

KurouoBi cioBa: cdepuuno-cumerpudni KoHIrypa-
mii, xoudiryparmifiauit npoctip, ['amiaproHOBa B’$3b,
omeparopu eBiTTa, Macum 1 3apsmy, KBaHTYBaHHS,
3apsiJKeHl YOPHI JTipu.

1. Introduction

The paper is devoted to the study of the classical and
quantum aspects of the geometrodynamics of charged
black holes (CBH), the research on the structure of
their configuration space (CS) and the construction of a
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system of quantum equations in functional derivatives
that describe the model of CBH.

Geometrodynamics of CBH is described by the
FEinstein equations system for a spherically symmetric
configuration of the gravitational and electromagnetic
fields in GR. As is known, the space-time metric g, of
such a configuration of fields admits the Killing vector.
The region R C M@ where this vector is timelike, is
called the R-region, while the region T' C M(4), where
this vector is spacelike, is called the T-region [Gladush
21].

First, consider the configuration of fields in the
whole M® = TJ R. We proceed from the following
standard general action for the system of gravitational
and electromagnetic fields in GR [Louko 1996, Makela

1998]
1 / c
167c K

where M R is the scalar curvature,  is the gravitational
constant, F,, = A, , — A, , is the electromagnetic
field tensor, d*zr = dzdxldz?da?, g = det |g,.|.

Stot = -

WR+ FWFW> V—gd'z, (1)

2. Classical geometrodynamics of charged BH

For non-rotating spherically symmetric
configurations, we consider the space-time metric
M@ and the electromagnetic field of the type
[Gladush 19]

R
ds? = 7 (Ndx0)2 — % (dr + Nrdyco)2 — R%do?, (2)
E= FOl == AT,O - AO,r == ¢,0 — Pr (3)
where do? = df? + sin?60da?. Field configuration
variables

={'=d"=R =¢=¢ F=¢=9¢} 4

are generalized coordinates that depend on space-time
coordinates x°, 7, besides A, B = {1,2,3}.

The action S;,; after dimensional reduction, can be
written as [Gladush 19]:

2
_ 0 _
Stot—/dx /dr£7 £—2[N+NZ/{ (5)

where
3
1
VI=TapVAVP = —SVEVE L R (V9)" ()

is the velocity square of the kinetic part of the
Lagrangian. Here I' 4 are the covariant components

of the CS metric, and I' = det |Tap| = —(c°/4x?)R?,
VA = qf‘) + K4 — are the generalized velocity
components

VE=Ro+K"R VE=¢ 0+ K VO =9 0+K? (7)

where
K®=—-N"R ,,K¢= £ N'=2(N", K= —¢, (8)
U is the potential part of the Lagrangian

c3< R?
U= + SR Er— — r T g 1Y
g frbrm e e

Let us introduce the CS metric of the by the formula

2R 2R?
R? — R, 9
- ) ©

d0? = TapVAVE (da®)® = TapDg*Dg®  (10)
Here Dq® = dg” + K4dz° are the Lie differentials
DR = dR+K®dx® D¢ = dé+ K¢da®, Do = dp+ K da®

At that, the I'4 g components are defined in (6). Then
3 1
dQ* = ——DEDR + ~R? D¢? (11)
K c

The Legendre transformation of the system leads to
the Hamiltonian action [Louko 1996]

S = /dxo/ dr {'ngo +PrBo+Pyoo
0

~NH — N"H, — My} (12)
where
2K c 9
H, = —€,Pc—2Pe,+R,Pr~0, (14)
Hy = —Pgr~0. (15)

so that H is Hamiltonian, #, is momentum, and
Hg is electromagnetic constraints expressed in terms
of momenta. For convenience, we represent the
Hamiltonian constraint in the form

1
H= 5732 -Uu (16)
where
4K c
A
P2 =T48P,Pp = —— PrPe + ﬁpg (17)
is the momentum square. Note that I'4® are the

contravariant components of the metric in the CS
introduced earlier in (6) so that T 4pl'4P = §5.

