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Abstract. It is developed the optimized version of the hybrid combined density functional theory 
(DFT) and the Green’s-functions (GF) approach to quantitative treating the diatomic photoelectron 
spectra and molecular constants. The  Fermi-liquid quasiparticle version of the density functional 
theory is used.   The density of states, which describe the vibrational structure in photoelectron 
spectra, is defined with the use of combined DFT-GF approach and is well approximated by using 
only the first order coupling constants in the optimized one-quasiparticle approximation. Using the 
combined DFT-GF approach leads to significant simplification of the calculation and increasing an 
accuracy of theoretical prediction that is confirmed by computing the molecular spectral parameters 
for the molecules of CH, CO, HF etc.
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ФОТОЕЛЕКТРОННА СПЕКТРОСКОПІЯ ДВОАТОМНИХ МОЛЕКУЛ:  
ГІБРИДНИЙ МЕТОД ФУНКЦІОНАЛУ ГУСТИНИ ТА ФУНКЦІЙ ГРІНА У 

ВИЗНАЧЕННІ МОЛЕКУЛЯРНИХ КОНСТАНТ 

Г. В. Ігнатенко, О. В. Глушков, О. Ю. Хецеліус, Ю. Я. Бунякова, А. А. Свинаренко 

Анотація. Розвинута оптимізована версія гібридної комбінованої теорії функціоналу гус-
тини  (DFT) і методу функцій Грина (ГФ) для кількісного опису фотоелектронних спектрів 
двохатомних молекул та молекулярних констант. Новий гібридний підхід суттєво базуєть-
ся  на фермі-рідинній квазічастичній версії теорії функціоналу густини. Густина стану, яка 
описує коливальну структуру в фотоелектронних спектрах, визначається з використанням 
комбінованого DFT-GF підходу та фізично розумно апроксимується за допомогою тільки 
першого порядку констант зв'язку в оптимізованому одноквазічастинковому наближенні. 
Використання комбінованого DFT-GF підходу призводить до значного спрощення молеку-
лярних обчислень та збільшення точності теоретичного прогнозування, що повністю під-
тверджується відповідними обчисленнями спектральних параметрів для молекул CH, CO, 
HF тощо.  

Ключові слова: фoтoелектронний спектр молекул, новий гібридний підхід, метод функ-
цій Гріна, теорія функціонала густини

ФОТОЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ ДВУХАТОМНЫХ МОЛЕКУЛ: 
ГИБРИДНЫЙ МЕТОД ФУНКЦИОНАЛА ПЛОТНОСТИ И ФУНКЦИЙ ГРИНА В 

ОПРЕДЕЛЕНИИ МОЛЕКУЛЯРНЫХ КОНСТАНТ 

А. В. Игнатенко, А. В. Глушков, О. Ю. Хецелиус, Ю. Я. Бунякова, А. А. Свинаренко

Аннотация. Разработана оптимизированная версия гибридной комбинированной теории 
функционала плотности (DFT) и метода функций Грина (GF) для количественного описа-
ния фотоэлектронных спектров двухатомных молекул и молекулярных констант. Новый 
подход существенно базируется на ферми-жидкостной квазичастичной версии теории функ-
ционала плотности. Плотность состояний, которая описывают колебательную структуру 
в фотоэлектронных спектрах, определяется с использованием комбинированного DFT-GF 
подхода и физически разумно аппроксимируется с использованием только первого поряд-
ка констант связи в оптимизированном одноквазичастичном приближении. Использование 
комбинированного DFT-GF подхода приводит к значительному упрощению молекулярных 
расчетов и увеличению точности теоретического предсказания, что полностью подтвержда-
ется расчетами молекулярных спектральных параметров для молекул CH, CO, HF и др.  

Ключевые слова: фoтoэлектронный спектр молекул, новый гибридный подход, метод 
функций Грина, теория функционала плотности
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1.  Introduction

