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Abstract 

Purpose. The study of stress distribution within an elastic semi-infinite material under the action of an external loading is 

of great importance in the theory of elasticity. In most cases, the lack of knowledge about the stress distribution within a mate-

rial can result in incomplete and inappropriate engineering designs, leading to unsatisfactory consequences. The latter include 

cracks and fractures, created inside the concrete segmental lining in TBM tunneling, as well as indentations that occur in floors 

due to the lack of pillar design not only in underground mining, but even in civil projects. This study focuses on the one-

dimensional and two-dimensional internal stress distribution induced by arbitrary rectangular–square loading, in other words, 

that applied to an elastic semi-infinite material. 

Methods. Firstly, this paper uses an analytical method and, subsequently, a numerical method. In the analytical study, the 

point load equations of Boussinesq and Westergaard are used. Extending these equations to the rectangular loading area, four 

new equations are introduced. Using the Abaqus finite element software, the numerical study is performed in 3D space. 

Findings. The results show that the answers from the introduced equations are in high consistency with numerical ones. 

However, the result of the extended Boussinesq point load equation is closer to the answer obtained by the numerical method. 

Originality. Four new equations, presented in this paper, describe one-dimensional and two-dimensional stress distribution. 

Practical implications. The presented equations can provide a simple and convenient way to solve rectangular load prob-

lems in many cases such as foundation, civil and mining projects. This study uses initial information on specific segments in 

the Tabriz Metro line-2 Project. 
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Nomenclature 

fc – 28-day uniaxial compressive strength of the concrete 

segment; 

Ec – Young’s modulus of concrete segment; 

υc – the Poisson ratio of the concrete segment; 

ρc – the density of the concrete segment; 

fr – Rupture modulus of concrete segment; 

ft – Tensile strength of concrete segment; 

c1, c2 – coefficients depended on the concrete; 

δ – crack instantaneous opening in the concrete; 

δ0 – crack ultimate opening in the concrete; 

ηc – the coefficient depended on the υc; 

x, y, z – global coordinates; 

xi, yi, zi – local coordinates; 

X, Y – the difference between global and local coordinates; 

Po – the point load applied to the center of the loading area 

considering the global coordinates; 

Pi – the point load applied to any point of the loading area 

considering the local coordinates; 

σz0 – the stress created within the segment along the z-axis 

due to P0; 

σzi – the stress created within the segment along the z-axis 

due to Pi; 

σz – the stress created within the segment along the z-axis due 

to a rectangular loading; 

a – the arbitrary rectangle length; 

b – the arbitrary rectangle width; 

K – influence factor.  

1. Introduction 

It is well understood that any type of loading on a medium 

lead to the distribution of stress inside it. Knowledge of this 

distribution can help to predict the behavior of the material, 

being under loading, that can be used for future studies and 

design assumptions in engineering. The aim of this study is 

to provide a convenient method of stress distribution calcula-

tion within a material that is usable in wide range of engi-

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.33271/mining16.04.047
mailto:Farid.Maleki@ut.ac.ir
mailto:chakeri@sut.ac.ir
https://orcid.org/0000-0002-5734-5347
mailto:s.chehreghani@urmia.ac.ir
https://orcid.org/0000-0003-4230-5454
mailto:h.azad@ut.ac.ir
https://orcid.org/0000-0002-6087-9892
mailto:s.chehreghani@urmia.ac.ir


F.Sh. Maleki, H. Chakeri, S. Chehreghani, H.A. Soula. (2022). Mining of Mineral Deposits, 16(4), 47-55 

 

48 

neering structures in mining, rock mechanics, geotechnics, 

and civil. The first solution to the problem of a pure vertical 

load located on a body was presented by Lame and 

Clapeyron that uses Fourier theory [1]. Boussinesq presented 

various potential functions to solve the problems of applying 

load on an elastic material including direct, inverse, and 

three-variable logarithmic potentials [2]. Love presented the 

stresses and dislocations caused by loading on rectangular 

and circular plates on a 3D semi-infinite object by generaliz-

ing the logarithmic potential of Boussinesq and the function 

of Newton's surface distribution potential [3]. Loading on a 

rectangular plate resulted in introducing the strip loading. 