Electromagnetic constraint (15) determines the
electric field F generated by the charge @ according
to the formula

R? Q Q
P¢:mE:?:const:>E:Nﬁ (18)
The system admits the motion integrals: the total mass

Mo and the charge Q = cPg of configuration. The
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mass is determined by the mass function, which in
terms of momenta has the form (Gladush 2012, 2018)

2 A2 R2 P2
Myt = — <R+ F; EP¢ — R?) +-2 (19)

2K c 13 2R
Using the Hamiltonian constraint and conservation
laws, one can find analytical expressions for momenta
as functions of configuration variables and parameters
m and ¢. Indeed, using the relations (18), (19) and (13),
we obtain

& IR
Pe = o thota (20)
Pr = (). (21)
RFtot 26R2
where
R 2 2km Kkq?
Fior = z (RT') -1+ Rc2 - A R2 (22)

The momenta obtained in this way identically satisfy
the invariance condition of the action functional, i.e.
momentum constraint (14).

Using implicitly the integrability conditions of
functional equations

0S

o5 _95 _¢q
6R’

[T P
we find the action functional S as a solution of
the FEinstein-Hamilton-Jacobi equation in functional

derivatives depending on the variables R,£ and
parametersm and ¢ [Gladush 19]:

Pr = Pe = Py (23)

SZ/dT {g(m,q;r)+cj¢ +

3

(24)

1 - +VERE,,
C< [€RF,0; — —RR, In RRJF_&R“ >}
K 2 RR., - VgRFtot

Variations of S with respect to mass m and charge g
lead to motion trajectories in the CS

V RgFtot

5S dg

om = " FR om0 (25)
08 _ VREFora ¢ 09 =0 (26)
dq ¢cFR R ¢ Oq '

From this, follows the expressions for £/R and electric
potential

€ 2 R} q
= =Fyf°— — =¢o— f= 27
R Of Jalk ¢ ¢0 fR ) ( )
where the designations are introduced
1 0g dg 26m KQ?
= - — = —C— F - —1 - .
/ cOm’ %0 C@q ’ + 2R *R?

(28)

The resulting solution leads to the metric M@

d 2 _ N2 (de)Q
* T FpR_RFT

(P2 = RoF™Y) (dr + N"da)” - R¥do®

(29)

Since time is nowhere explicitly included in the
system, we can transform the (5) action from a space-
time representation into a configuration one, writing it
in a form similar to the Jacobi action [Landau 88]. To
do this, from the Lagrangian (5) we get

oL V2

aN ~ anz TU=0

(30)

From here we find the multiplier N = /V2/2U.
Excluding N from the action (5), we rewrite it as
follows [Barbour 2002, Kiefer 2007, Anderson 2013|

Stot :/dr/\/%{V? (da0)? :/dr/\/@
(31)

where

DO?, = 2UDQ* = 2UT 4 Dg” D¢® (32)

is the supermetric, conformal to the metric of the
original CS DQ? (10)-(11).

Note that by transforming [Gladush 21]. the field
variables

2 2
c
§:c7'—:1c—y—7 i

= —_——— R:
R © \/ER’ cT+x

(33)

the metric DQ? is reduced to the Lorentzian form

d2? = —c*D71? + Da® + Dy? = —c?(dr + B"dx")?
+(dz + B*dz®)? + (dy + BYdz")? (34)

Thus, the metric d2? in CS can be considered as the
metric of a flat nonholonomic section of a 4-dimensional
space. So the structure of the CS is similar to the
family of flat nonholonomic sections M@, It can
be shown that the squared momenta (17) under the
transformation (33) also takes the Lorentian form

Cc

4Kk
2 __

1
P? = —C—QPE + P24 (Py)* (35)

3. On the quantum geometrodynamics of
CBH

The quantum states of the field configuration are
determined by the wave functional U (R, £, ¢) in the CS.
At the same time, the momenta P4 are associated with
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the momentum operators P, which in the coordinate
representation have the form of functional derivatives:

0 - , - )
77,71@, 7)5 - 7lh87§, P ’Lhi

99

cP, from here we

Pr = (30)

In the case of charge @ =
immediately obtain

A . 1)
Q—>Q:CP¢:—icha—¢ (37)
Similarly, (14) yields the operator momentum
constraint equation
o o 0 0¥
RS N
and (15) implies the operator electromagnetic
constraint equation
o [0V
=0 39
87"( ) (39)