The Green’s function (GF) method is very 
well known in a quantum theory of field, quan-
tum electrodynamics, quantum theory of solids. 
This approach naturally provided the known 
progress in treating atoms, solids and molecules, 
as it has been shown in many papers  (c.f.[1-4]). 
The experimental photoelectron spectra (PES) 
of molecules usually show a pronounced vibra-
tional structure [1,2]. Many papers have been 
devoted to treatment of the vibrational spec-
tra by construction of potential curves for the 
reference molecule (the molecule which is to 
be ionized) and the molecular ion. Usually the 
electronic GF is defined for fixed position of the 
nuclei. The cited method, however, requires as 
input data the geometries, frequencies, and po-
tential functions of the initial and final states. 
Since in most cases at least a part of these data 
are unavailable, the calculations have been car-
ried out with the objective of determining the 
missing data by comparison with experiment. 
To avoid this difficulty and to gain additional 
information about the ionization process, Ced-
erbaum et al [2] extended the GF approach to in-
clude the vibrational effects and showed that the 
GF method allowed ab initio calculation of the 
intensity distribution of the vibrational lines etc.  
For large molecules far more approximate but 
more easily applied methods such as DFT [3] 
or from the wave-function world the simplest 
correlated model MBPT are preferred [10]. In-
deed, in the last decades DFT theory became by 
a great, quickly developing field of the modern  
computational chemistry of molecules. In Refs. 
[4,5] the authors underlined the elements of the 
generalized approach to vibrational structure 
in the PES of molecules, which is based on the 
DFT and the GF approach and presented some 
numerical illustrations of quantitative treating 
the carbon oxide molecule parameters. It is im-
portant that calculational procedure can be sig-
nificantly simplified with using DFT formalism 
in comparison with the classical GF method re-
alization.   

In this paper we present the optimized ver-
sion of the hybrid combined DFT-GF approach 
to quantitative treating the diatomic photoelec-

tron spectra. The approach is based on the GF 
method in the Cederbaum-Domske version [2], 
Fermi-liquid DFT formalism [6-13] and use of 
the novel effective density functionals  (see also 
[14-26]). The density of states is well approxi-
mated by using only the first order coupling 
constants in the one-particle approximation. It 
is important that the calculational procedure is 
significantly simplified with using the quasipar-
ticle DFT formalism.  Thus quite simple method 
becomes a powerful tool in interpreting the vi-
brational structure of photoelectron spectra for 
different molecular systems.  

2.  The hybrid quasiparticle DFT- opti-
mized GF approach

As usually, introducing a field operator 

),(),,(),,( θθφθ RaRxxR ii
i
∑=Ψ  with the Har-

tree-Fock (HF) one–particle functions фi  ( )(Ri∈ are 
the one-particle HF energies and f denotes the set 
of orbitals occupied in the HF ground state; R0 
is  the equilibrium geometry on the HF level) 
and dimensionless normal coordinates Qs one 
can write the standard Hamiltonian as follows:
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l or i  and j are unoccupied, v2 that at most one of the orbitals is unoccupied, and  v3  that  k  and 

j or l and  j  are unoccupied.  The s are the HF frequencies; sb , t
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operators for vibrational quanta as                                                    
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The interpretation of the above Hamiltonian and an exact solution of the one-body HF problem is 
given in refs. [1,2,4]. The usual way is to define the HF-single-particle component 0H  of the 
Hamiltonian (4) is as in Refs. [1,5]. Correspondingly in the one-particle picture the density of 
occupied states is given by 

                                                                ,00
2
1)( 0

11
~

)(0 
 




 tk

Hitєєi
k edteєN 


                        (3) 

                                                                  
))((

)(~

'''
1',

11
0

t
ss

t
ss

k
ss

M

ss

t
ss

k
s

M

s
s

t
ss

M

s

bbbb

bbgbbH
















                            (4) 

                                                              0'

2

'
0

4
1     ,

2
1

























ss

ii
ss

s

ii
s QQ

є
Q
єg 

.                       (5) 
 
In a diagrammatic method to get function )(єNk  one should calculate the GF )(' єGkk first [1,2,5]: 

2.  The hybrid quasiparticle DFT- optimized GF approach 
As usually, introducing a field operator ),(),,(),,(  RaRxxR ii

i
   with the Hartree-

Fock (HF) one–particle functions фi  ( )(Ri are the one-particle HF energies and f denotes the set 
of orbitals occupied in the HF ground state; R0 is  the equilibrium geometry on the HF level) and 
dimensionless normal coordinates Qs one can write the standard Hamiltonian as follows: 

                                                                 
)2()1(

ENENNE HHHHH  ,                                            (1) 

                                                       
j

t
iikkjikjk

fkji

kl
t
j

t
iijkli

t
ii

i
E

aaRVRV

aaaaRVaaRєH

)]()([

)(
2
1)(

00
,

00











, 

),
2
1(

1
 


s

t
ss

M

s
N bbH 

 ],)[)((
4
1

])[(2

''
0'

