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The space generated by metric and torsion tensors,
derivation of Einstein-Hilbert equation

N.I.Yaremenko

Abstract This paper is devoted to the derivation of �eld equations in space

with the geometric structure generated by metric and torsion tensors. We also

study the geometry of the space are generated jointly and agreed by the metric

tensor and the torsion tensor. We showed that in such space the structure of

the curvature tensor has special features and for this tensor obtained analog

Ricci - Jacobi identity; was evaluated gap that occurs at the transition from

the original to the image and vice versa, in the case of an in�nitely small

contours. We have researched the geodesic lines equation. We introduce the

tensor παβ which is similar to the second fundamental tensor of hypersurfaces

Y n−1, but the structure of this tensor is substantially di�erent from the case

of Riemannian spaces with zero torsion. Then we obtained formulas which

characterize the change of vectors in accompanying basis relative to this basis

itself in the small. Taking into considerations our results about the structure of

such space we derived from the variation principle the general �eld equations

(electromagnetic and gravitational).
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1 Introduction

In this paper we study the properties of the geometry of the space are generated

jointly and agreed by the metric tensor and the torsion tensor, so we investigate
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the spaces with connection in the presence of the metric tensor. We obtained

some results on the structure of the curvature tensor, considered the construction

of geodesic lines and an estimate of the gap that occurs when traversing the

contour of a parallelogram in these spaces.

The principle of least action (more correctly, the principle of stationary ac-

tion) is the basic variational principle of particle and continuum systems. Let

the starting point is the action, denoted S, of a physical system. It is de�ned as

the integral of the Lagrangian L between two instants of time - a functional of

the n generalized coordinates q which de�ne the con�guration of the system:

S(q(t)) =

∫ t2

t1

L(q(t), q̇(t))dt,

where the dot denotes the time derivative, and t is time. Mathematically the

principle is δS = 0, where δ means a variation. In applications the statement

and de�nition of action are taken together:

δ

∫ t2

t1

L(q(t), q̇(t))dt = 0.

The action and Lagrangian both contain the dynamics of the system for all

times. The term "path" simply refers to a curve traced out by the system in terms

of the coordinates in the con�guration space, i.e. the curve q(t), parameterized by

time. On the other hand, a Finsler manifold is a di�erentiable manifold together

with the structure of an intrinsic quasimetric space in which the length of any

recti�able curve τ : [a, b]→M is given by the length functional

S(τ(t)) =

∫ t2

t1

F (τ(t), τ̇(t))dt,

where F(x, · ) is a Minkowski norm on each tangent space. It is obvious from

these de�nitions, that there is a connection between these two concepts, which

can be realized by Hamiltonian formalism. Thus any Riemannian space can be

regarded as Finsler manifold with the length functional: F 2 = gij(x)dx
idxj and

so the geodesics of a Finsler manifold are geodesics of Riemannian space.

The geodesics of the space that are being studied in our work (with the

geometric structure generated by metric gij(x) and torsion Skij(x) tensors) are

di�erent from geodesics of corresponding Riemann space (with gij(x) ) and so

of geodesics Finsler manifold (with F 2 = gij(x)dx
idxj).

The investigation of properties of metric spaces and a�ne connection spaces

began approximately at the beginning of the 20th century [6, 7], and continues

to develop so far [1-5, 7-16].
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The importance of this kind of research is due on the one hand the internal

logic of mathematical science bases itself [6, 7, 9, 13], on the other applications

to problems in physics, analytical and theoretical mechanics [1, 12], the theory

of relativity [5, 14-16] continuum mechanics, cosmology [10]. Fairly well studied

Riemann spaces [9], because of the wealth of geometric properties, less explored

space with a�ne connection [3] and not su�ciently considered the most inter-

esting geometry, which is obtained by combining geometry and a�ne connection

generated by the metric tensor, and this is the subject of this work. From the

theory of spaces with a�ne connection is known that parallel displacement vec-

tor depends on pathways, that is, if the vector is parallel transported at the given

contour with his return to the starting point, we obtain the other vector than

the original (appears the gap). In the spaces, which are studied in this work, not

only holds a similar statement, but there are new properties of this gap.

In this spaces retain all the properties geometry of an a�ne space but appear

important features associated with the presence of the metric; the structure of

the curvature tensor has a speci�c characteristics, as well as an opportunity to

assess the gap that occurs at the transportation from the original to the image

and conversely in the case of an in�nitely small contours.

The main objective of this work - the study of the geometric properties of the

space with a�ne connection that arise when it is immersed in a metric space,

that is to build the geometry from of two tensors - the metric and torsion; obtain

the �eld equations from variation principle in such spaces.

We remind that according to Albert Einstein proposal: the free falling grav-

itating massive bodies follow geodesic line. If we postulate this proposal we can

obtain some results of Newton theory as a consequence. We have another im-

portant assumption of Albert Einstein that the geodesic equation of motion can

be derived from the �eld equations for empty space.

Since, we believe that gravitational and electromagnetic �elds are determined

geometric structure of empty space (torsion and curvature) so it is interesting

to have example about geometric sense of torsion.

Now, we discuss known one example about geometric sense of torsion. We

consider the surface S. At point A on S construct a tangent plane P. We choose

an arbitrary in�nitesimal square ABCD in the plane P with vertex A. From point

A on the surface S will draw the geodesic in the direction of AB. We pass along

it the distance corresponding parameter equal to the length of AB, get to point

B'. Similarly, from A on S draw geodesic towards AD, get into D'. We perform

a parallel transportation of vector AD to point B' along the geodesic AB' and
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draw of geodesic B' along the transportation of this vector, we reach the point

C'. Similarly, the vector AB will be move parallel along the AD' and along the

transported vector from D' draw geodesic get to C�. If torsion is zero, then C '=

C�, and geodesic square up to small higher-order will be closed, otherwise not.

In our case, due to the presence of the metric can calculate the length of the gap,

more precisely we can estimate the length of this gap.

These considerations are true only up to the second order relative to the

length of square side. If we want more strict result we must consider the compo-

nent of curvature tensor. Next this example is true only when length of square

side tends to zero i.e. remains very small in other words in general it is a local

property.

We go to discussion of physical interpretation this example. The physical

properties of the space-time (more just space) are de�ned by the presence of

matter (electromagnetic �elds and mass) in this space and from the viewpoint

of mathematics are described by the geometrical structure of space (torsion and

metric tensors). The empty space (without matter) is corresponded the geometric

structure of Euclidean space (torsion tensor and curvature tensor are identically

equal to zero). Similarly gravitation (mass and without electromagnetic �elds)

is corresponded the geometric structure of Riemannian space (torsion tensor is

identically equal to zero). And similarly the electromagnetism (electromagnetic

�elds and without mass) in corresponded the geometric structure of a�ne con-

nection space (curvature tensor is identically equal to zero). In the last two cases

the result is conditional (not strict) because the matter division by the mass and

�eld is conditional.