Many writers have come up with ideas of the vertical load 

applied on a solid object by integrating Green’s functions. In 

this regard, Lamb presented a new method, in which Tera-

zawa solved the distributive vertical load problem by gener-

alizing the method proposed by Lamb in the form of a Bes-

sel-Fourier extension for circular loading [4]. 

Another method is the two-dimensional Airy stress func-

tion (φ). In this method, it is possible to solve the problem of 

stress distribution by taking into account the Cartesian or Polar 

polynomials presented in the theory of elasticity. So that a 

semi-infinite plane with a free surface of z = 0 is assumed [5]. 

It is well understood that many methods have been pro-

posed to provide a solution for the rectangular uniform load-

ing. Newmark has derived an expression for the vertical 

stress at a point below the corner of the loaded area [6]. 

Based on this equation, Fadum has prepared a chart for the 

influence values [7]. Steinbrenner has given another form of 

the chart for this purpose [8]. 

In this paper, the stress distribution within a semi-infinite 

material due to an arbitrary rectangular uniform loading has 

been discussed. Firstly, the analytical method has been used 

which provides a direct and accurate answer for this purpose. 

To do so, the Boussinesq and Westergaard point loading 

equations were generalized to a rectangular loading area in 

order to provide a closed form solution. In the presented 

method, there is no need to use any chart or any approximat-

ing method. Secondly, the numerical method has been adopt-

ed to verify the analytical investigation. Finally, Matlab 

codes have been generated to reduce the problem-solving 

time and simultaneously present an exact answer by provid-

ing a counterplot, illustrating the distribution of stress con-

centration due to an arbitrary rectangular uniform loading. 

The newly presented equations can be useful in a vast range 

of applications in engineering. For instance, in room and 

pillar underground mining, it is important to prevent the 

failure of the pillars and their indentation on the floor. Calcu-

lating the provided stress distribution and concentration due 

to the aforementioned pillars can help to design their critical 

cross-section. Also, these equations are applicable in con-

structing structures on the jointed slippery benches in open-

pit mining to calculate the amount of stress applied to these 

defections to prevent failure. The mentioned equations can 

be utilized in the calculation of stress distribution inside the 

concrete segmental lining due to the hydraulic jacks’ loading 

in EPB TBMs as well. 

2. Analytical method 

The analytical method was carried out to calculate the 

stress distribution mathematically within an elastic semi-

infinite material under a rectangular uniform loading. This 

study was conducted in two ways encompasses one-

dimensional (on the z-direction only) and two-dimensional 

(on the xoz plane) (Fig. 1). In this regard, point loading equa-

tions of Boussinesq and Westergaard were considered to be 

extended to a rectangular loading area to achieve the target. 

In one-dimensional stress distribution analysis, which is 

shown in Figure 1a, the amount of stress that occurred at the 

points located on the z-axis and its variation along the  

z-direction, perpendicular to the loading face, is under dis-

cussion. In two-dimensional stress distribution analysis, the 

amount of stress created at the points located on the xoz 

plane perpendicular to the loading face is studied (Fig. 1b). 

According to Figure 1, an arbitrary rectangle with dimen-

sions of 2a × 2b was assumed as the loading face in this study. 

 

(a) 

 

(b) 

 

Figure 1. Schematic of rectangular uniform loading (a) one-

dimensional stress distribution; (b) assumptions of ex-

tending point load to the rectangular loading area in 

two-dimensional space 

Problem assumptions: 

a) a global Cartesian coordinate system of (x, y, z) is con-

sidered; 

b) a local Cartesian coordinate system of (xi, yi, zi) is con-

sidered for each one of the point loads (i = 1…n); 

c) the relationship between two Cartesian coordinates is 

determined by the following equation at each point: 

i

i

i

x x X

y y Y

z z Z

= −


= −
 = −

.              (1) 

In Equation 1, (X, Y) are the distances between the two 

coordinates on the plane of xoy. These assumptions are obvi-

ous in Figure 1b. According to Figure 1b, the stress arising 

from each one of the point loads of P0 and Pi can be obtained 

through the coordinates of (x, y, z) and (xi, yi, zi) respectively. 