2

1',

01

2/1)1(

ii
t
i

t
ss

t
ss

ss

i
M

ssi

ii
t
i

t
ss

s

i
M

s
EN

naabbbb
QQ
є

naabb
Q
єH





































 














 




]2

)[(2

32

1
01

2/3)2(

t
ilk

t
j

t
j

t
ikl

k
t
j

t
i

t
ss

s

ijkl
M

s
EN

aaaavaaaav

aaavbb
Q
V

H




 

+

]2[

)((
8
1

321

''

0

2

1', ''

t
ilk

t
j

t
j

t
iklk

t
j

t
i

t
ss

t
ss

ss

ijkl
M

ss

aaaavaaaavaaav

bbbb
QQ

V

 















 
 , 

with ni=1 (0), if  (if), f=1 (0) , (ijkl)f , where the index set v1 means that at least  k  and 

l or i  and j are unoccupied, v2 that at most one of the orbitals is unoccupied, and  v3  that  k  and 

j or l and  j  are unoccupied.  The s are the HF frequencies; sb , t
sb  are destruction and creation 

operators for vibrational quanta as                                                    
),)(2/1( t

sss bbQ   

                                                           ))(2/1(/ t
sss bbQ  .                                                    (2) 

The interpretation of the above Hamiltonian and an exact solution of the one-body HF problem is 
given in refs. [1,2,4]. The usual way is to define the HF-single-particle component 0H  of the 
Hamiltonian (4) is as in Refs. [1,5]. Correspondingly in the one-particle picture the density of 
occupied states is given by 

                                                                ,00
2
1)( 0

11
~

)(0 
 




 tk

Hitєєi
k edteєN 


                        (3) 

                                                                  
))((

)(~

'''
1',

11
0

t
ss

t
ss

k
ss

M

ss

t
ss

k
s

M

s
s

t
ss

M

s

bbbb

bbgbbH
















                            (4) 

                                                              0'

2

'
0

4
1     ,

2
1

























ss

ii
ss

s

ii
s QQ

є
Q
єg 

.                       (5) 
 
In a diagrammatic method to get function )(єNk  one should calculate the GF )(' єGkk first [1,2,5]: 

2.  The hybrid quasiparticle DFT- optimized GF approach 
As usually, introducing a field operator ),(),,(),,(  RaRxxR ii

i
   with the Hartree-

Fock (HF) one–particle functions фi  ( )(Ri are the one-particle HF energies and f denotes the set 
of orbitals occupied in the HF ground state; R0 is  the equilibrium geometry on the HF level) and 
dimensionless normal coordinates Qs one can write the standard Hamiltonian as follows: 

                                                                 
)2()1(

ENENNE HHHHH  ,                                            (1) 

                                                       
j

t
iikkjikjk

fkji

kl
t
j

t
iijkli

t
ii

i
E

aaRVRV

aaaaRVaaRєH

)]()([

)(
2
1)(

00
,

00











, 

),
2
1(

1
 


s

t
ss

M

s
N bbH 

 ],)[)((
4
1

])[(2

''
0'

2

1',

01

2/1)1(

ii
t
i

t
ss

t
ss

ss

i
M

ssi

ii
t
i

t
ss

s

i
M

s
EN

naabbbb
QQ
є

naabb
Q
єH





































 














 




]2

)[(2

32

1
01

2/3)2(

t
ilk

t
j

t
j

t
ikl

k
t
j

t
i

t
ss

s

ijkl
M

s
EN

aaaavaaaav

aaavbb
Q
V

H




 

+

]2[

)((
8
1

321

''

0

2

1', ''

t
ilk

t
j

t
j

t
iklk

t
j

t
i

t
ss

t
ss

ss

ijkl
M

ss

aaaavaaaavaaav

bbbb
QQ

V

 















 
 , 

with ni=1 (0), if  (if), f=1 (0) , (ijkl)f , where the index set v1 means that at least  k  and 

l or i  and j are unoccupied, v2 that at most one of the orbitals is unoccupied, and  v3  that  k  and 

j or l and  j  are unoccupied.  The s are the HF frequencies; sb , t
sb  are destruction and creation 

operators for vibrational quanta as                                                    
),)(2/1( t

sss bbQ   

                                                           ))(2/1(/ t
sss bbQ  .                                                    (2) 

The interpretation of the above Hamiltonian and an exact solution of the one-body HF problem is 
given in refs. [1,2,4]. The usual way is to define the HF-single-particle component 0H  of the 
Hamiltonian (4) is as in Refs. [1,5]. Correspondingly in the one-particle picture the density of 
occupied states is given by 