With the mass function My, (19) is related to the
problem of ordering momentum operators. For the
hermiticity of the total mass operator, in the CS with
the volume element dV = (c?/2k)Rd¢dRdg, the
following ordering is used {Py — Pgﬁpg. Therefore, the
mass function My, (19) corresponds with the operator

- i ( 4K%0% § 90 1)
2K G TR T

kh2 §2 R? 2
- (R, 4
When the Hamiltonian constraint H = 0 (16)

is quantized, it is associated with its quantum
counterpart HU = 0, the DeWitt equation. We note
that the squared momentum P? in (17), as well as the
CS metric d? can be reduced to the "Lorentzian"form
using the transformation (33) . Therefore, in the
coordinates {7, xz,y}, when quantizing the constraint
H = 0, you can use the usual quantization recipe in
the form (36).

To construct a quantum Hermitian operator in the
original curvilinear coordinates { R, £, ¢}, it is necessary
to perform an inverse transformation of coordinates
and operators, which is equivalent to passing to
covariant derivatives P4 — I:’A = —ihsy 4 with respect
to the metric I'yp defined in (6). However, in the
case under consideration, one should pass to covariant
functional derivatives according to the formulas

P4y — PA = —Zhi

Sa (41)

Here the covariant functional derivatives are defined as

follows
oUg

_5’7_

DUp
dqa

FagUc, (42)

at that DU /dga = 0¥ /0ga. Then, for the momentum
squared P? (17) in the Hamiltonian constraint (16)
after the replacement (41) we have

—h*A

P? — P? = (43)

Here

aowD D 1D g D

0gadge  /—Tdqa dqB
2 2
_ 2 g %liR 5 14 (44)
A OEOR A ROR e T Rop?

is the Laplace-Beltrami operator, which is Hermitian
in natural measure. Note that the formula ¢ = 0/0¢
takes place, so in the mass operator (2.3) for the
momentum operator ]55 it suffices to restrict ourselves
to the functional derivative Pe = —ihd/d&.

As a result, the Hamiltonian constraint (16) leads to
the following DeWitt operator

jig= —ghQA—u (45)
or to the DeWitt equation
2 2
Efﬂ 2£6W %li o iéj —UT =0.
2 A 660R T P ROR 66 R2 6p2
(46)

States with a certain charge g and mass m are found
by solving problems on eigenvalues and eigenfunctions
of operators charge @Q and mass M

QU, =q¥, MUY, =m¥ (47)
These equations, taking into account (37) and (40), can
be rewritten as follows

v
—ich% =qVU (48)
WS 6 R R RN
b 66766 AR €T o2
(49)

By virtue of the relation (48), it follows from the
constraint (39) that ¥ does not depend on 7. Moreover,
(48) implies

U[R,E ¢m.q) = & [R.&m.q) /M2 (50)
Then, the DeWitt equation (46) becomes
kh? %0 kh*1 & _0¥ ch? 5%V
= S uv=0. (51
& 08R & RoRoe 2mopr U (51)

The equation for the eigenvalues of the mass operator
(49) can be rewritten as follows

6

§w+c

SV T (52

§ QRFtotw—O
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The joint solution of the (51) and (52) equations,
together with the momentum constraint (38), describes
the quantum state of the considered CBH model with
fixed charge ¢ and mass m.

4. Geometrodynamics of CBH in the T-region

The T-domain M® CBH is bounded, where the
vector Keeling &£# is spatially similar and can be convert
to form &# = §4'. Then the metric (2) can be written
as follows
£

(Ndx0)2 — Edr2 — R%do?

2 _ I
3

In this case, N” = 0, the coordinate system
becomes orthogonal and all fields depend only on
time. Integration over the coordinate r is replaced by
multiplication by the constant [dr — [ < co. As a
result, the action Si,r and the Lagrangian £ (5) take
the form

ds (53)

2
Stot—>S:/de0, L— L= (XTQ—FNU). (54)

While, Y — U = ¢3/2k is the potential part of the
Lagrangian, V2is the square of the velocity

I 1
V2 =T4pVAVE = _;57030 + ER2 % (55)

Here VA = {VE = R, V& = ¢, V? = ¢} are
generalized velocities.