We consider the following method of constructing space-time: the space is

constructed on the basis of manifolds by determining at this manifolds metric

tensor and torsion tensor. Metric and torsion tensors are calculated from the

di�erential equations of the �eld. Hence torsion as the curvature arises from

the physical features of the distribution of matter in space-time. Roughly, the

same way as the masses leads to curvature space-time, electromagnetism leads

to appearance of torsion. But on the other hand from the mathematical point

of view if we assume that the space-time embedded in Euclidean space of higher

dimension then the appearance of torsion can be explained by violation of the

smoothness embedding. Therefore, we can conditionally determine the torsion

and curvature by violation of smoothness regardless of the dimension and em-

bedment.
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The aim of our paper is to study the property of metric space with torsion

and obtain analog of Einstein-Hilbert equation at such space.

This paper is organized as follows. In Sect. 2 some general properties of

structure of a metric space with torsion are discussed.In Sect. 3 we present the

study of geodesics in the space with torsion. These results can be use in "geodesic

principle". In Sect. 4 is dedicated the theory of hypersurfaces in the space with

torsion. In Sect. 5 we obtained some interesting relationships which is using in

Sect. 6. In Sect. 6 we are derived analog of Einstein-Hilbert (for electromagnetic

and gravitational �elds) in case of a metric space with torsion.

The main natural assumption that is used below that a scalar product of two

any vectors in parallel transport along an arbitrary path does not change. ing of

the 20th century [7, 8, 11-13], and continues to develop so far [1-5, 14-22].

2 Structure of a metric space with torsion

There are many ways to represent the physical four-dimensional space, where

events of our reality are occurring. From a mathematical point of view there are

two possible conceptions of space geometry, which might be identi�ed with the

physical space.

The �rst scheme is a generalization of Euclidean geometry - the geometry

of the Riemannian metric, i.e. n-dimensional manifold equipped with a �eld

twice covariant symmetric metric tensor which is non-degenerate gik(M), where

Det|gik| 6= 0 and gik = gki. Note that the metric tensor is chosen arbitrarily, but

in addition to conditions laid above we demand that manifold was su�ciently

smooth.

This de�nition can be rewritten as: invariant di�erential quadratic form

gik dx
idxk determined on the manifold and satisfying the conditions Det|gik| 6=

0, gik = gki de�nes the geometry of Riemann.

As a consequence of the invariance of the form:

ds2 = gik dx
idxk (1)

we �nd that the coe�cients gik are forming a tensor �eld.

In this model for the arc length of the curve, you can take the integral:

s =

∫ b

a

√
gik dxidxk. (2)

The second scheme is a generalization of a�ne geometry - the geometry of

a�ne connection Γ ijk(M) that is based on n - dimensional manifold.
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The connection Γ ijk(M) is a geometric object on a manifold and is subjected

to the law of the transformation from one coordinate system xi to another xi
′

in the form of:

Γ i
′

j′k′ = Γ ijk
∂xi

′

∂xi
∂xj

∂xj′
∂xk

∂xk′
+

∂2xi

∂xj′∂xk′
∂xi

′

∂xi
, (3)

where the functions Γ ijk are su�ciently smooth.

Let along the curve xi = xi(t), t ∈ [a, b] ⊂ R given tensor �eldAi = Ai(t), if

for each in�nitesimal displacement tensor Ai(t)coordinates is changing the law:

dAi = −Γ ijkAjdxk, (4)

then we say that the tensor Ai is transported parallel to the curve t.

We are choosing one or another geometric model depending on the investi-

gated problem, but as the internal logic and common sense requires that in the

physical world, these two models coexist together and complement each other.

There is well-known result that in an arbitrary Riemannian space can always

construct a connectionΓ ijk(M). An interesting question is the uniqueness of such

a construction. In general, such a construction Γ ijk is not unique, but completely

natural (in terms of mathematics and physics to a greater extent), there is the

requirement that whenever along a path parallel to the simultaneous transport

of two vectors Ai and Bi (due to the presence of the transport is connected

de�ned), their scalar product does not change (the scalar product is de�ned

metric). Mathematically, this can be written as the vanishing di�erential:

d(gikA
iBk) = 0. (5)

If we the requested coe�cients Γ ijk are symmetric namely,Γ ijk = Γ ikj then the

connectivity is uniquely de�ned using a metric.

Always below we would not require the symmetry of connection. And so if the

metric gik is de�ned, then a geometric object Γ ijk subject to certain requirements,

but still there is some arbitrariness in the choice of connectedness of the space,

namely we need to de�ne a torsion tensor:

Sijk ≡ Γ ijk − Γ ikj , (6)

then the geometric object Γ ijk that is generated the connection is uniquely de-

termined.

Theorem 1. Suppose that a Riemannian space with the metric gik and in this

space is given torsion tensor Sijk- skew-symmetric. If demand d(gikA
iBk) = 0
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for arbitrary Ai and Bk then the connection (geometric object that de�nes it)

Γ ijk is uniquely de�ned.

Proof. It is pretty easy to see the truth of this statement itself, but for

further more importantly those symbols and values that relate to the nature of

the entered values.

We rewrite d(gikA
iBk) = 0, as, (gik,l − gmkΓmil − gimΓmkl )AiBkdxl = 0 due

to the fact that, dAi = −Γ iplApdxl, where Γmil - unknown coe�cients of connec-

tion � a geometric object and dxl are the di�erentials of coordinates of a point

under in�nitesimal displacement along the path; gik,l ≡ ∂
∂xl

gik. Since,A
i, Bk, dxl

� arbitrary, the equalities must be identity relative to Ai, Bk, dxl. By circular

permutation we obtain the system of equations:

gik,l = gmkΓ
m
il + gimΓ

m
kl ,

gli,k = gmiΓ
m
lk + glmΓ

m
ik ,

gkl,i = gmlΓ
m
ki + gkmΓ

m
li .

Since the technique is similar to the classical, then we give formulas without

justi�cation:

gik,l + gli,k − gkl,i = gmkS
m
il + gmlS

m
ik + gimΓ

m
kl + gmiΓ

m
lk ,

where Smil = Γmil − Γmli is torsion tensor, and we have

gim (Γmkl + Γmlk ) = gik,l + gli,k − gkl,i + gkmS
m
li + glmS

m
ki ,

Γ pkl + Γ plk = gpi (gik,l + gli,k − gkl,i + gkmS
m
li + glmS

m
ki) ,

and complementing the obvious equation - de�nition Γ pkl−Γ
p
lk = Spkl, we obtain:

Γ pkl =
1

2
gpi (gik,l + gli,k − gkl,i + gkmS

m
li + glmS

m
ki) +

1

2
Spkl. (7)

Then we introduce the notation and from the last formula we see that

Ppkl =
1

2
gpi (gik,l + gli,k − gkl,i) (8)

is geometric object.