                                                                ,00
2
1)( 0

11
~

)(0 
 




 tk

Hitєєi
k edteєN 


                        (3) 

                                                                  
))((

)(~

'''
1',

11
0

t
ss

t
ss

k
ss

M

ss

t
ss

k
s

M

s
s

t
ss

M

s

bbbb

bbgbbH
















                            (4) 

                                                              0'

2

'
0

4
1     ,

2
1

























ss

ii
ss

s

ii
s QQ

є
Q
єg 

.                       (5) 
 
In a diagrammatic method to get function )(єNk  one should calculate the GF )(' єGkk first [1,2,5]: 



Г. В. Ігнатенко, О. В. Глушков, О. Ю. Хецеліус, Ю. Я. Бунякова, А. А. Свинаренко Sensor Electronics and Мicrosystem Technologies 2018 – T. 15, № 4

60 61

The interpretation of the above Hamilto-
nian and an exact solution of the one-body 
HF problem is given in refs. [1,2,4]. The usual 
way is to define the HF-single-particle compo-
nent 0H  of the Hamiltonian (4) is as in Refs. 
[1,5]. Correspondingly in the one-particle pic-
ture the density of occupied states is given by 
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(4)
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In a diagrammatic method to get function 
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[1,2,5]:
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and the function )(ºNk  can be found from the 
relation
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Choosing the unperturbed Hamiltonian 0H  
to be Ni

t
ii HaaºH +=∑0  one could define  the 

GF as  follows: 
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The direct method for calculation of Nk(∈) as 
the imaginary part of the GF includes a defini-
tion of the vertical I.P. (V.I.P.s) of the reference 
molecule and then of Nk

( )∈ .  The zeros of the 
functions

                   ( ) ( )[ ]kop
kD ∈Σ+∈-=∈∈ ,          (9)  

where ( )kop Σ+∈ denotes the k-th eigenvalue of 
the dia gonal matrix of the one-particle energies 
added to matrix of the self-energy part, are the 

negative V. I. P. ‘s for a given geometry.  One 
can write [1]:
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Expanding the ionic energy 1-N
kE about the 

equilibrium geometry of the reference molecule 
in a power series of the normal coordinates of 
this molecule leads to a set of linear equations in 
the unknown normal coordinate shifts δQS, and 
new coupling constants are then:
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The  coupling constants lg  and lly ′  are cal-
culated by the well-known perturbation expan-
sion of the self-energy part.   In second order 
one obtains:
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and the coupling constant gl, are written as [2,5]:
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The pole strength of the corresponding GF:
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The above presented results can be usefully 
treated in the terms of the correlation and  reor-
ganization effects. Usually it is introduced the 
following expression for an I.P.:
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with ni=1 (0), if  (if), f=1 (0) , (ijkl)f , where the index set v1 means that at least  k  and 

l or i  and j are unoccupied, v2 that at most one of the orbitals is unoccupied, and  v3  that  k  and 

j or l and  j  are unoccupied.  The s are the HF frequencies; sb , t
sb  are destruction and creation 
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In a diagrammatic method to get function )(єNk  one should calculate the GF )(' єGkk first [1,2,5]: 
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2.  The hybrid quasiparticle DFT- optimized GF approach 
As usually, introducing a field operator ),(),,(),,(  RaRxxR ii

i
   with the Hartree-

Fock (HF) one–particle functions фi  ( )(Ri are the one-particle HF energies and f denotes the set 
of orbitals occupied in the HF ground state; R0 is  the equilibrium geometry on the HF level) and 
dimensionless normal coordinates Qs one can write the standard Hamiltonian as follows: 

                                                                 
)2()1(

ENENNE HHHHH  ,                                            (1) 

                                                       
j

t
iikkjikjk

fkji

kl
t
j

t
iijkli

t
ii

i
E

aaRVRV

aaaaRVaaRєH

)]()([

)(
2
1)(

00
,

00











, 

),
2
1(

1
 


s

t
ss

M

s
N bbH 

 ],)[)((
4
1

])[(2

''
0'

2

1',

01

2/1)1(

ii
t
i

t
ss

t
ss

ss

i
M

ssi

ii
t
i

t
ss

s

i
M

s
EN

naabbbb
QQ
є

naabb
Q
єH





































 














 




]2

)[(2

32

1
01

2/3)2(

t
ilk

t
j

t
j

t
ikl

k
t
j

t
i

t
ss

s

ijkl
M

s
EN

aaaavaaaav

aaavbb
Q
V

H




 

