УДК 537.322.11

Анатычук Л.И., Мочернюк Ю.Н., Прибыла А.В.

Институт термоэлектричества НАН и МОН Украины, ул. Науки, 1, Черновцы, 58029, Украина

О СОЛНЕЧНЫХ ТЕРМОЭЛЕКТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЯХ ЭНЕРГИИ

Представлены результаты компьютерного проектирования солнечного термоэлектрического генератора с концентратором солнечной энергии, стенки которого одновременно выполняют функцию отвода тепла от горячих спаев термоэлектрического преобразователя энергии. При помощи технологии объектно-ориентированного компьютерного моделирования получены распределения электрического потенциала и температуры в термоэлектрическом генераторе с учетом температурных зависимостей кинетических коэффициентов материалов, а также контактных сопротивлений. Рассчитана конструкция термоэлектрического преобразователя, которая обеспечивает оптимальный режим преобразования солнечной энергии в электрическую, что позволило достичь КПД генератора 4.67 %. Стоимость генерируемой таким преобразователем электрической энергии составляет 0.5 \$/Bm, что делает его конкурентоспособным на рынке солнечных преобразователей энергии.

Ключевые слова: солнечная энергия, термоэлектрический генератор, компьютерное моделирование.

Results of computer design of a solar thermoelectric generator with a solar energy concentrator whose walls serve for rejection of heat from the hot junctions of a thermoelectric energy converter have been presented. With the aid of object-oriented computer simulation the distributions of electric potential and temperature in a thermoelectric generator with regard to temperature dependences of the kinetic coefficients of materials, as well as contact resistances have been obtained. Design calculation of a thermoelectric converter has been made assuring optimal mode of solar into electric energy conversion which yielded the generator efficiency of 4.67 %. The cost of electric energy power generated by such a converter is 0.5 \$/W, which makes it competitive in the market of solar energy converters. **Key words:** solar energy, thermoelectric generator, computer simulation.

Введение

Общая характеристика проблемы. Создание альтернативных возобновляемых источников энергии является на сегодня одной из наиболее актуальных задач, поскольку содействует решению экологических проблем термального загрязнения Земли, которые ведут к изменениям ее климата.

Солнце – наибольший источник возобновляемой энергии на Земле. Мощность его излучения составляет $4 \cdot 10^{23}$ кВт, из нее на Землю приходится приблизительно 10^{14} кВт. При этом на 1 м^2 площади – приблизительно 1 кВт мощности [1]. Такая плотность солнечного излучения недостаточна для получения перепадов температур необходимых для функционирования термоэлектрических преобразователей энергии. Поэтому целесообразно применение специальных концентраторов солнечной энергии в виде параболоидов, отражателей Френеля или совокупности плоских зеркал [1]. Для термоэлектрических

преобразователей характерны высокий ресурс работы и надежность, что делает их использование в совокупности с солнечными концентраторами перспективным [2, 3].

Анализ литературы. Первые солнечные термоэлектрические генераторы (СТЭГ) были изготовлены в конце XIX столетия. Среди них разработанный российским астрономом В.К. Цераским генератор, который приводил в действие электрический звонок [1].

В 50-х годах XX столетия интерес к возможности прямого преобразования солнечной энергии в электрическую усилился в связи с появлением новых материалов для термопар (*p-Zn-Sb*, *n-Bi-Sb*) [1, 4, 5]. Использование в качестве концентратора тепловой энергии плоского коллектора, в виде зачерненной медной пластины, позволило достичь КПД генератора около 1.05 % [4]. КПД генератора с оптическим концентратором, фокусирующим солнечное излучение на горячие спаи термопар, достиг 3.35 % [4]. Современные разработки солнечных термоэлектрических генераторов [6-11] выполнены как с оптическими концентраторами солнечной энергии, так и без них. Так в работе [6] приведены теоретические и экспериментальные исследования СТЭГ с плоским концентратором тепловой энергии. Авторы работы утверждают, что им удалось достичь КПД генератора 4.6 %.