F.Sh. Maleki, H. Chakeri, S. Chehreghani, H.A. Soula. (2022). Mining of Mineral Deposits, 16(4), 47-55 

 

49 

If both of the point loads are applied simultaneously, the 

stress created at the point A will be equal to the sum of the 

stress caused by each one of them. When n point loads are 

applied to a rectangular surface, the obtained stress is equal 

to the sum of the stresses caused by all the point loads ap-

plying to the surface. 

2.1. Boussinesq point load extension 

In 1885, Boussinesq solved the problem of calculating 

stress distribution within a homogeneous, elastic, and 

isotropic semi-infinite material due to a point load applied to 

it. In this problem, the stress equation will be as follows at an 

arbitrary point of A [2]: 

( )

3

5/2
2 2 2

3 1

2

,

b a

z
b a

z

Pz
dXdY

X Y z

qa






− −

=  

+ +

 =

           (2) 

where: 

σz – the vertical stress at the point A with the coordinates 

of (x, y, z), P is the value of point load and l is the distance 

between the coordinates origin and point A. 

2.1.1. Boussinesq one-dimensional rectangular 

extended point load (x = 0, y = 0, z ≠ 0) 

In the analysis of one-dimensional stress distribution, the 

coordinates of (x, y) were set to be zero to calculate the stress 

on the z-axis only. According to Figure 1b, and Equation 2, 

the stress at the point of A arose from the point loads of P0 

and Pi can be calculated as follows: 

( )
( )

3 3
0 0

0 5 5/2
2 2 20

3 3
, , :

2 2
z

P Pz z
x y z

l x y z


 

=  = 

+ +

;          (3) 

( )
( )

3 3

5 5/2
2 2 2

3 3
, , :

2 2

i i
i i i zi

i
i i i

P Pz z
x y z

l x y z


 

=  = 

+ +

.          (4) 

Considering Equation 1, the relationship between P-any 

point load applied to the rectangular area- and the global 

coordinate is expressed generally as follows: 

( ) ( )( )

3

5/2
2 2 2

3

2
z

P z

x X y Y z




= 

− + − +

.           (5) 

The differential form of Equation 5 can be obtained as 

follows: 

( ) ( )( )

3

5/2
2 2 2

3

2
z

dP z
d

x X y Y z




= 

− + − +

.           (6) 

Setting Equation 6 to be in accordance with the one-

dimensional analysis assumptions and integrating it over the 

supposed rectangular area will result in an equation 

describing the stress along the z-axis (Equation 8). 

( )

3

5/2
2 2 2

3 1

2

b a

z
b a

Pz
dXdY

X Y z


 − −
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+ +

           (7) 

3

z
z

qa K


 = ,             (8) 

where: 

σz – the one-dimensional stress along the z-axis; 

a – half the length of the assumed rectangle; 

z – the coordinate of the point at which the stress is been 

calculated; 

K – the influence factor depended on the rectangle 

dimensions along with z coordinate (Equation 8). 

( ) ( )

2 2499

3/2
20

2 2 2

1 3 2 3

250 i

J a z
K b

J z J a z
=

+ +
= 

 
+ + + 

 

;           (9) 

2
1 1

250 2
J b i b

  
= − + +  

  
. 

The Equation 8 is named B-1DREPL – that stands for 

“Boussinesq One-Dimensional Rectangular Extended Point 

Load” – which the resultant diagram of stress concentration 

is presented in Figure 4 that shows a decreasing trend along 

with z-axis. 