+

]2[

)((
8
1

321

''

0

2

1', ''

t
ilk

t
j

t
j

t
iklk

t
j

t
i

t
ss

t
ss

ss

ijkl
M

ss

aaaavaaaavaaav

bbbb
QQ

V

 















 
 , 

with ni=1 (0), if  (if), f=1 (0) , (ijkl)f , where the index set v1 means that at least  k  and 

l or i  and j are unoccupied, v2 that at most one of the orbitals is unoccupied, and  v3  that  k  and 

j or l and  j  are unoccupied.  The s are the HF frequencies; sb , t
sb  are destruction and creation 

operators for vibrational quanta as                                                    
),)(2/1( t

sss bbQ   
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The interpretation of the above Hamiltonian and an exact solution of the one-body HF problem is 
given in refs. [1,2,4]. The usual way is to define the HF-single-particle component 0H  of the 
Hamiltonian (4) is as in Refs. [1,5]. Correspondingly in the one-particle picture the density of 
occupied states is given by 
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In a diagrammatic method to get function )(єNk  one should calculate the GF )(' єGkk first [1,2,5]: 
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The above presented results can be usefully treated in the terms of the correlation and  

reorganization effects. Usually it is introduced the following expression for an I.P.: 
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The first correction term is due to reorganization, the remaining correction terms are due to 
correlation effects.  Then the coupling constant gl, can be written as 
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The key elements of novelty of our advanced theory are connected with implementation of 
elements of the quasiparticle Fermi-liquid version of the DFT (QFLDFT) [1-3,8,17] to the GF 
approach. Let us note that  the QFLDFT was developed in Refs. [1-3,8,17] is used to determine the 
coupling constants etc. The  master equations can be obtained on the basis of variational principle 
with using the corresponding Lagrangian of a molecule Lq. It should be defined as a functional of  
quasiparticle densities:  
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The densities 0 and 1  are similar to the HF electron density and kinetical energy density 
correspondingly; the density 2  has no an analog in the HF or DFT theory and appears as result of 
account for the energy dependence of the mass operator . A Lagrangian Lq  can be written as a 
sum of a free Lagrangian and Lagrangian of interaction: Lq = Lq

0 + Lq
int, where the interaction 

Lagrangian is defined in the form, which is characteristic for a standard  DFT  (as a sum of the 
Coulomb and exchange-correlation terms), however, it takes into account for the energy 
dependence of a mass operator  : 
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where F is an effective potential of the exchange-correlation interaction. The constants ik are 
defined in Ref. [7].  The single used constant 02  can be calculated by analytical way, but it is very 
useful to remember its connection with a spectroscopic factor Fsp of the system [7]: 
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The first correction term is due to re-
organization, the remaining correction terms are 
due to correlation effects.  Then the coupling 
constant gl, can be written as

(16)
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The key elements of novelty of our advanced 

theory are connected with implementation of el-
ements of the quasiparticle Fermi-liquid version 
of the DFT (QFLDFT) [1-3,8,17] to the GF ap-
proach. Let us note that  the QFLDFT was de-
veloped in Refs. [1-3,8,17] is used to determine 
the coupling constants etc. The  master equa-
tions can be obtained on the basis of variational 
principle with using the corresponding Lagrang-
ian of a molecule Lq. It should be defined as a 
functional of  quasiparticle densities: 
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The densities ν0 and ν1  are similar to the HF 
electron density and kinetical energy density 
correspondingly; the density ν2  has no an analog 
in the HF or DFT theory and appears as result of 
account for the energy dependence of the mass 
operator Σ. A Lagrangian Lq  can be written as 
a sum of a free Lagrangian and Lagrangian of 
interaction: Lq = Lq

0 + Lq
int, where the interac-

tion Lagrangian is defined in the form, which is 
characteristic for a standard  DFT  (as a sum of 
the Coulomb and exchange-correlation terms), 
however, it takes into account for the energy de-
pendence of a mass operator Σ:
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where F is an effective potential of the ex-
change-correlation interaction. The constants βik 
are defined in Ref. [7].  The single used constant 
β02  can be calculated by analytical way, but it is 
very useful to remember its connection with a 
spectroscopic factor Fsp of the system [7]:
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The terms e∂∂∑ /  and ∑ 2 is directly linked 
[6]. In the terms of the Green function method 
expression (7) is in fact corresponding to the GF 
pole strength.  The new element of an approach 
is  connected with using the DFT correlation 
functionals , in particular, the Gunnarsson-Lun-
dqvist, Lee-Yang-Parr ones etc.(look details in 
ref. [1,22]).