Целью данной работы является компьютерное проектирование солнечного термоэлектрического генератора с концентратором солнечной энергии, стенки которого одновременно выполняют функцию отвода тепла от горячих спаев термоэлектрического преобразователя энергии, для достижения максимальной эффективности и минимальной себестоимости термоэлектрического преобразования энергии, что сделает СТЭГ конкуренто-способным на рынке солнечных преобразователей энергии.

Физическая, математическая и компьютерная модели СТЭГ

Эффективность работы термоэлектрического генератора определяется как КПД термоэлектрических модулей, так и КПД преобразования энергии солнечного излучения в тепловую. Оптимизация конструкции СТЭГ в данном случае состояла в максимальном уменьшении тепловых потерь и обеспечении температурных условий для реализации максимального КПД термоэлектрического преобразователя [1].

Конструкция солнечного термоэлектрического генератора содержит три основных элемента: преобразователь энергии солнечного излучения в тепловую, термоэлектрический преобразователь и устройство для отвода тепла [1].

В качестве концентратора излучения использован параболоид с зеркальной поверхностью. Приемочной поверхностью генератора выступает коммутационный проводник горячих спаев термоэлектрического преобразователя, выполненный в виде срезанного шара (рис. 1). Холодные спаи термопары находятся в тепловом контакте с параболоидом, являющимся одновременно холодным теплообменником. Для защиты от атмосферного влияния внутренняя часть параболоида изолирована защитным стеклом [12].

СТЭГ работает следующим образом. Солнечное излучение проходит сквозь стеклянную защитную поверхность 1, попадает на зеркальную поверхность параболического концентратора 2, отражается и фокусируется на коммутации 3, где превращается в тепловую энергию. Часть тепла, проходящее через термоэлектрический преобразователь 4, превращается в электрическую энергию. Тепло от холодных спаев термопары рассеивается на параболическом концентраторе 2, который служит и холодным теплообменником.

На рис. 1 q₀ – поток солнечного излучения, попадающего на защитное стекло;

 q_1 – поток солнечного излучения, отражающегося от внешней поверхности стекла; q_2 – поток солнечного излучения, отражающегося от внутренней поверхности стекла; q_3 – поток солнечного излучения, поглощающегося стеклом; q_4 – поток солнечного излучения, проходящего через стекло; q_5 – тепло, поглощаемое концентратором; q_6 – тепло, теряемое на внутренней стороне концентратора вследствие свободной конвекции и излучения; q_7 – поток солнечного излучения, фокусирующегося на коммутации горячих спаев; q_8 – потери тепла на приемочной поверхности; q_9 – потери тепла конвекцией и излучением на боковой поверхности термопары; q_{10} – тепло, поглощаемое термопарой; q_{11} – поток тепла, отводящегося от внешней поверхности концентратора свободной конвекцией и излучением.

Рис. 1.Физическая модель СТЭГ. 1 – защитное стекло, 2 – солнечный параболический концентратор, 3 – коммутация термоэлектрического преобразователя,

Рис. 2. Потери энергии на элементах конструкции СТЭГ.

Теоретические расчеты показали, что потери солнечной энергии на элементах конструкции СТЭГ следующие:

- 8 % отражается от поверхности стекла;
- 2 % поглощается стеклом;
- 9 % поглощается алюминиевым концентратором;

• 8.1 % – отражается от приемочной поверхности термопарного элемента;

• 72.9 % – проходит через ветви термопары.

Для упрощения задачи потоки $q_1 - q_3$ не учитывались, в расчетах использованы известные характеристики пропускания стекла, без учета поглощенного тепла q_3 , идущего на его разогрев. Также считалось, что в объеме, ограничивающем защитное стекло и зеркало, находится воздух.

Для нахождения распределения температуры в СТЭГ необходимо решить уравнение теплопроводности

$$q = \nabla(-\kappa \cdot \nabla T), \tag{1}$$

где к – теплопроводность, ∇T – градиент температуры и q – тепловой поток.