Lpkl ≡
1

2
Spkl +

1

2
gpi (gkmS

m
li + glmS

m
ki) (9)

is tensor.

The geometric object Γ pkl, which generate connection space, is completely

determined by the tensorsgik and Smik . Therefore the connection Γ
p
kl is the sum
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of a geometric object Ppkl which is composed of derivatives of the metric tensor

gik and tensor Lpkl is compiled of gik and the tensorSmkl , namely

Γ pkl = Ppkl + Lpkl. (10)

Remark 1. Tensor Lpkl represents the sum of two tensors: symmetric
1
2g
pi (gkmS

m
li + glmS

m
ki) and torsion 1

2S
p
kl.

Remark 2. It is not di�cult to prove the relation:

Γ ppl =
1
2gip,lg

ip = 1√
g

∂
√
g

∂xl
, where g = det |gik|.

The next step in building a geometric theory is the consideration of the

parallel transport tensor-vector Ai, which is given by:

dAi = −Γ iplApdxl,

where the coe�cients Γ ipl is the connection of space.

As further arguments are similar to the classic and often repeated them, the

presentation of intermediate results will wear schematic character.

By a covariant derivative of ui with respect to l we mean:

ui;l ≡ ui,l − Γ kiluk, ui;l ≡ ui,l + Γ iklu
k.

Then we consider the di�erence:

ui;l − ul;i = ui,l − ul;i − Skiluk.

During the transition along a parallelogram in the image to the original

polygon is formed the gap Zk (breaking the circuit), which can be estimated as

follows, up to the 2-nd order of smallness relative to sides of a parallelogram:

Zk = SkijA
iBjτ2.

It is the result of coagulation at the torsion tensor with vector - parties Aiτ

and Bjτ that express geodetic displacement. The basic geometric meaning of

the torsion tensor is an estimate of the gap (up to 2nd order) at which the open

loop shrinks, if the torsion is zero, then the gap will not in�nitesimal second but

higher order.

Next, we consider the di�erence of the second order derivatives:

ui;l;k − ui;k;l = Rpkliup + Sqklui;q (11)

where we identi�ed

Rpkli ≡ Γ
p
ik,l − Γ

p
il,k + Γ pqlΓ

q
ik − Γ

p
qkΓ

q
il. (12)
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Rpkli is curvature tensor.

Similarly, we have

ui;l;k − ui;k;l = −Riklpup + Sqklu
i
;q (13)

Remark 3. Also possible and slightly di�erent way of de�nition a covariant

derivative, namely, the absolute di�erential DAi is �rst determined using the

formula:

DAi ≡∼ dAi + Γ ijkA
jdxk =

(
Ai,k + Γ ijkA

j
)
dxk, (14)

Absolute di�erential de�ned as derivative coe�cient, all the results obtained

with this approach to the construction is identical with the analysis, which has

been made above. Then more clearly we can assert: for any space to possess

absolute parallelism it is a necessary and su�cient condition that curvature

tensor was be identity vanishing (recall that the space is called with absolute

parallelism if the result of the parallel transport of an arbitrary tensor - vector

does not depend on the choice of path for all points of space). The proof of this

theorem is generally known, we note only that it follows from the formula:

D̃DAi −DD̃Ai = −RiklpApd̃xkdxl, (15)

which we could get by folding (13) with d̃xkdxl.

All the constructions outlined above are general in nature without specifying

space, further we will investigate the structure of the tensorRpikl. So, by de�nition

of (12) we have:

Rpikl = Γ pli,k − Γ
p
lk,i + Γ pqkΓ

q
li − Γ

p
qiΓ

q
lk,

Then we use (10) and obtain:

Rpikl = Ppli,k+L
p
li,k−P

p
lk,i+L

p
lk,i+

(
Ppqk + Lpqk

)
(Ppli + Lqli)−

(
Ppqi + Lpqi

)
(Pplk + Lqlk) =

= Ppli,k − Pplk,i + PpqkP
q
li − PpqiP

q
lk + Lpli,k − L

p
lk,i + PpqkL

q
li+

+PqliL
p
qk − PpqiL

q
lk − PqlkL

p
qi + LpqkL

q
li − L

p
qiL

q
lk.

Next we introduce the notation:

Ppikl ≡ Ppli,k − Pplk,i + PpqkP
q
li + PpqiP

q
lk (16)

is a tensor like the Riemann curvature tensor, composed of the metric tensor

and its derivatives.

Zpikl ≡ L
p
qkL

q
li − L

p
qiL

q
lk (17)

is tensor and
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Tpikl ≡ L
p
li,k − L

p
lk,i + PpqkL

q
li + PqliL

p
qk − PpqiL

q
lk − PqlkL

p
qi (18)

is tensor.

If we take into account that Rpikl is tensor, the last assertion is obvious. It is

interesting to obtain this important result in another way, namely:

Tpikl = Lpli;k − L
p
lk;i − L

q
liΓ

p
qk + LpqiΓ

q
lk + LplqΓ

q
ik + LqlkΓ

p
qi − L

p
qkΓ

q
li − L

p
lqΓ

q
ki+

+PpqkL
q
li + PqliL

q
qk − PpqiL

q
lk − PqlkL

p
qi =

= Lpli;k − L
p
lk;i − L

q
liL

p
qk + LpqiL

q
lk + LqlkL

p
qi − L

p
qkL

q
li + LplqS

q
ik,

is obviously the tensor because the absolute derivatives have tensor character.

We introduce the notation:

Mp
ikl ≡ Tpikl + Zpikl, (19)

then we obtain

Mp
ikl = Lpli;k − L

p
lk;i + LplqS

q
ik + LpqiL

q
lk − L

p
qkL

q
li, (20)

and in the new notation:

Rpikl = Ppikl +Mp
ikl. (21)

Formula (21) shows that the curvature tensor, in general, cases can be rep-

resented as the sum of two tensors (such representation is not accidental, it

is associated with a physical description of the �eld, roughly speaking, in the

absence of gravitational �elds tensor Mp
ikl is not equal to zero). Although the

formula (20) gives a qualitative representation of the geometric structure it a

little convenient, since in it re-enter the values of Γ ijk.

Further, we establish the equation, which is similar to equation of Ricci �

Jacobi

Rpikl +Rpkli +Rplik = Spik,l + Spkl,i + Spli,k + Γ pqkS
q
li + Γ pqkS

q
ik + Γ pqiS

q
kl =

= Spik;l + Γ qilS
p
qk + Γ qklS

p
iq + Spkl;i + Γ qkiS

p
ql + Γ qliS

p
kq + Spli;k + Γ qlkS

p
qi + Γ qikS

p
lq =

= Spik;l + Spkl;i + Spli;k + SplqS
q
ik + SpkqS

q
li + SpiqS

q
kl.

It is easy to prove the equations:

SijpS
p
ki + SikpS

p
ij = 0, SiipS

p
jk = 0;

and as a consequence, we obtain the equation:

SijpS
p
ki + SikpS

p
ij + SiipS

p
jk = 0.
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3 The study of geodesics in the space with torsion

Formula (7) consists of sum three summand of various kinds.