3.  Some results and conclusions

In further calculation as potential XCV  we 
use the exchange-correlation pseudo-potential 
which contains the correlation (Gunnarsson-
Lundqvist) potential and relativistic exchanger 
Kohn-Sham one [1,3]. As an object of studying 
we choose the diatomic molecules of HF, CH, 
CO for application of the combined Green’s 
function method and quasiparticle DFT ap-
proach. In refs. [2,4] it was presented an analy-
sis and calculation of the photoelectron spec-
trum for the sufficiently complicated from the 
theoretical veiwpoint molecules such as the 
N2 and CO molecules, where the known Koo-
pmans’ theorem even fails in reproducing the 
sequence of the V. I. P.’s in the PES spectrum  
[1-3].  It is stressing, however it has been possi-
ble to get the full sufficiently correct description 
of the diatomics PES already in the effective 
one-quasiparticle approximation [1,2,5]. Anoth-
er essential aspect is sufficiently simple calcu-
lational procedure, provided by using the DFT. 
Moreover, here the cumbersome calculation is 
not necessary, if the detailed Hartree-Fock (Har-
tree-Fock-Rothaan) data (sepa rate HF-potential 
curves of molecule and ion) for the studied dia-
tomic molecule are available. Further it is easily 
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where F is an effective potential of the exchange-correlation interaction. The constants ik are 
defined in Ref. [7].  The single used constant 02  can be calculated by analytical way, but it is very 
useful to remember its connection with a spectroscopic factor Fsp of the system [7]: 
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The key elements of novelty of our advanced theory are connected with implementation of 
elements of the quasiparticle Fermi-liquid version of the DFT (QFLDFT) [1-3,8,17] to the GF 
approach. Let us note that  the QFLDFT was developed in Refs. [1-3,8,17] is used to determine the 
coupling constants etc. The  master equations can be obtained on the basis of variational principle 
with using the corresponding Lagrangian of a molecule Lq. It should be defined as a functional of  
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The densities 0 and 1  are similar to the HF electron density and kinetical energy density 
correspondingly; the density 2  has no an analog in the HF or DFT theory and appears as result of 
account for the energy dependence of the mass operator . A Lagrangian Lq  can be written as a 
sum of a free Lagrangian and Lagrangian of interaction: Lq = Lq

0 + Lq
int, where the interaction 

Lagrangian is defined in the form, which is characteristic for a standard  DFT  (as a sum of the 
Coulomb and exchange-correlation terms), however, it takes into account for the energy 
dependence of a mass operator  : 
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where F is an effective potential of the exchange-correlation interaction. The constants ik are 
defined in Ref. [7].  The single used constant 02  can be calculated by analytical way, but it is very 
useful to remember its connection with a spectroscopic factor Fsp of the system [7]: 
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where F is an effective potential of the exchange-correlation interaction. The constants ik are 
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The terms  /  and  2
is directly linked [6]. In the terms of the Green function method 

expression (7) is in fact corresponding to the GF pole strength.  The new element of an approach is  
connected with using the DFT correlation functionals , in particular, the Gunnarsson-Lundqvist, 
Lee-Yang-Parr ones etc.(look details in ref. [1,22]). 

3.  Some results and conclusions 
In further calculation as potential XCV  we use the exchange-correlation pseudo-potential 

which contains the correlation (Gunnarsson-Lundqvist) potential and relativistic exchanger Kohn-
Sham one [1,3]. As an object of studying we choose the diatomic molecules of HF, CH, CO for 
application of the combined  Green’s function method and quasiparticle DFT approach. In refs. 
[2,4] it was presented an analysis and calculation of the photoelectron spectrum for the sufficiently 
complicated from the theoretical veiwpoint molecules such as the N2 and CO molecules, where the 
known Koopmans' theorem even fails in reproducing the sequence of the V. I. P.'s in the PES 
spectrum [1-3].  It is stressing, however it has been possible to get the full sufficiently correct 
description of the diatomics PES already in the effective one-quasiparticle approximation [1,2,5]. 
Another essential aspect is sufficiently simple calculational procedure, provided by using the DFT. 
Moreover, here the cumbersome calculation is not necessary, if the detailed Hartree-Fock (Hartree-
Fock-Rothaan) data (separate HF-potential curves of molecule and ion) for the studied diatomic 
molecule are available. Further it is easily to  estimate the pole strengths pk and the values qk. When 
the change of frequency due to ionization is small, the density of states can be well approximated 
using only one parameter g: 
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In case the frequencies change considerably, the intensity distribution of the most intensive lines 
can analogously be well approximated by an effective parameter S. Below we mean that S0 denotes 
the constant S calculated with g0 and Sexp denotes the value derived from the experimental spectrum.  
The deviations of the one-particle constants g0 from the experimental ones are practically fully 
arisen due to the correlation effects.  In table 1 the experimental (Sexp) and theoretical (Sth) values of 
the S parameter are presented for the  molecules of CH, HF: S0 is the value without accounting for 
the correlation and reorganization corrections [2]; S(b) – the values of the parameter with accounting 
correlation and reorganization corrections within the simple (non-optimized) GF-DFT version [5] 
and the present work results (see [1-5] and Refs. therein).  
 