Граничные условия:

- на зеркальной поверхности концентратора:

$$q = \varepsilon_1 \cdot q_4 - \alpha \cdot \Delta T_1 + \varepsilon_1 \cdot \left(G_1 - \sigma \cdot T_1^4 \right), \tag{2}$$

где ε_1 – степень черноты внутренней стороны концентратора, α – коэффициент теплоотдачи, ΔT_1 – разница температур между внутренней стороной концентратора и окружающей средой, σ – постоянная Больцмана, T_1 – температура внутренней стороны концентратора.

- на приемочной поверхности:

$$q = q_7 \cdot (2 \cdot \varepsilon_2 - 1) - \alpha \cdot \Delta T_2 + \varepsilon_2 \cdot (G_2 - \sigma \cdot T_2^4), \qquad (3)$$

где ΔT_2 – разница температур между приемочной поверхностью и окружающей средой, T_2 – температура приемочной поверхности, ε_2 – степень черноты приемочной поверхности.

- на границах теплового контакта коммутации с ветками термопары

$$q = \kappa \cdot \frac{\Delta T_4}{l}, \qquad (4)$$

где к, l, – теплопроводность и высота веток термопары, ΔT_4 – разница температур между горячим и холодным спаями термопары.

- на границах боковых поверхностей веток термопары и окружающей средой

$$q = \alpha \cdot \Delta T_3 + \varepsilon_3 \cdot \sigma \cdot \left(G_3 - \sigma \cdot T_3^4\right), \tag{5}$$

где ΔT_3 – разница температур между боковой поверхностью термопары и окружающей средой, T_3 – температура боковой поверхности термопары, ε_3 – степень черноты боковой поверхности термопары.

- на внешней поверхности концентратора

$$q = \alpha \cdot \Delta T_5 + \varepsilon_4 \cdot \sigma \cdot \left(T_5^4 - T_0^4\right),\tag{6}$$

где ΔT_5 – разница температур между внешней стороной концентратора и окружающей средой, ϵ_4 – степень черноты внешней стороны концентратора, T_5 – температура концентратора, T_0 – температура окружающей среды. G – входной тепловой поток излучением для каждой отдельной границы

$$G = G_m + F_{amb} \sigma T_{amb}^4, \tag{7}$$

где G_m – величина излучения от других границ элементов конструкции, F_{amb} – фактор поля

зрения, равный части поля зрения, которое не подпадает под действие других поверхностей, T_{amb} – температура в отдаленной точке в направлениях, включенных к F_{amb} .

Нахождение решения уравнения (1) с предельными условиями (2 – 6) представляет собой сложную задачу, аналитические решения которой имеют слишком громоздкий вид и не подлежит анализу [13].

Для решения поставленной задачи была использована компьютерная программа мультифизического объектно-ориентированного моделирования Comsol Multiphysics [14]. Созданная при ее помощи компьютерная модель солнечного термоэлектрического генератора дала возможность осуществить расчеты его физических полей, определить основные энергетические характеристики и провести оптимизацию конструкции СТЭГ.

Компьютерная модель СТЭГ (рис. 1) состоит из алюминиевого параболического концентратора (зеркала) 2, зачерненной медной приемочной площадки 3, представляющей собой срезанный шар, и термопары 4. Холодные спаи термопары находятся в тепловом контакте с параболическим концентратором, являющийся холодным теплообменником.

Рис. 3. ZT термоэлектрического материала на основе Bi₂Te₃.