The CS metric is defined similarly to the general case
(10):

A9 = TapVAVP (d2°) = Tapdgdg®,  (56)

where the components I' 4 5 are defined by (6). Then

3 1
02 = —%dde + R dg? (57)
Legendre transformation of the system leads to the
Hamiltonian action

s = / (Ped¢ + PrdR + Pydg — NHodaz®)  (58)

c 4r
— <—C4PRP5 +

_ 1
Tl

1
Hy = P? = 1U R2P§+u2)
(59)
where Hy ~ 0 is the Hamiltonian constraint, P? =
I4BPyPg, = cl/\/k.
The integrals of system motion are the charge @ =

(¢/1)Py and mass function

1 1
M=

c? 4k o 1,
5 [RR—F 2 <C4§P6 + RP¢)] ; (60)

Together with the Hamiltonian constraint, they,
similarly to (21) and (20), lead to momenta
I* |R
P = —|=F, 61
3 o\ € (61)
Ic3 £ KQ?
Pr = —\/ == —1 2
r 2k ' RF <04R2 > (62)

where F' is defined in (28). Using the integrability
conditions for the equations

aS oS as
PR*%7 Pifaiga P¢ % > (63)
we find the action of S,
I lg
S =" VERF + Lo +lgm.a), (64

which depends on the variables R, £ and the parameters
m, q. From here, and from the relations 95/9m = 0 and
05/0q = 0, we arrive at the motion trajectories in the
CS ¢
q 2
= — o —_ = F

b=d0—f%, ==IF,
where ¢g = —cdg/0q, f = 0g/cOm. The metric (53)
now takes the form

(65)

(Nda?)®

2 _
ds® = F2F

— f2Fdr® — R*do?, (66)

As well as in the general case, we can transform the
action (54) from a space-time representation into a CS
representation To do this, from the Lagrangian L in

(54), we obtain

oL V2
6N_l<_2N2+U>_O’

(67)
which implies N = V?2/2U. Substituting N into action
(54) we get
S = /z\/zUdeO :u/\/chQ (68)
where dQ? received in (57).
Using the transformation (33) of field variables, the
metric d2? CS is reduced to a flat form
cdQ? = —c?dr? + dx® + dy* . (69)
it that the squared momentum P? = I'4B P, Py takes
the Lorentzian form

4K

Cc
o3

2
P 72

1
PrPe+— P} = fcfQP3+P§+(Rj)2 . (70)
As we can see, the corresponding equations of
geometrodynamics of the CBH in the T-region are

greatly simplified. This is especially important in the
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case of quantization of the BH. So, the equations
system of the quantum theory of BH in functional
derivatives for the wave functional ¥ [R, &, ¢;m, q] goes
over into the equations system in partial derivatives for
the wave function U(R, &, ¢;m, q). As a result, we have
the DeWitt equation and equations for the eigenvalues
?7?0f mass and charge. The equation for the charge
eigenvalue leads to the wave function

V[(R, €, d3m,q) =9 (R, &m,q) /M (71)
where the function ¢(R,&;m,q) obeys the reduced
equations DeWitt and the mass eigenvalue

ﬁ + li i 4+ i @ + ﬁ v =90
060R  ROR 06  2kh? \ c?RZ? K N
(72)
6.0 b
Efii/)—i— WRFW/J—O. (73)

The joint solution of the system of equations (72) and
(73) leads to the following wave function [Gladush 21]

l l
v=Cy/Fdo (F«/fRFT> entt(74)
pl

where Jj is the Bessel function of the first kind of order
Zero.

We see that in this simplified formulation, the
constructed model describes the CBH in the T-region
with a continuous spectrum of mass m and charge q.

5. Conclusions

Comparison of the general approach to the
geometrodynamics of CBH and the particular
approach associated with the reduced model of
CBH limited in the T-region of space-time led to
the interesting results. The discovered possibility to
reduce a nonlinear dynamical system to a linear one,
in which all field components are separated, led to
the establishment of the configuration space structure
as a family of flat non-homogeneous sections of some
4-dimensional space. At the same time, the found
transformation led to the construction of the Lorentz
form of the momentum square and the subsequent
construction of the DeWitt operator containing
the Laplace-Beltrami operator in the metric of the
configuration space. The construction of this operator
and the existence of a solution for the reduced T-
model outlines the way to solve the quantum CBH
geometrodynamics equations in the general case.
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