2.1.2. Boussinesq two-dimensional rectangular 

extended point load (x ≠ 0, y = 0, z ≠ 0) 

As it is apparent, two-dimensional means involving two 

coordinates in which here is (x, z). According to Figure 1b 

cutting the loading space on the x-direction provides the 

plane of xoz which is discussed in this section. Analytically, 

setting y coordinate zero in Equation 5 will satisfy the 

theoretical assumptions. Considering these conditions, 

Equation 5 will be as follows: 

( )( )

3

5/2
2 2 2

3 1

2

b a

z
b a

Pz
dXdY

x X Y z


 − −

=  

− + +

.        (10) 

After solving the integration of Equation (10), the answer 

named B-2DREPL – that stands for “Boussinesq Two-

Dimensional Rectangular Extended Point Load” – will be as 

follows which describes the two-dimensional stress occurred 

on the plane of xoz: 

( )3

500
z

b
qz A B


 = + ,          (11) 

where: 

σz – the two-dimensional stress on the plane xoz; 

b – half the width of the assumed rectangle; 

z – the coordinate of the point in which the stress is been 

calculated at; 

A and B – the influence factors depended on the rectangle 

dimensions along with coordinates of (x, z) (Equation 12 and 13): 

Equation 12 Equation 13 

( ) ( )

( )( ) ( )

3 2 2 2 3 2
499

3/2 220 2 2

2 6 3 2 3 2 31

3 250 i
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( ) ( )
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3 2 2 2 3 2
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3/2 220 2 2

2 6 3 2 3 2 31

3 250 i

a a x a J x z Jx x xz
B

a x J z J z
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
− + + +
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2
1 1

250 2
J b i b

  
= − + +  

  
. 

The resultant diagram of stress concentration counters is 

presented in Figure 5 that is established using the generated 

Matlab codes.. 

2.2. Westergaard point load extension 

In 1938, Westergaard provided an elastic solution for the 

problem of calculating stress distribution within a non-

isotropic material due to a point load applied to it. In 

Equation 14, the Poisson ratio was utilized so as to express 

the method of calculation [9] : 

( )

( )

2 3/2
2
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2 2 1

1 2

2 1

z
Q

z
r

z


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−
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,          (14) 

where: 

σz – the vertical stress at the point A with the coordinates 

of (x, y, z); 

Q – the amount of point load; 

r – the distance from the origin of the coordinate to the 

projection of point A on the plane of XOY; 

υ – the Poisson ratio of the object which is being loaded. 

2.2.1. Westergaard one-dimensional rectangular 

extended point load (x = 0, y = 0, z ≠ 0) 

Similar to the solution provided for the Boussinesq point 

load extension, in the analysis of one-dimensional stress 

distribution using Westergaard point load, the coordinates of 

(x, y) were set to be zero to calculate the stress along the  

z-axis. According to Figure 1b, and Equation 14, the stress 

occurred at the point of A due to point loads of P0 and Pi will 

be as follows: 
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Considering Equation 1, the relationship between P – any 

point load applied to the rectangular area – and the global 

coordinate can be stated as followed generally. 
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Therefore, the differential form of the Equation 17 is 

calculated as follows: 

( ) ( )
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Integrating Equation 18 over the mentioned rectangular 

area (Fig. 1b) provides the final equation calculating the one-

dimensional stress distribution along the z-axis which is 

perpendicular to the loading face. 
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2
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  
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The Equation 19 is named W-1DREPL – that stands for 

“Westergaard One-Dimensional Rectangular Extended Point 

Load” – where σz, q, a, z and υc are the one-dimensional 

stress along the z-axis, the initial stress applied to the loading 

face, half the length of the rectangular loading face, the 

coordinate of the point on the z-axis in which the stress is 

been calculated, and the Poisson ratio of the material that is 

under loading respectively. K is the influence factor 

depended on the rectangle dimensions, coordinate and 

Poisson ratio (Equation 21). The resultant diagram of stress 

concentration is shown in Figure 4. 

2.2.2. Westergaard two-dimensional rectangular 

extended point load (x ≠ 0, y = 0, z ≠ 0) 

In the two-dimensional stress distribution analysis, the 

coordinate of y is set to be zero to calculate the stress 

distribution on the plane of xoz that is perpendicular to the 

loading area. Considering these assumptions in Equation 1 

and integrating over the rectangular area will provide the 

desired response. 

