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Based on the three parametric Lorenz system a model, that allows to describe in a self-consistent way 

the behavior of the plasma-condensate system near phase equilibrium, was developed. Considering the in-

fluence of the fluctuations of the growing surface temperature the evolution equation and the correspond-

ing Fokker-Planck equation were obtained. The phase diagram, which determined the system parameters 

corresponding to the regime of the porous structure formation, was built. 
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1. INTRODUCTION 
 

Nanotechnology development in our time is 

achieved by using a huge number of approaches and 

methods, one of which is a quasi-equilibrium condensa-

tion process [1-5]. For such a method, characterized by 

arrangement of atoms adsorbed on the active centers of 

crystallization, whereby it is possible to obtain various 

structures of the condensate: monocrystals, fractal sur-

face, porous membranes, etc. [1, 2]. Particular attention 

is attracted to nanoporous materials due to their wide 

range of applications. Moreover, production of such 

materials is often associated with a large number of 

technical problems, and the condensation method in 

the steady state close to phase equilibrium is one of the 

most promising. 

Quasi-equilibrium condensation is achieved by 

plasma, which increases the effective temperature of 

the growth surface, and the natural course of the pro-

cess provides a self-organization [6-8]. As a result of 

such a processes (at small values of the deposited flux 

and the equilibrium concentration ne) in systems with 

weak feedback only a stationary condensation mode is 

realized. Otherwise for deposited flux inversion and 

increased feedback the already precipitated condensate 

is disassembled, when the regime of nanoporous struc-

tures formation is realized. 
 

2. BASIC EQUATIONS 
 

Considering that on the growing surface a quasi-

equilibrium condensation is provided by a self-

consistent evolution of the processes in the plasma vol-

ume, we will use a two-dimensional (surface) concen-

tration n=N a (a is a scale factor or lattice parameter). 

For a given value of the equilibrium concentration 

ne the increasing supersaturation n-ne is provided by 

the diffusion component, defined by the Onsager equa-

tion [9, 10] for the adsorption flow 
 

 ad ac

D
J D N N N  (2.1) 

 

The main drop of the concentration value occurs 

near the cathode layer, whose thickness is character-

ized by the screening length  and the diffusion coeffi-

cient D. 

Decrease of the supersaturation n-ne is ensured by 

the desorption flow J, which is directed up from the 

growing surface, so that J<0, while the value of the 

adsorption flow Jad>0. In case of absence of the conden-

sate  the condition J=-Jad is performed for the desorp-

tion component. Here the accumulated flow Jad is de-

fined by the equation (2.1), where N=Ne. The diffusion 

changes of the deposited atoms concentration N is giv-

en by the continuity equation 
ad = 0n / a J . Here the 

point denotes the differentiation with respect to time 

and the source influence is given by the estimate 
 

 2/ / / .ad ad eJ J D n n a   (2.2) 

 

Thus, the diffusion dissipation of the concentration 

is expressed by the equation 2/ /en D n n a . 

On the other hand, the velocity of atoms desorption 

v

Ndv  in volume v , based on the growing surface s, is 

 

 ,
v v s

Ndv dv dJ J s   (2.3) 

 

where the first equation takes into account the continu-

ity condition, and the second – the Gauss theorem. As a 

result, near the growing surface the total change of the 

concentration is described by the equation 
 

 .e

n

n n
n J   (2.4) 

 

n
 is a characteristic relaxation time of the supersatu-

ration. 

Within the synergetic picture [8] the quasi-

equilibrium condensation process is determined by the 

supersaturation n-ne, the growing surface temperature 

T, and the desorption flow J.  
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For the evolution equation of the temperature we 

have 
 

 ,T TT T a nJ t   (2.5) 

 

where 
T

 is a relaxation time, aT>0 is a the coupling 

constant.  

In contrast to the Eq.(2.4) we assume that the 

dissipation leads to the relaxation of the growing 

surface temperature to the value T=0.  The second term 

represents the nonlinear feedback of T  with 

concentration and flow. Since the porous structures 

were obtained at unstable temperature regime [1-3] we 

have to include a stochastic source, representing the 

Ornstein-Uhlenbeck process: 
 

 0, exp .
t tI

t t t   (2.6) 

 

Here I is the intensity of the temperature fluctua-

tions and is the time of their correlation. 

For the  flow we postulate the equation 
 

 ( ) .J ac JJ J J a nT   (2.7) 

 

where 
J

 is a corresponding relaxation time, Jac – 

the accumulation flow, aJ>0 is a constant of a positive 

feedback, allowing the growth of the J . 