Компьютерное моделирование проводилось со следующими начальными условиями: плотность солнечного излучения – 1000 Вт/м², температура окружающей среды – 300 К. Отвод тепла от холодного теплообменника предполагался путем свободной конвекции и излучения в окружающую среду. В соответствии с реальными физическим и оптическим свойствами [15, 16] элементов конструкции солнечного термоэлектрического генератора, взяты следующие значения коэффициентов поглощения и отражения: коэффициент пропускания стекла – 0.9, коэффициент отражения алюминиевого зеркала – 0.9, степень черноты приемочной площадки ε₂ и внешней стороны параболического концентратора ε₄ – 0.9, степени черноты боковой поверхности веток термопары ε_3 и внутренней поверхности концентратора $\varepsilon_1 - 0.1$. В качестве термоэлектрического материала использован стандартный термоэлектрический материал на основе Bi₂Te₃ (рис. 3) [17, 18]. Оптимизация характеристик модели СТЭГ проводилась по диаметру параболического концентратора D, толщине концентратора d и тепловому сопротивлению термопары. В качестве начального значения D было выбрано 20 мм, поскольку именно при таком диаметре фокус оставался под защитным стеклом. Увеличение диаметра концентратора *D* проводилось таким образом, чтобы фокус параболоида оставался неизменным. Начальное значение толщины концентратора d = 0.2 мм.

Для каждого варианта конструкции оптимизировалась площадь поперечного сечения

(тепловое сопротивление) ветвей термопары таким образом, чтобы обеспечить горячую температуру на уровне 300 °C, поскольку именно при этой температуре достигается максимум КПД для выбранного термоэлектрического материала.

Результаты оптимизации

В результате компьютерного моделирования были получены значения температуры на холодных спаях термопары СТЭГ (рис. 4), распределения температур на холодном теплообменнике (рис. 5), а также значение ЭДС и электрической мощности. Рассчитаны также значения КПД солнечного термоэлектрического генератора для разных значений диаметров и толщины параболоида (рис. 6). Установлено, что КПД СТЭГ достигает 4.67 %. Также исследовано влияние контактных электрических сопротивлений, приводящее к снижению энергетических характеристик СТЭГ на 8 %.

Рис. 4. График зависимости холодной температуры T_c на термопаре от диаметра концентратора для разных его толщин d. 1 - d = 0.2 мм; 2 - d = 0.4 мм; 3 - d = 0.6 мм; 4 - d = 0.8 мм; 5 - d = 1 мм.

Рис. 5. График зависимости ΔT между центром и краем алюминиевого концентратора от его диаметра для разных толщин концентратора d. 1 - d = 0.2 мм; 2 - d = 0.4 мм; 3 - d = 0.6 мм; 4 - d = 0.8 мм; 5 - d = 1 мм.

Выполнена оценка экономических показателей генератора. На рис. 7 приведены графики зависимости стоимости 1 Вт генерированной СТЭГ электрической мощности от его

геометрических размеров. Как видно из графика, при толщине концентратора 0.2 мм для диаметров концентраторов *D* от 20 до 35 мм, его стоимость составляет приблизительно 0.5 \$/Вт. Такие показатели делают СТЭГ конкурентоспособным на рынке солнечных преобразователей энергии.

Рис. 6. График зависимости КПД СТЭГ от диаметра концентратора для его разных толщин d. 1 - d = 1 мм; 2 - d = 0.8 мм; 3 - d = 0.6 мм; 4 - d = 0.4 мм; 5 - d = 0.2 мм.

Рис. 7. График зависимости стоимости 1 Вт генерированного СТЭГ электрической мощности от диаметра концентратора для его разных толщин d. 1 – d = 1 мм; 2 – d = 0.8 мм; 3 – d = 0.6 мм; 4 – d = 0.4 мм; 5 – d = 0.2 мм.

Следует отметить, что дальнейшее повышение эффективности СТЭГ возможно за счет использования термоэлектрических материалов с более высоким значением ZT, использования зеркал с большим коэффициентом отражения и защитного стекла с большим коэффициентом пропускания, а также использования селективных покрытий для уменьшения потерь на излучение.