The sum (8) is a geometric object second valence; its components are con-

verted by a formula similar to the one that takes place for the connection:

Pp
′

k′l′ = Ppkl
∂xp

′

∂xp
∂xk

∂xk′
∂xl

∂xl′
+

∂2xp

∂xk′∂xl′
∂xp

′

∂xp
, (22)

but note that in this space, this "connection" does not satisfy the "torsion con-

dition" (Sijk ≡ Γ ijk − Γ ikj).
Value: 1

2S
p
kl - this tensor can be to be used as a "connection", but then this

"connection" is not used to satisfy the compatibility condition.

Value:

Mp
kl ≡

1

2
gpi (gkmS

m
li + glmS

m
ki) , (23)

is a tensor that expresses the combined e�ect of the metric and torsion.

First of all, it is easy to show that the element 1
2S

p
kl does not a�ect the

geodesic, since by the asymmetry of the torsion is not included in the equations

of geodesic lines:
d2xk

dτ2
= −Γ kij

dxi

dτ

dxj

dτ
, (24)

i.e. equation (24) will be determined only sum Ppkl+M
p
kl. In (24) τ is the canonical

parameter, i.e. for which there dxi

dτ is a portable parallel vector. For no isotropic

geodesic the length of arc s is a canonical parameter, for geodetic related to s

take place di�erential equations:

d2xk

ds2
= −Γ kij

dxi

ds

dxj

ds
.

De�nition. The line is called a geodesic if any tangent to this line at some

point vector remains tangent to it at the parallel transport along it.

Theorem 2. Equations of geodesic lines in a metric space with torsion de-

termined by the geometric object in form of the sum:

Ppkl +Mp
kl =

1

2
gpi (gik,l + gli,k − gkl,i) +

1

2
gpi (gkmS

m
li + glmS

m
ki) .

In case classical Riemannian space geodetic lines have known extreme prop-

erties, in this case analogical properties of geodesic require additional research.

Thus, for a no isotropic geodesic with canonical parameter arc length s, we

have di�erential equations:

d2xk

ds2
= −Γ kij

dxi

ds

dxj

ds
.
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Consider the problem of calculating the variation of the arc length.

Let a non-isotropic curve: xi = xi(t), t ∈ [t1; t2]. We calculate the variation

of length δS of the curve S:

δS =

∫ t2

t1

δ

√
gij
dxi

dt

dxj

dt
dt =

∫ t2

t1

δ
(
gij

dxi

dt
dxj

dt

)
2
√
gij

dxi

dt
dxj

dt

dt

δ

(
gij
dxi

dt

dxj

dt

)
= gijD̃

dxi

dt

dxj

dt
+ gij

dxi

dt
D̃
dxj

dt
= 2gij

dxi

dt
D̃
dxj

dt

D̃
dxj

dt
= δ

dxj

dt
+ Γ jpk

dxp

dt
δxk

D
δxj

dt
=

d

dt
δxj + Γ jkp

dxk

dt
δxp

D̃
dxj

dt
= D

δxj

dt
+ Sjpk

dxp

dt
δxk,

where denotes D̃ the absolute di�erential through the parameter curves of the

family at a constant value t, and D is absolute di�erential charge small displace-

ment dt curve at a constant parameter of the family, then

δ

(
gij
dxi

dt

dxj

dt

)
= 2gij

dxi

dt

(
D
δxj

dt
+ Sjpk

dxp

dt
δxk
)
,

δs =

∫ t2

t1

gij
dxi

ds
Dδxj +

∫ t2

t1

gijS
j
pk

dxi

ds
dxpδxk =

=

∫ t2

t1

D

(
gij
dxi

ds
δxj
)
−
∫ t2

t1

gijD
dxi

ds
δxj +

∫ t2

t1

gijS
j
pk

dxi

ds
dxpδxk,

if the ends of the variable curve �xed, then

δs =

∫ t2

t1

(
gijS

j
pk

dxi

dt
dxpδxk − gijD

dxi

dt
δ xj

)
,

if considered curve has �xed length (analytically δs = 0), then we obtain:∫ t2

t1

(gij S
j
pk

dxi

ds
dxpδxk − gijD

dxi

ds
δ xj

)
= 0.

Using the fundamental lemma calculus of variations, it follows:

gikS
k
pj

dxi

ds
dxp − gijD

dxi

ds
= 0.

This equation means that the tangent vector ξq of the curve is transported

according to the law DξqgjqgikS
k
pjξ

idxp, that means a s is not geodesic curve.

Conversely, the variation of the length of the geodesic lines is:

δs =

∫ t2

t1

gijS
j
pk

dxi

dt
dxpδxk.
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Properties in the new geodesic geometry de�ned by means of two tensors gik

and Sjik di�er greatly from similar properties in Riemann geometry. The theorem

is proved.

Theorem 3. In order not isotropic line in space is generated by gik and Sjik
was geodetic it is necessary and su�cient that a variation of the arc was equaled:∫ t2

t1

gijS
j
pk

dxi

dt
dxpδxk.

Consequence. In the case of spaces with a�ne connection is known that

there is a breach of closure during the transition from the original to the image

and vice versa, in the case of an in�nitely small contour determined (up 2 -

the second order relative to τ). If you specify the torsion tensor Skij at the

corresponding point, then if this gap is denoted by Ψk, then Ψk = SkijA
iBjτ2 ,

where the parallelogram Aiτ and Bjτ shrinks to a point at τ → 0. In this case,

you cannot simply assert that such a gap exists, and to extrapolate the square

of the length: |Ψ |2 = gpqS
p
ijA

iBjSqklA
kBlτ4.

Consider the question of what impact each summand of a connection has on

the construction of geodesic. Let the vector Ai is tangent to any geodesic and

Ai is parallel transported to the connection Γ pkl:

Γ pkl =
1

2
gpi (gik,l + gli,k − gkl,i + gkmS

m
li + glmS

m
ki) +

1

2
Spkl

and a vector Biis parallel transported to the connection Ppkl:

Ppkl =
1

2
gpi (gik,l + gli,k − gkl,i) .

It was found that the �rst geodesic connections coincide with geodesic connection

Ppkl + Mp
kl; here M

k
ij is an arbitrary symmetric tensor. Since both vector are

tangential, then

Bi = aAi,

where the coe�cient a is variable and a 6= 0. Tensor-vector Ai is given by:

dAk = −
(
Pkij +Mk

ij

)
Aidxj ,

dBk = −PkijBidxj .

Then, we have

Akda+ adAk = −PkijaAidxj ,

Akda

a
=Mk

ijA
idxj . (25)
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Tangent vector Ai can be written: Ai = dxi

dτ where τ - the canonical parameter

relative to the connection Ppkl +Mp
kl.