So our task is to study the regime of the porous 

structures formation in the stochastic plasma-

condensate system. 

For the most simple investigation of the system 

(2.4), (2.5), (2.7) we must use a dimensionless variables 

for the time t, the concentration n, the temperature of 

the growing surface T, the flow J, and for the intensity 

of the temperature fluctuations I. Thus, the 

dimensionless system of equations takes the form 
 

 

,

,

,

e

ac

n n n J

T T nJ t

J J J nT

 (2.8) 

 

where / , /T n J n
. 

 

3. RESULTS AND DISCUSSION  
 

To analyze Eqs.(2.8) we will use the approximation 

n J T
, which corresponds to the rapidly varied 

temperature (unstable cooling). 

After certain mathematical approach [9] the system 

(2.8) reduces to the evolution equation  
 

 n n n f n g n t .  (3.1) 

 

Here, the friction coefficient  n , the force f n  

and the noise amplitude g n  are given by the rela-

tions 
 

 

2

2

1 ,

1 ,

.

ac e

n n

f n J n n n

g n n

 (3.2) 

 

Then we must find a distribution  function of the 

system in the phase space constructed by the concen-

tration n and time t.  

The Fokker-Planck equation [10] corresponding to 

Eq.(3.1) is given by  
 

2

1 22

,
, , ,

n t
D n n t D n n t

t n n
 (3.3) 

 

where the drift coefficient  
 

1

2

0 12

1
D n

n

g n n g n
f n M t M t g n

n n n

  (3.4) 

 

and the diffusion coefficient  
 

 

2

2 0 2

g n
D n M t

n
. (3.5) 

 

 The moments of the correlation function 
 

 1

0

1
0 ,

!

iM t t t dt
i

 (3.6) 

 

for the zeroth and first moments give  
 

 
0 1, .M t I M t I  (3.7) 

 

A stationary solution of the Fokker-Planck  equa-

tion [10] gives a stationary distribution  
 

 
1

1

2 20

exp ,

n D nZ
n dn

D n D n
 (3.8) 

 

where Z is a partition function  
 

 
1

2 20 0

exp .

n D ndn
Z dn

D n D n
 (3.9) 

 

The extremum condition for the distribution (3.8)  
 

 1 2 0D n D n
n

 (3.10) 

 

defines the stationary states of the plasma-condensate 

system. Substituting obtained expressions we arrive to 

the stationary concentration dependence 
 

 2

2
2

2 1
1 .

1
ac e

I n
J n n n I n

n
  (3.11) 

 

Then the condition, that restricts the domain of the 

existence of the solution n = 0 corresponding to the 

complete evaporation, has the form  
 

 .ac eJ n  (3.12) 
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Fig. 1 – Phase diagram of the system for ne = 0.25,  = 0.5. The 

letters indicate the relevant domains of the phase diagram, and 

the dots marked by numbers correspond to the parameters at 

which the stationary concentration dependence (Fig.2) is analyzed. 

The corresponding phase diagram of the system is 

shown in Fig.1.  

In Figure 1 the domain C corresponds to the 

condensation process, domain S is characterized by the 

formation of porous structures, at the domain O the 

complete evaporation of condensed matter occurs. 

Domains, which are indicated by two letters, meet the 

coexistence of the mentioned above regimes. 

 

 

 

 

Fig. 2 – The dependence of the stationary concentration n from the accumulated flow Jac at ne = 0.25,  = 0.5, (a) I=8, (b) I=14.  
 

4. CONCLUSION 
 

Based on our analysis, we can conclude that 

processes occurring in the plasma-condensate system 

can be presented within the synergetic system (2.8) 

describing the self-consistent behavior of the 

concentration, temperature of the growing surface 

and desorption flow. Accounting the growing surface 

temperature fluctuations it is possible to describe the 

most specific state, when porous nanostructures is 

formed. In addition, as shown in Fig.1 the system 

parameters have a significant effect on the  domain 

of such structures formation. With increasing the 

correlation time of fluctuations this domain is 

significantly decreased and shifted towards the lower 

values of the fluctuation intensity, while the increase 

in the equilibrium concentration results in a less 

significant decrease, and in a shift along two axis 

(fluctuation intensity and accumulated flow). As a 

real experiment [1, 2] our theoretical approach has 

been shown that surface disassembly is rarely 

realized. However, controlling the parameters of the 

system, we can achieve the regime under which a 

porous nanostructure will be formed. 
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