Table 1. The experimental (Sexp) and theoretical (Sth) values of the S parameter are presented for 
different molecules (CH, HF): S0 is the value without accounting correlation and reorganization 

corrections; S(b) –the combined GF-DFT method (b). 
Molecule S 1π 3 

CH S0 
S(b) 

S(th-this work) 

0.22 
0.27 
0.38 

0.105 
0.1134 
0.120 

HF S0 
S(b) 

S(th-this work) 

S(exp) 

0.126 
0.192 
0.313 
0.35 

1.900 
2.053 
2.115 
2.13 
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The first correction term is due to reorganization, the remaining correction terms are due to 
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The key elements of novelty of our advanced theory are connected with implementation of 
elements of the quasiparticle Fermi-liquid version of the DFT (QFLDFT) [1-3,8,17] to the GF 
approach. Let us note that  the QFLDFT was developed in Refs. [1-3,8,17] is used to determine the 
coupling constants etc. The  master equations can be obtained on the basis of variational principle 
with using the corresponding Lagrangian of a molecule Lq. It should be defined as a functional of  
quasiparticle densities:  
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The densities 0 and 1  are similar to the HF electron density and kinetical energy density 
correspondingly; the density 2  has no an analog in the HF or DFT theory and appears as result of 
account for the energy dependence of the mass operator . A Lagrangian Lq  can be written as a 
sum of a free Lagrangian and Lagrangian of interaction: Lq = Lq

0 + Lq
int, where the interaction 

Lagrangian is defined in the form, which is characteristic for a standard  DFT  (as a sum of the 
Coulomb and exchange-correlation terms), however, it takes into account for the energy 
dependence of a mass operator  : 
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where F is an effective potential of the exchange-correlation interaction. The constants ik are 
defined in Ref. [7].  The single used constant 02  can be calculated by analytical way, but it is very 
useful to remember its connection with a spectroscopic factor Fsp of the system [7]: 
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where F is an effective potential of the exchange-correlation interaction. The constants ik are 
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useful to remember its connection with a spectroscopic factor Fsp of the system [7]: 
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to  estimate the pole strengths pk and the values 
qk. When the change of frequency due to ioniza-
tion is small, the densi ty of states can be well 
approximated using only one pa rameter g:
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In case the frequencies change considerably, 
the intensi ty distribution of the most intensive 
lines can analogously be well approximated 
by an effective parameter S. Below we mean 
that S0 denotes the constant S calculated with 
g0 and Sexp denotes the value derived from the 
ex perimental spectrum.  The deviations of the 
one-particle constants g0 from the experimen-
tal ones are practically fully arisen due to the 
cor relation effects.  In table 1 the experimental 
(Sexp) and theoretical (Sth) values of the S param-
eter are presented for the  molecules of CH, HF: 
S0 is the value without accounting for the cor-
relation and reorganization corrections [2]; S(b) 
– the values of the parameter with accounting 
correlation and reorganization corrections with-
in the simple (non-optimized) GF-DFT version 
[5] and the present work results (see [1-5] and 
Refs. therein). 

Table 1. 
The experimental (Sexp) and theoretical (Sth) 
values of the S parameter are presented for 
different molecules (CH, HF): S0 is the value 
without accounting correlation and reorgani-
zation corrections; S(b) – the combined GF-

DFT method (b).