Then, after dividing by dτ , we have

d ln a

dτ
Ak =Mk

ijA
iAj .

Since geodesic lines can be carried out through any point and in any direction,

then equality must be true at any point and for any vector Ai, the functional

dependence of the point and direction, obviously there.

The last equality is multiplied by Al and alternate by k and l:

AlMk
ijA

iAj −AkM l
ijA

iAj = 0,

or

δlmM
k
ijA

iAjAm − δkmM l
ijA

iAjAm = 0,

where we denote δlm = gmpg
pl. This equation must hold identically with respect

to vectors A1, ......, An, consequently, after summed similar summand all the

coe�cients of the cubic form must vanish. We compute the total coe�cient:

δlmM
k
ij − δkmM l

ij + δliM
k
jm − δkiM l

jm + δljM
k
mi − δkjM l

mi = 0.

then we contracted tensor by indices l and j. Since δii = n, we have:

Mk
ij =

1

n+ 1

(
δkiM

l
jl + δkjM

l
il

)
.

All calculations presented above do not take into account the speci�city of

the tensor Mk
ij , then, let M

p
kl ≡

1
2g
pi (gkmS

m
li + glmS

m
ki), then substitute in the

last equation M l
kl ≡ 1

2S
l
kl, we obtained:

Mk
ij =

1

2

1

n+ 1

(
δki S

l
jl + δkj S

l
il

)
.

We formulate an important theorem.

Theorem 4. Let it be given classical Riemannian space (Riemannian man-

ifold with Riemannian metric tensor gik ) with the connection P kij - connection

Riemannian space. Let Y n be the space generated jointly and agreed by metric gik

and torsion Skij tensors together with connection Γ kij. To coincide the geodesics

in classical Riemannian space with the geodesics in space Y n it is necessary and

su�cient that the connections P kij and Γ kij to be di�ered by tensor:

1

2

1

n+ 1

(
δki S

l
jl + δkj S

l
il

)
,
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i.e.

Γ kij − P kij =
1

2

1

n+ 1

(
δki S

l
jl + δkj S

l
il

)
.

Proof. The necessity was derived above in more general terms than the

theorem is required.

We will prove the su�ciency. We assume that

Pkij = Γ kij −
1

2

1

n+ 1

(
δki S

l
jl + δkj S

l
il

)
.

Then we again using (25), we have:

d ln a

dτ
= SlilA

i.

Since along the curve SlilA
i there is a de�nite function of the parameter τ , then it

will �nd ln a after integration with up to a constant a, but only up to a constant

factor. Therefore, the vector is found Bi = aAi and all geodesic coincide. The

theorem is proved.

4 The theory of hypersurfaces

First we formulate a well-known classical result on the derivation formu-

las of hypersurface in Riemannian torsion-free space, where the connection is

uniquely generated by the metric.

Formal statement of Gauss-Codazzi equations in space with symmetrical con-

nection, Skij = 0. Assume that i : M ⊂ P be is n-dimensional embedded subman-

ifold of a Riemannian manifold P of dimension n+p. There is a natural inclusion

of the tangent bundle of M into that of P by the pushforward, and the cokernel

is the normal bundle of M: 0 → Tx → TxP |M → T⊥x M → 0. The metric splits

this short exact sequence, and so TP |M = TM ⊕ T⊥M.

The Levi-Civita connection ∇′ of P decomposes into tangential and normal

components. For each X ∈ TM and vector �eld Y on M, ∇′XY = T (∇′XY )+ ⊥
(∇′XY ). Let it be ∇XY = T (∇′XY ), α(X,Y ) =⊥ (∇XY ).Gauss' formula asserts

that ∇X is Levi-Civita connection on M, and α is a symmetric form with values

into the normal bundle. It is also referred to as the second fundamental form.

An immediate corollary is the Gauss equation. For X, Y, Z, W ∈ TM,

〈R′(X,Y )Z,W 〉 = 〈R(X,Y )Z,W 〉+ 〈α(X,Z), α(Y,W )〉 − 〈α(Y,Z), α(X,W )〉,

where R′ is the Riemann curvature tensor of P and R is that of M.

There are thus a pair of connections: ∇, de�ned on the tangent bundle of M;

and D, de�ned on the normal bundle of M. These combine to form a connection
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on any tensor product of copies of TM and T ⊥ M. In particular, they de�ned

the covariant derivative of α :

(∇′′Xα)(Y,Z) = DX(α(Y,Z))− α(∇XY,Z)− α(Y,∇XZ).

Codazzi equation is

⊥〈R′(X,Y )Z〉 = (∇′′Xα)(Y,Z)− (∇′′Y α)(X,Z).

The above formulas also hold for immersions, because every immersion is, in

particular, a local embedding. The important assumption in the theory stated

above is that connection is symmetrical so analog of second form of hypersurface

is symmetrical and we could obtain the derivation formulas of hypersurface.

In our case we don't assume any conditions about the connection

symmetry, so below we study much more complicated problem.

A similar manner as in the Riemannian space can be developed a theory

of hypersurfaces, so in the metric space with torsion can be constructed a the-

ory of hypersurfaces . But, due to the presence of torsion, in these cases there

is a signi�cant di�erence. For example, the derivation equations (analog Peter-

son Codazzi equations) take a more complicated form, in which there are new

summands, which are caused by the presence of torsion in the space.

We make a study of the hypersurfaces Y n−1 in a metric space with torsion

Y n. We are assuming that the hypersurface is de�ned by a system of equations:

xi = xi
(
y1, ..., yn−1

)
,

and the rank of the matrix
[
∂xi

∂yα

]
equal n−1. The metric tensor of hypersurface

Y n−1 is given by:

aαβ = gij
∂xi

∂yα
∂xj

∂yβ
, (26)

Then we obtain the formula for tensor of torsion T γαβ of hypersurface Y n−1

(assuming that functions xi(y1, ..., yn−1) are smooth enough). Let Gαβγ be the

connection of Y n−1 and we assume that Gαβγ express via metric aαβ and of

torsion T γαβ similarly to as the connection Γ kij express by means of gij and S
k
ij ,

we have:

Gαβγ =
1

2

(
aαη

(
aβη,γ + aγη,β + aβγ,η + aβµT

µ
γη + aγµT

µ
βη

)
+ Tαγβ

)
. (27)

Gαβγ is geometric object and is subjected to the law of the transformation from

one coordinate system uα to another uα
′

by the formula:

Gαβγ = Gα
′

β′γ′
∂uα

∂uα
′
∂uβ

′

∂uβ
∂uγ

′

∂uγ
+
∂uα

∂uα
′
∂2uα

′

∂uβ∂uγ
.
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Then we assume that connection Gαβγ of Y n−1 are associated with connection

Γ kij of Y
n mean of formula:

Gαβγ
∂xk

∂uα
= Γ kij

∂xi

∂uβ
∂xj

∂uγ
+

∂2xk

∂uβ∂uγ
.