( )
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z
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z c c

c
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q A B

z


  



−
 = + =

−
.        (23) 

The Equation 23 is named W-2DRDPL – that stands for 

“Westergaard Two-Dimensional Rectangular Extended Point 

Load” – where σz, q, b and υc are two-dimensional stress 

distribution on the plane xoz, the initial stress applied to the 

rectangular area, half the width of the loading face which is 

an arbitrary rectangle, and the Poisson ratio of the material 

that is being loaded respectively. A and B are equations 

depended on the rectangle dimensions, coordinates of x and 
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z, and the Poisson ratio (Equation 24 and 25). The resultant 

diagram of stress concentration counters is presented in 

Figure 5 that is established using the generated Matlab 

codes.. 

( )

( ) ( )
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2
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250 2
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= − + +  

  
. 

3. Numerical method 

The finite element method is used to implement the nu-

merical solution to the problem proposed in this study. The 

finite element method is a numerical method for solving prob-

lems of engineering and mathematical physics. Typical prob-

lem areas of interest in engineering and mathematical physics 

that are solvable by the use of the finite element method in-

cluding structural analysis, heat transfer, fluid flow, mass 

transport, and electromagnetic potential. The 3D Abaqus 

finite element software package is been adopted in this study.  

3.1. Numerical model construction 

To approach the target described in this paper, a numeri-

cal model was constructed in the Abaqus software in 3D 

space. In order to construct the numerical model, an arbitrary 

cube with dimensions of 1×1×1.5 m was built. Subsequently, 

a rectangular loading area with dimensions of 0.4×0.2 m was 

considered at the center of the model (Fig. 2). Indeed, the 

model itself cannot provide the conception of being semi-

infinite, but in comparison to the loading area, the whole 

model can satisfy the assumptions. The boundary condition 

of ENCASTRE is considered for the lower plane of the mo-

del in which all the movements and rotations are zero 

(U1 = U2 = U3 = UR1 = UR2 = UR3 = 0) (Fig. 2a). 

For meshing the model, the standard eight-node linear 

cubic elements (C3D8R) were adopted with dimensions  

of 0.03×0.03×0.03 m and 0.02×0.02×0.03 m at the loading 

area (Fig. 2a). 

According to (Fig. 2a), the uniform load was applied to 

the assumed rectangular area with an amount of 20 MPa. In 

fact, the stress concentration is calculated inside the material 

so the amount of load does not matter. 

3.2. Material properties used in this study 

In numerical studies, one of the most important early 

steps is to input the initial data. These data should be careful-

ly monitored. The materials used in the present study are 

provided from Tabriz Metro line-2 Project (Table 1). 

To provide input data for the numerical software, con-

crete behavioral information is required. Accordingly, the 

compressive mechanical properties should be determined 

through either tests or predictive analytical models. Due to 

the lack of experimental information, the proposed analytical 

models were used. Here is a summary of formerly presented 

analytical models. 

(a) (b) 

  

Figure 2. Schematic of numerical model construction with the 

assumed boundary conditions (a); result of numerical 

study including two-dimensional stress distribution on 

the plane xoz (b) 

Table 1. Mechanical properties of concrete used in the lining of 

Tabriz metro line-2 project 

Mechanical property Symbol Value Unit 

28-day uniaxial compressive strength f'c 40 MPa 

Young’s modulus E 30 GPa 

Poisson ratio υc 0.2 – 

Density ρ 2500 kg/m3 

Rupture modulus fr 4.42 MPa 

 

Hognestad introduced a new equation for the stress-strain 

curve by changing the Ritter’s parabola equation. This equa-

tion is valid only in the elastic region until the ultimate stress 

(ultimate strength of the concrete) and provides an acceptable 

estimate of the behavior of the concrete in this area. Hognes-

tad assumed the behavior of the residual region as a linear 

one and expressed its value of about 85% of the ultimate 

strength [10]. Kent and Park provided an equation for the 

concrete stress-strain curve and tried to explain the post-peak 

behavior more comprehensively by generalizing the Hognes-

tad equation. In this model, the post-peak branch was as-

sumed to be a straight line, whose slope is a function of con-

crete strength [11]. 