Molecule S 1π 3s
CH S0

S(b)

S(th-this work)

0.22
0.27
0.38

0.105
0.1134
0.120

HF S0

S(b)

S(th-this work)

S(exp)

0.126
0.192
0.313
0.35

1.900
2.053
2.115
2.13

It is interesting to list the similar data for 
the CO molecule: Sexp(1π)=2.30; Sexp(4σ)=0.27; 
Sexp(5σ)=0.04. It should be noted that more so-
phisticated calculation by Cederbaum et al [2] 
gives the theoretical value S(4,5σ), which is  
practically identical to the experimental values, 
however the value S(1π)=2.59 is in some de-
gree different from Sexp.  The similar our data 
are as follows: Sth(1π)=2.32; Sth(4σ)=0.268; 
Sth(5σ)=0.041.  Note that our data are in physi-
cally reasonable agreement with the experi-
mental data. It is interesting to present the data 
on the ionization potentials of the hydrogen 
fluoride (say, the ion state 2П): the experimen-
tal value (16.01 eV), the Koopmans' theorem  
(17.79 eV), the Hartree-Fock approximation 
(15.6 eV), the equations-of-motion approach 
(15.87 eV), this approach with accounting 
for correlation and reorganization corrections 
(15.97 eV). This results confirms the result  
[1-3] that the correlation and reorganization ef-
fects are the important corrections to Koopmans' 
theorem for this specific ionization potential. 
The most important aspect of all consideration is 
connected the principal possibility to reproduce 
diatomic spectra by applying a one-particle the-
ory with accurate accounting for the correlation 
and reorganiza tion effects. The hybrid DFT-GF  
theoretical approach can be prospectively used 
for quantitative treating photoelectron spectra of 
more complicated diatomic molecules. 
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and the present work results (see [1-5] and Refs. therein).  
 

Table 1. The experimental (Sexp) and theoretical (Sth) values of the S parameter are presented for 
different molecules (CH, HF): S0 is the value without accounting correlation and reorganization 

corrections; S(b) –the combined GF-DFT method (b). 
Molecule S 1π 3 

CH S0 
S(b) 

S(th-this work) 

0.22 
0.27 
0.38 

0.105 
0.1134 
0.120 

HF S0 
S(b) 

S(th-this work) 

S(exp) 

0.126 
0.192 
0.313 
0.35 

1.900 
2.053 
2.115 
2.13 

.
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Summary

The aim of the work is to develop and present a new effective approach to analysis and calcula-
tion of the photoelectron spectra of diatomic molecules, vibrational structure characteristics and at 
whole molecular spectral constants.   

It is developed the optimized version of the hybrid combined density functional theory (DFT) 
and the Green’s-functions (GF) approach to quantitative treating the diatomic photoelectron spectra 
and molecular constants. The  Fermi-liquid quasiparticle version of the density functional theory 
is used.   The density of states, which describe the vibrational structure in photoelectron spectra, 
is defined with the use of combined DFT-GF approach and is well approximated by using only the 
first order coupling constants in the optimized one-quasiparticle approximation. 

Using the combined DFT-GF approach leads to significant simplification of the calculation and 
increasing an accuracy of theoretical prediction that is confirmed by computing the molecular spec-
tral parameters for the molecules of CH, CO, HF etc.

Keywords:  photoelectron spectra of molecules, new hybrid approach, Green’s functions, den-
sity functional theory
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Реферат

Метою роботи є розробка та представлення нового ефективного підходу до аналізу та роз-
рахунку фотоелектронних спектрів двоатомних молекул, характеристик коливальної струк-
тури спектру і в цілому молекулярних спектральних констант.

Розвинута оптимізована версія гібридної комбінованої теорії функціоналу густини  (DFT) 
і методу функцій Грина (ГФ) для кількісного опису фотоелектронних спектрів двохатомних 
молекул та молекулярних констант. Новий гібридний підхід суттєво базується  на фермі-
рідинній квазічастичній версії теорії функціоналу густини. Густина стану, яка описує ко-
ливальну структуру в фотоелектронних спектрах, визначається з використанням комбіно-
ваного DFT-GF підходу та фізично розумно апроксимується за допомогою тільки першого 
порядку констант зв’язку в оптимізованому одноквазічастинковому наближенні. 

Використання комбінованого DFT-GF підходу призводить до значного спрощення моле-
кулярних обчислень та збільшення точності теоретичного прогнозування, що повністю під-
тверджується відповідними обчисленнями спектральних параметрів для молекул CH, CO, 
HF тощо.  

Ключові слова: фoтoелектронний спектр молекул, новий гібридний підхід, метод функ-
цій Гріна, теорія функціонала густини