We obtain

1

2

(
aαη

(
aβη,γ + aγη,β + aβγ,η + aβµT

µ
γη + aγµT

µ
βη

)
+ Tαγβ

) ∂xk
∂uα

=

=
1

2
(gkn

(
gni,j + gnj,i − gij,n + gimS

m
jn + gjmS

m
in) + Skij

) ∂xi
∂uβ

∂xj

∂uγ
+

∂2xk

∂uβ∂uγ
.

By permuting indices, we have next formula for the torsion tensor of hypersurface

Y n−1:

T γαβ = aγηgpqS
p
ij

∂xi

∂yα
∂xj

∂yβ
∂xq

∂yη
. (28)

using tensors aαβ and T γαβ both metric and torsion we can explore the geometry

of the space hypersurface Y n−1. The connection of Y n−1 will be determined by

the formula (27).

Below we use the mixed tensors values enumerated two types of indices, while

Latin indices refer to the containing space Y n and responsive to the coordinate

transformation xi, and Greek indices belong to the space hypersurface Y n−1 and

responsive to the coordinate transformation yα.

The index i is not responsive to the coordinate yα transformation into Y n−1,

and the index α does not respond to the coordinate xi transformation in Y n.

For example, the formula to calculate the covariant derivative of a mixed tensor:

Aiαjβ;γ = Aiαjβ,γ + Γ ipkA
pα
jβ

∂xk

∂yγ
− Γ pjqA

iα
pβ

∂xq

∂yγ
+GαηγA

iη
jβ −G

η
βγA

iα
jη. (29)

The direct calculations lead us to formulas:

ui;α;β − ui;β;α = Rpkliup
∂xl

∂yα
∂xk

∂yβ
+ Sqklui;q

∂xl

∂yα
∂xk

∂yβ
,

uγ;α;β − uγ;β;α = Rηβαγuη + T ηβαuγ;η,

where Rηβαγ - curvature tensor of space Y
n−1 compiled by using the components

of connection Gαβγ .

A further aim of our study is to obtain some analogs of Peterson-Kodachi

equations. To do this, consider the system of values:

ξiα =
∂xi

∂yα
.
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At each point of the hypersurface Y n−1 we can build rapper consisting of the

vectors:

ξi1, ..., ξ
i
n−1, ν

i,

where ξi1, ..., ξ
i
n−1 linearly independent tangent vectors and νi normal vector,

de�ned since the metric and connectivity agreed.

Next we act formally, the idea is the same as in the classical case, and we

will indicate signi�cant new moments. We compute the derivative of the mixed

tensors ξiα:

ξiα;γ = ξiα,γ + Γ ipqξ
p
α

∂xq

∂yγ
−Gηαγξiη.

In contrast to the case of torsion-free connection, we have the equality:

ξiα;γ − ξiγ;α = Sipqξ
p
αξ
q
γ + T ηγαξ

i
η.

Next, we permute the indices in equation:

0 = aαβ;γ =
(
gijξ

i
αξ
j
β

)
;γ

= gijξ
i
α;γξ

j
β + gijξ

i
αξ
j
β;γ ,

we obtain

gijξ
i
α;γξ

j
β = 0.

Hence, we can write a decomposition:

ξiβ;α = παβν
i. (30)

Remark 4. παβ is tensor, which similar to the second fundamental tensor of

hypersurfaces Y n−1, but its structure in this space substantially di�erent from

the case of Riemannian spaces with zero torsion.

Then we have obtained by di�erentiating gijν
iξjα = 0 by γ:

gijν
i
;γξ

i
α = −πγα. (31)

Similarly, by di�erentiating gijν
iνj = 1 by γ, we obtain:

νi;γ = −aηµπµγξiη. (32)

Formula (30) and (32) characterize the change of vectors in the small accom-

panying frame relative to this frame itself.

Further, we obtain:

ξiβ;χ;λ − ξiβ;λ;χ = −Riklpξkλξlχξ
p
β +Rσλχβξ

i
σ + Tσλχξ

i
β;σ =

= (πχβ;λ − πλβ;χ) νi − (πχβπηλa
ησ − πλβπηχaησ) ξiσ. (33)
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(33) is multiplying by gijξ
j
α, we have:

Rαλχβ = Riklpξ
k
λξ
l
χξ
p
βξ
i
α − (πχβπαλ − πλβπαχ) .

Similarly, we derive a formula:

νi;χ;λ − νi;λ;χ = −Riklpξkλξlχνp + Tσλχν
i
;σ =

= (πηλ;χa
ησ − πηχ;λaησ) ξiσ. (34)

We contract (33) with gijν
j , then:

−Riklpξkλξlχξ
p
βν

i + Tσλχπσβ = πχβ;λ − πλβ;χ.

(34) is multiplying by gijξ
j
α, we concluded that:

−Riklpξkλξlχνpξiα + Tσλχπασ = παλ;χ − παχ;λ.

Remark 5. If (34) contract with gijν
j , then we obtain identically zero.

5 Establish some important relationships

We consider the equation:

Sijk;p;q − Sijk;q;p = RtqpjS
i
tk +RtqpkS

i
jt −RiqptStjk + StqpS

i
jk;t,

or

Sijk;p;q − Sijk;q;p − StqpSijk;t = RtqpjS
i
tk +RtqpkS

i
jt −RiqptStjk,

we contract this tensors by an indices i, q; then the left side of this equation

can be transformed into:

Sijk;p;i − Sijk;i;p − StipSijk;t =
(
Sijk;p − SiqpS

q
jk

)
;i
− Sijk;i;p − Sipq;iS

q
jk.

then, we contract this equation by an indices k, p and raising the index j, we

obtained:(
gkpgjsSisk;p − gkpgjsSiqpS

q
sk

)
;i
− gkpgjsSisk;i;p − gkpgjsSipq;iS

q
sk =

= gkpgjsRtipsS
i
tk + gkpgjsRtipkS

i
st − gkpgjsRiiptStsk,

we introduce the notation:

Hji = gkpgjsSisk;p − gkpgjsSiqpS
q
sk,

F jp = gkpgjsSisk;i.
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Then, without any loss of generality, we obtain the relations:

Hji
;i −F

ji
;i −g

kpgjsSqskFpq = gkpgjsRtipsS
i
tk+g

kpgjsRtipkS
i
st−gkpgjsRiiptStsk, (35)

where Fpq = Sipq;i.

Suppose now that the identity Ricci � Jacobi run in a standard form, Rpikl +

Rpkli +Rplik = 0, hence:

Spik;l + Spkl;i + Spli;k + SplqS
q
ik + SpkqS

q
li + SpiqS

q
kl = 0.

we contract this equation by an indices p, l we found identity:

Spik;p + Spkp;i + Sppi;k = 0.

Next, we is assuming that Spip = ϕi and taking into account the identity

SpijS
q
pq = 0, we obtain the following expression:

Spij;p = ϕi,j − ϕj,i.