Popovics provided an equation to estimate the stress-

strain behavior of concrete independently. The main ad-

vantage of this equation is controlling the pre-peak and post-

peak behavior with three parameters of f'c, ε0 and Ec (the 

ultimate strength, the strain corresponds to the ultimate 

strength and elastic modulus respectively). The Popovics 

equation provides a very good response for ordinary concretes 

(f'c < 55 MPa). However, for high strength concrete, there is a 

lack of control over the slope of the post-peak area [12]. 

Tsai presented the generalized equation of the Popovics 

model. This equation has better control over the post-peak 

behavior of the stress-strain curve [13]. This model pro-

vides two parameters to control the slope and behavior of 

the post-peak branch [14]. A summary of all the predicting 

analytical models is presented in Table 2. A comparison of 

the models is shown in Figure 3a. Since the concrete used 

in this study has a strength of less than 55 MPa, the Popo-

vics model was chosen as the stress-strain behavior under 

the compressive loading. 
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(a) 

 

(b) 

 

Figure 3. A comparison of predicting analytical models for com-

pressive behavior (a); the relationship between tensile 

stress and the ratio of instantaneous opening to the ul-

timate opening based on the Hordijk equation (b) 

Tensile strength and tensile behavior of concrete struc-

tures are very important. In most cases, cracks and ruptures 

in the concrete blocks are associated with this characteristic. 

To simulate the tensile behavior of the concrete used in the 

present study, the Hordijk model was used with the follow-

ing Equation [15]: 

( ) ( )3
1 1 1 2

0 0 0

1 exp 1 exp
t

c c c c
f

   

  

     
= + − + −    
     

.     (26) 

That σ, ft, δ and δ0 are tensile stress, tensile strength, 

crack Instantaneous opening, and crack ultimate opening 

respectively. The value of δ0 is 140 and 160 μm for light-

weight and ordinary concrete respectively. The value of c1 

and c2 are 1 and 5.64 for lightweight concrete and 3 and 6.93 

for ordinary one [15]. The properties of ordinary concrete 

were used in this study and the diagram of tensile behavior is 

presented in Figure 3b. 

The resultant diagrams of the numerical study of the one-

dimensional and two-dimensional stress distribution within 

the material being loaded are shown in the next section. 

4. Discussion 

According to the assumptions of the Boussinesq point 

load equation, the mechanical properties of the material be-

ing loaded are not considered and subsequently, the resultant 

stress distribution calculated within the material depends on 

the coordinates merely. Therefore, the resultant equations 

presented in this study due to integration over a rectangular 

area depends on the coordinates similarly. However, the 

Westergaard point load equation responds based on coordi-

nates and Poisson ratio of the material. Hence the properties 

of the material are somehow involved in the calculations and 

subsequently, it is assumed in the equations newly presented 

in this paper due to a rectangular loading area. Accordingly, in 

the analysis of one-dimensional stress distribution, B-1DREPL 

depends on the coordinate of z merely in which the stress is 

calculated. On the other side, W-1DREPL depends on both the 

coordinate of z and the Poisson ratio. In the same way, in the 

analysis of two-dimensional stress distribution, B-2DREPL 

depends on the coordinates of (x, z), and W-2DREPL depends 

on the coordinates of (x, z) and Poisson ratio. 

According to the results of one-dimensional stress  

distribution analysis (Fig. 4), the intensity of stress concen-

tration decreases sharply about 90% in a distance of 50 cm 

out of 150 cm which is about 33% of the material height. 

The intensity of stress concentration remains constant and 

low from the point z = 50 cm to the end that is about 5%  

of the initial amount. According to Figure 4, the trend of 

stress concentration variation in three methods of  

B-1DREPL, W-1DREPl, and the numerical method is al-

most the same. More precisely, the answer obtained from 

B-1DREPL is closer to the numerical solution than the 

answer provided by W-1DREPL from z = 0 cm to 

z = 50 cm. However, the two analytical methods get closer 

together from z = 50 cm to the z = 150 cm. 

 

 

Figure 4. The results of one-dimensional stress concentration 

distribution analysis 

As mentioned before, to provide graphical results of the 

two-dimensional stress distribution analysis, MATLAB 

codes were generalized for both the B-2DREPL and the  

W-2DREPL. Accordingly, obtained Pressure Bulbs are illus-

trated in Figure 5 that represents the stress concentration 

intensity on the plane xoz perpendicular to the loading face in 

three different methods. 