Выводы

- 1. Методом объектно-ориентированного компьютерного моделирования проведена оптимизация конструкции солнечного термоэлектрического генератора, позволяющей повысить КПД генератора до значения 4.67 %.
- 2. Установлено, что учет контактных сопротивлений в компьютерной модели повышает

точность расчетов энергетических характеристик СТЭГ на 8 %.

3. Показана возможность создания СТЭГ стоимость генерирования которым 1 Вт электроэнергии может составлять около 0.5 \$, что делает его конкурентоспособным на рынке солнечных преобразователей энергии.

Литература

- 1. Анатычук Л.И. Термоэлементы и термоэлектрические устройства: Справочник. / Л.И. Анатычук К.: Наук. думка. 1979. 768 с.
- 2. Анатычук Л.И. Рациональные области исследований и применений термоэлектричества / Л.И. Анатычук // Термоэлектричество. 2001. №1. С. 3 14.
- 3. Анатычук Л.И. Современное состояние и некоторые перспективы термоэлектричества / Л.И. Анатычук // Термоэлектричество. 2007. №2. С. 7 20.
- 4. Бернштейн А.С. Термоэлектрические генераторы. / А.С. Бернштейн Москва: Госэнергоиздат, 1956. 47 с.
- 5. M. Telkes, J. Appl. Phys. 25, 765 (1954).
- Daniel Kraemer, Bed Poudel, Hsien-Ping Feng, J. Christopher Caylor, Bo Yu, Xiao Yan, Yi Ma, Xiaowei Wang, Dezhi Wang, Andrew Muto, Kenneth McEnaney, Matteo Chiesa, Zhifeng Ren, and Gang Chen, Nature Materials 10, 532 – 538 (2011).
- 7. Ernesto E. Gomez, Patent No. US 4251291 (1981).
- 8. E.P. Gladskikh, V.A. Katenin, V.A. Maksimov, Patent No. Ru 2382935 C1 (2010).
- 9. A.N. Timofeev, A.V. Timofeev, D.V. Timofeev, M.A. Timofeev, Patent No. Ru 86247 U1 (2009).
- 10. John Gotthold, Anjun Jerry Jin, and Frank M. Larsen, Patent No. US 2010/0252085 A1 (2010).
- 11. R. Amatya and R.J. Ram, J. Electronic Materials 39 (9), 1735 1740 (2010).
- 12. Сонячний генератор тепла і електрики. Патент UA 73624/ Анатичук Л.І., Мочернюк Ю.М. 2012.
- Анатычук Л.И. О влиянии системы теплообмена на КПД термоэлектрического генератора / Л.И. Анатычук, А.В. Прибыла // Термоэлектричество. – 2012. – №4. – С. 87 – 92.
- 14. COMSOL Multiphysics User's Guide // Comsol, Inc. 2006. 708 p.
- 15. Клинд Л. Стекло в строительстве: Свойства. Применения. Расчеты. / Л. Клинд, В. Клейн [пер. с немецкого П.И. Глазунова, Т.Ф. Гусевой, З.А. Липкинда]. М.: Стройиздат, 1981. 287 с.
- 16. Алюминий, свойства и физическое металловедение: Справочник. / [под редакцией Дж. Е. Хэтча. Перевод с английского канд. тех. наук Э.З. Непомнящей]. М.: Металлургия, 1989. 424 с.
- 17. Копыл А.И. Термоэлектрические свойства легированного свинцом материала *p*-(*Bi*₂*Te*₃)_{0.25}(*Sb*₂*Te*₃)_{0.72}(*Sb*₂*Se*₃)_{0.03} с избытком теллура / А.И. Копыл, И.И. Павлович, И.С. Термена // Термоэлектричество. 2007. – №1. – С. 38 – 43.
- Струтинская Л.Т. Влияние вибрации на однородность термоэлектрических материалов на основе *Bi*₂*Te*₃, выращенных методом вертикальной зонной плавки / Л.Т. Струтинская // Термоэлектричество. 2012. – №4. – С. 58 – 63.

Поступила в редакцию 24.07.2013.