Next if we put Spij;p = 0, then it follows that ϕi,j − ϕj,i = 0 and hence

the value Spip can be expressed in terms of the partial derivative of the scalar

Spip = ϕi = (lnψ),i. System (35) takes the form:

Hji
;i = gkpgjsRtipsS

i
tk + gkpgjsRtipkS

i
st − gkpgjsRiiptStsk,

F ij = 0.

We consider the tensor

Cijk = gpjgqkSipq + gpkgqiSjpq + gpigqjSkpq,

obvious that it is antisymmetric in any pair of indices.

We have the equality:

Hjk −Hkj = Cikj;i + F jk + gkpgqsStpqS
j
ts − gjpgqsStpqSkts,

By direct calculations we can conclude that

gkpgqsStpqS
j
ts − gjpgqsStpqSkts =

1

2

(
CjpqSkpq − CkpqSjpq

)
,

hence

Hjk −Hkj = Cikj;i + F jk +
1

2

(
CjpqSkpq − CkpqSjpq

)
.

We calculate the covariant derivative

Cikj;i = −Cijk;i = −
(
Cijk,i + Γ jpiC

ipk + Γ kpiC
ijp + Γ ipiC

pkj
)
.
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By virtue of the fact that tensor Cijk = gpjgqkSipq + gpkgqiSjpq + gpigqjSkpq is

antisymmetric, we have:

Γ jpiC
ipk = Γ jipC

ipk =
1

2

(
Γ jipC

ipk + Γ jpiC
pik
)
=

1

2
SjipC

pki = −1

2
SjpiC

kpi,

similarly, we obtain

Γ kpiC
ijp = Γ kipC

pji =
1

2
Cjpi

(
Γ kip − Γ kpi

)
=

1

2
SkipC

jpi =
1

2
SkpqC

jqp.

Then we write,

Cikj;i = −Cijk;i = −Cijk,i −
1

2
SjpqC

kpq +
1

2
SkpqC

jpq − Γ qpqCpkj ,

and

Hjk−Hkj = −Cijk,i +
1

2
SjpqC

kpq−1

2
SkpqC

jpq−Γ qpqCpkj+F jk+
1

2

(
CjpqSkpq − CkpqSjpq

)
,

Hjk −Hkj = −Cijk,i − Γ
q
pqC

pkj + F jk.

We will compute Γ plp, for this, we recall that Γ ppl = 1
2gip,lg

ip = 1√
g

∂
√
g

∂xl
and

Γ plp = Γ ppl + Splp, obtain:

Γ ppl =
1√
−g

∂
√
−g

∂xl
+ (lnψ),l =

(
ln
(
ψ
√
−g
))
,l
.

Then we obtain

Hjk −Hkj − F jk = −Cijk,i −
(
ln
(
ψ
√
−g
))
,i
Cikj .

We multiple byψ
√
−g, have

ψ
√
−g
(
Hjk −Hkj − F jk

)
= −ψ

√
−g
(
Cijk,i +

(
ln
(
ψ
√
−g
))
,i
Cikj

)
,

ψ
√
−g
(
Hjk −Hkj − F jk

)
= −

(
ψ
√
−gCijk

)
,i
.

We di�erentiate the last equality, in view of the antisymmetry of the tensors,

we obtain the next important equality:(
ψ
√
−g
(
Hjk −Hkj − F jk

))
,k

= 0.

6 The �eld equations

Below we consider the derivation of the �eld equations in depending of condi-

tions.
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6.1 The �eld equations in the absence of symmetry conditions

Let Γ ijk is constructed on the basis of connection n - dimensional manifold. It

is not assumed that the Γ ijk are symmetric j in and k. Regardless of connection

Γ ijk, we introduce symmetric metric tensor gik (1).

We will derive the �eld equations from the variation principle of least action,

by varying the function Γ ijk and gik independently.

Using (12) we can write the Riemann tensor:

Rij = Γ pip,j − Γ
p
ij,p + Γ pqjΓ

q
ip − Γ

p
qpΓ

q
ij . (36)

We form the scalar density as
(
Rik + SjilS

l
kj

)
gik
√
−g, where Sijk = Γ ijk − Γ ikj ,

and postulate that all the variations of the integral:∫ (
Rik + SjilS

l
kj

)
gik
√
−gdV (37)

with respect to Γ ijk and gik
√
−g as the independent variables are zero (at the

boundaries do not vary).

Without dwelling on the standard intermediate calculations, we �nd that the

variation with respect to gik
√
−g, lead to the equation

Rik + SjilS
l
kj = 0,

then the variation with respect to Γ ijk, gives the equation

gij,k −
1

2
gijgpqg

pq
,k + gpjΓ ipk + gipΓ jkp − δ

j
k

(
gip,p −

1

2
gipgmng

mn
,p + gpqΓ ipq

)
−

−gijΓ pkp + 2
(
gipSjpk + gpjSikp

)
= 0.

If we contract the left side of the last equality by indices i and k, then we

obtain zero identically equal to zero. If we contract by indices j and k, we obtain

the equation

−3gij,j +
3

2
gijgpqg

pq
,j − 3gpqΓ ipq + gipSjpj = 0.

Therefore, we have:

gij,k −
1

2
gijgpqg

pq
,k + gpjΓ ipk + gipΓ jkp − g

ijΓ pkp−

−1

3
δjkg

ipSqpq + 2
(
gipSjpk + gpjSikp

)
= 0. (38)

Then we lowered upper indices by using the metric, obtain the equation:

−gij,k −
1

2
gijg

pqgpq,k + gipΓ
p
kj + gjpΓ

p
ik − gijΓ

p
kp −

1

3
gjkS

p
ip+
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+2
(
gpjS

p
ik + gipS

p
kj

)
= 0. (39)

We use the symmetry of tensor gij , and rearrange i and j, deduce the equa-

tion:

5
(
gipS

p
kj + gjpS

p
ik

)
+

1

3

(
gjkS

p
ip + gikS

p
jp

)
= 0. (40)

Further, we obtained:

−gij,k−
1

2
gijg

pqgpq,k+gipΓ
p
kj+gjpΓ

p
ik−gijΓ

p
kp−

1

3
gjkS

p
ip−

2

15

(
gkjS

p
ip + gikS

p
jp

)
= 0.

(41)

Thus, we obtained the �eld equations (39) by varying connection obtained

equation and as a result of them we obtained (40) where there are only metric

and torsion. We assuming that the electromagnetic component is absent ϕ ≡ 0,

then, from (40) we have Sijk ≡ 0, and connection is symmetrical, as in Riemann

geometry and (41) shows the known law of Einstein - Hilbert problem for the

gravitational �eld. If ϕ 6= 0 and the metric is �at (no gravitational �eld), then

(41) can be obtained Maxwell equation for electromagnetic �eld in vacuum.