As shown in Figure 5, the highest stress concentration is 

immediately below the loading face and it decreases gradual-

ly by getting farther from that face. Each method provides its 

counterplot but generally, they are the same. To have a deep 

view about the differences between the results of the three 

used methods, 5 reference points of A, B, C, D, and E were 

assumed on the plane of xoz where the counterplot of stress 

concentration distribution was drawn (Fig. 6a). 

Point A is immediately under the loading face, point B is 

at the left side, point C is at the center, point D is at the right 

side, and E is the farthest point in comparison to the loading 

face. Accordingly, the Stress Concentration Difference 

(SCD) between the numerical method and B-2DREPL 

(SCDNB) and also between the numerical method and W-

2DREPL (SCDNW) is illustrated in Figure 6b.  
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Table 2. The predicting analytical equations for a compressive stress-strain diagram 

Equation Description Reference 

2

0 0

2 c c
c c

c c

f f
 

 

  
 = −      

; 

0

2
, 0.85c

c c
c

f
f f

E



 = = . 

Ec, εc0, εc, f'c and fc are elastic modulus, 

strain corresponds to the concrete strength, 

instantaneous strain, concrete strength, and 

instantaneous stress respectively. 

Hognestad, 

1951 [10] 

2

0 0

2 c c
c c

c c

f f
 

 

  
 = −      

; 

( )01c c c cf f Z   = − −  ; 

50 0

0.5

u c

Z
 

=
−

; 

50

3 0.29

145 1000

c
u

c

f

f


+
=

−
 (f'c in MPa); 

50

3 0.002

1000

c
u

c

f

f


+
=

 −
 (f'c in Psi). 

Ec, εc0, εc, f'c and fc are elastic modulus, 

strain corresponds to the concrete strength, 

concrete strength, and stress respectively. 

Ε50u is the strain corresponds to stress 

equivalent to 50% of the concrete strength. 

Kent and Park, 

1971 [11] 

( )

0

0

1

c

cc
n

c
c

c

n
f

f
n









 
 
 =

  
− +  

 

; 

31.0 0.4 10n f− = +    (Psi). 

εc0, εc, f'c and fc are strain corresponds to the 

concrete strength, instantaneous strain, 

concrete strength, and instantaneous stress 

respectively. n is the approximation 

function based on the compressive strength 

of the concrete. 

Popovics,  

1973 [12] 

1
1 1

n

mx
y

n x
m x

n n

=
 

+ − + 
− − 

; 

( )

( )

,

1.79
1

1.85 1
6.68

c

c c

f
y x

f

m
f MPa

f MPa
n




= =



= +



= − 

; 

( )
1.79

1m
f MPa

= +


; 

( )
1.85 1

6.68

f MPa
n


= −  ; 

( )
2600

1m
f Psi

= +


; 

( )
1.85 1

970

cf Psi
n


= −  . 

y is the ratio of instantaneous stress to the 

ultimate strength; x is the ratio of instanta-

neous strain to the strain at y = 1 and n is 

the controlling factor over the post-peak 

region slope. 

Tsai,  

1987 [13] 

 

(a) (b) (c) 

   

Figure 5. The results of two-dimensional stress concentration distribution analysis: (a) B-2DREPL; (b) W-2DREPL; (c) numerical  



F.Sh. Maleki, H. Chakeri, S. Chehreghani, H.A. Soula. (2022). Mining of Mineral Deposits, 16(4), 47-55 

 

54 

(a) 

 

(b) 

 

Figure 6. Selected reference points on the plane xoz (a); results of 

SCD study at the reference points (b) 

According to Figure 6b, SCD increases from point A to 

point E generally and the maximum SCD is 0.06 out of 1 at 

point E that is acceptable so that this claim is also proved in 

one-dimensional analysis in Figure 4. SCDNB and SCDNW 

are almost equal and their amount is less than 0.001 out of 1 

which clarifies the accuracy and validity of the analytical 

study. From point B to point E, the amount of SCDNB is less 

than SCDNW. Therefore, B-2DREPL is closer to the nume-

rical method than W-2DREPL but it doesn’t mean that  

W-2DREPL is unusable. 

5. Conclusions 

This paper focuses on the calculation of stress distribu-

tion within an elastic semi-infinite material due to an arbi-

trary rectangular uniform loading which was studied in both 

the analytical and the numerical methods. In the analytical 

section, well-known Boussinesq and Westergaard point load 

equations were extended to study the stress distribution with-

in an elastic semi-infinite material due to an arbitrary rectan-

gular uniform loading. Accordingly, four new equations were 

represented in this paper to describe the stress distribution 

one-dimensionally and two-dimensionally. Consequently, a 

numerical model was constructed using Finite Element based 

Abaqus software. 

According to the results, numerical and analytical an-

swers to the problem of rectangular loading are highly close 

together that confirms the accuracy and validity of the newly 

presented equations. in one-dimensional stress analysis, it 

was realized that the stress concentration decreases sharply 

up to 33% of the material height, and from that point on-

wards, it remains almost constant and low. Therefore, two 

equations of B-1DREPL and W-1DREPL were introduced to 

calculate the one-dimensional stress distribution on the z-axis 

perpendicular to the loading face. In two-dimensional stress 

analysis, two equations of B-2DREPL and W-2DREPL were 

presented. However, because of their complexity, MATLAB 

codes were generalized to simplify the process of calculating. 

To have a deep view of the differences between the three 

proposed methods, five reference points were assumed on the 

plane of xoz perpendicular to the loading face. Consequently, 

a parameter of SCD was defined as Stress Concentration 

Difference between the analytical and numerical results. 

According to the obtained results, SCD increases as the ref-

erence point gets farther from the loading face. However, 

SCDNB is less than SCDNW generally. The newly presented 

equations in this paper can contribute to solving the problems 

engaged with the loading process in mining, rock mechanics, 

geotechnics, and civil.  
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Аналітичне і чисельне дослідження одновимірного та двовимірного розподілу напружень у пружному 

напівнескінченному матеріалі під дією довільного прямокутного рівномірного навантаження 

Ф.Ш. Малекі, Х. Чакері, С. Чехрегані, Х.А. Соула 

Мета. Дослідження одновимірного та двовимірного розподілів внутрішніх напружень у пружному напівнескінченному матеріалі 

під дією зовнішнього довільного прямокутно-квадратного навантаження. 

Методика. У даній статті використовуються як аналітичний, так і чисельний методи. В аналітичному дослідженні застосову-

ються рівняння точкового навантаження Бусінеска та Вестергаарда. Поширюючи ці рівняння на прямокутну площу навантаження, 

вводяться чотири нових рівняння. За допомогою скінченно-елементного програмного забезпечення Abaqus чисельне дослідження 

виконується в 3D просторі. 

Результати. Встановлено, що відповіді введених рівнянь добре узгоджуються з числовими результатами, проте результат роз-

ширеного рівняння точкового навантаження Бусінеска ближче до відповіді, отриманої чисельним методом. Встановлено, що при 

одномірному аналізі напружень їх концентрація стрімко знижується до 33% висоти матеріалу, і з цього моменту вона залишається 

майже постійною та низькою. Визначено, що параметр SCD може бути представлений як різниця концентрації напруження між 

аналітичними та чисельними результатами. Згідно з отриманими результатами, SCD збільшується в міру видалення контрольної 

точки від поверхні, що навантажується. 

Наукова новизна. Вперше отримано чотири нові рівняння, що описують одновимірний і двовимірний розподіл напружень під 

дією зовнішнього навантаження. 

Практична значимість. Наведені рівняння можуть забезпечити простий і зручний спосіб розв’язувати задачі прямокутного 

навантаження у багатьох випадках, таких як фундамент, цивільні та гірничі проєкти. У цьому дослідженні використовується почат-

кова інформація про конкретні ділянки проєкту другої лінії Тебрізського метро. 

Ключові слова: розподіл напружень, прямокутник, напівнескінченний, Бусінеск, Вестергаард 