6.2 The Einstein - Hilbert equation in case the absence of symmetry conditions

We start from the variation principle of least action in the form: δ (Wm +Wg) =

0, where Wm and Wg are action respectively for matter and �eld and where

values gik are varying.

We obtain:

δ

∫
R
√
−gdV =

∫ (
Rik
√
−gδgik +Rikg

ikδ
√
−g + gik

√
−gδRik

)
dV,

then we make a standard transformations in the second summand, we have:

Rikg
ikδ
√
−g = −1

2
Rpqg

pqgik
√
−gδgik.

Calculations of gik
√
−gδRik were performed directly by de�nition, then we

obtain two types of summands, the �rst have a standard form gik
(
δΓ lki

)
,l
−

gik
(
δΓ lkl

)
,i

=
(
gikδΓ lki − gilδΓ

p
lp

)
,l
, where gik,l = 0 takes into account and by

Stokes' theorem converted to zero. Summands of the second type are due to the

lack of symmetry of connectivity: gikδRik = gikδ
(
Γ pqpΓ

q
ki − Γ

p
qiΓ

ql
kp

)
. We express

the connection coe�cients via the metric and torsion tensors and after rather

lengthy calculations, we obtain

gikδRik =
(
SpipS

q
qk − S

p
iqS

q
pk − gkpg

qtSmit S
p
qm

)
δgik.
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Thus, we have:

δ

∫
R
√
−gdV =

=

∫ (
Rik −

1

2
gikR+

(
SpipS

q
qk + SqipS

p
kq + gkpg

qtSmit S
p
mq

))√
−gδgikdV.

And variation by δWg is:

δWg = K1

∫
R
√
−gdV =

= K1

∫ (
Rik −

1

2
gikR+

(
SpipS

q
qk + SqipS

p
kq + gkpg

qtSmit S
p
mq

))√
−gδgikdV,

where a physical constant K1, as a rule, in the classical case is c3

16πk and k called

the universal gravitational constant.

For variation of the action of matter, we �nd that:

δWg = K2

∫
Tik
√
−gδgikdV,

where Tik - Energy-momentum tensor of matter, K2 - usually take a constant

equal − 1
2c .

Therefore, we were using the principle of least action to δWg + δWm = 0,

�nd relations:∫ (
Rik −

1

2
gikR+

(
SpipS

q
qk + SqipS

p
kq + gkpg

qtSmit S
p
mq

)
−KTik

)√
−gδgikdV = 0,

Because of the arbitrariness δgik, we have:

Rik −
1

2
gikR+ SpipS

q
qk + SqipS

p
kq + gkpg

qtSmit S
p
mq = KTik,

constant K, can be determined by K1 and K2.

6.3 The Einstein � Hilbert equation when the Lagrange function is depending on the

torsion tensor

Now we also we start from the variation principle of the least action in the form:

δ (Wm +Wg) = 0, where Wm and Wg - action respectively for matter and �eld

values, we are varying gik.

By standard calculations, we have:

δ

∫ (
Rik + SjilS

l
kj

)
gik
√
−gdV =

∫ (
Rik
√
−gδgik +Rikg

ikδ
√
−g+

+gik
√
−gδRik + SjilS

l
kj

√
−gδgik + SjilS

l
kjg

ikδ
√
−g
)
dV,
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and

Rikg
ikδ
√
−g = −1

2
Rpqg

pqgik
√
−gδgik.

Similarly, we obtain:

SjilS
l
kjg

ikδ
√
−g = −1

2
SjplS

l
kqg

pqgik
√
−gδgik.

Now we compute gik
√
−gδRik directly by using the de�nition, thus ob-

tain two types of summands, the �rst have the standard form gik
(
δΓ lki

)
,l
−

gik
(
δΓ lkl

)
,i
=
(
gikδΓ lki − gilδΓ

p
lp

)
,l
, where it is considered that gik,l = 0 and by

Stokes' theorem turns into zeros. Summand the second type are due to the lack

of symmetry connection: gikδRik = gikδ
(
Γ pqpΓ

q
ki − Γ

p
qiΓ

ql
kp

)
. Then we express

the connection coe�cients via the metric and torsion, after a rather lengthy

calculation, we obtain:

gikδRik =
(
SpipS

q
qk − S

p
iqS

q
pk − gkpg

qtSmit S
p
qm

)
δgik.

Thus, we have:

δ

∫ (
Rik + SjilS

l
kj

)
gik
√
−gdV =

=

∫ (
Rik −

1

2
gikR+

(
SpipS

q
qk + SqipS

p
kq + gkpg

qtSmit S
p
mq

)
+

+SjilS
l
kj −

1

2
SjplS

l
kqg

pqgik

)√
−gδgikdV.

Then we obtain the conclusions:

δWg = K1

∫ (
Rik + SjilS

l
kj

)
gik
√
−gdV =

= K1

∫ (
Rik −

1

2
gikR+

(
SpipS

q
qk + SqipS

p
kq + gkpg

qtSmit S
p
mq

)
+

+SjilS
l
kj −

1

2
SjplS

l
kqg

pqgik

)√
−gδgikdV,

where a physical constant K1, as a rule, in a classic case is c3

16πk and k called the

universal gravitational constant.

For variation of the action of matter, we �nd:

δWg = K2

∫
Tik
√
−gδgikdV,

where Tik is Energy-momentum tensor of matter. K2 - usually take a constant

equal − 1
2c .
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Therefore, by the principle of least action for δWg + δWm = 0,we �nd rela-

tions: ∫ (
Rik −

1

2
gikR+

(
SpipS

q
qk + SqipS

p
kq + gkpg

qtSmit S
p
mq

)
+

+SjilS
l
kj −

1

2
SjplS

l
kqg

pqgik −KTik
)√
−gδgikdV = 0,

because of the arbitrariness δgik, we have:

Rik −
1

2
gikR+ SpipS

q
qk + SqipS

p
kq + gkpg

qtSmit S
p
mq + SjilS

l
kj −

1

2
SjplS

l
kqg

pqgik =

= KTik,

where the constant K can be determined by K1 and K2.

7 Conclusions

We have investigated the properties of the space are generated jointly and agreed

by the metric and the torsion tensors. We have presented the structure of the

curvature tensor and studied its special features and for this tensor obtained

analog Ricci � Jacobi identity; also evaluated gap that occurs at the transition

from the original to the image and vice versa, in the case of an in�nitely small

contours. The geodesic lines equation has been researched. We have shown that

the structure of tensor παβ , which is similar to the second fundamental tensor

of hypersurfaces Y n−1, is substantially di�erent from the case of Riemannian

spaces with zero torsion. Then we have obtained formulas for hypersurfaces

Y n−1, which characterize the change of vectors in accompanying basis relative

to this basis itself in the small.

Taking into consideration the structure of the space with metric and torsion

we have reach the aim of our paper i.e. derived from the variation principle the

general �elds equations (electromagnetic and gravitational) i.e. obtained analog

of Einstein-Hilbert equation at such space.
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