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1. Introduction
In the last few years, computational chemistry 

tools have been extensively employed to guide the devel-
opment of therapy against Coronavirus Disease 2019 
(COVID-19) [1–3]. Several computationally targeting 
strategies have been suggested, ranging from re-docking 
of existing FDA-approved drugs aiming for drug repur-
posing against COVID-19 up to target-specific in silico 
screening of new small-molecules able to block critical 
viral proteases, such as Mpro and PLpro, avoiding matu-
ration of proteins crucial for the virus life cycle [2, 4–7]. 

Computer-aided drug discovery (CADD) is a series 
of computational approaches to guide and streamline the 
drug discovery and development process to minimize the 
production cost and time [8, 9]. Two principal strategies of 

CADD are often encountered: ligand-based and struc-
tured-based drug design. Structure-based drug design 
(SBDD) requires knowledge of the 3D structure of a recep-
tor and utilizes virtual screening\docking and molecular 
dynamic simulations. In addition, some recent approaches 
utilized sequence-based [10] and fragment-based [11–13] 
drug design. A typical workflow of SBDD is summarized 
in Fig. 1 [6, 14–17]. Ligand-based drug design is based on 
quantitative structure-activity relationships (QSARs), 
pharmacophore modelling, artificial intelligence (AI) [18] 
and machine learning methods [2, 19]. 

In this review, we outline the progress and recent 
advances of CADD in anti-COVID-19 therapy. The dif-
ferent strategies for the rapid identification of promising 
drug candidate molecules against various drug targets 
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implicated in the pathogenesis of the coronavirus SARS-
CoV-2 are overviewed. Section 2 outlines how the struc-
tural elucidation of pharmacological drug targeting and 
the discovery of preclinical drug candidate molecules 
can be accelerated using structure- and ligand-based 
drug design. Section 3 provides fundamentals and some 
promising examples of using molecular dynamics (MD) 
simulations for critical SARS-CoV-2 proteins and their 
complexes with non-covalent inhibitors as essential tools 
for drug design and development [20]. Several examples 
of MD computational studies will demonstrate how at-
omistic MD simulations can facilitate our understanding 
of the molecular basis of drug actions and biological 
mechanisms of virus inhibition in atomic detail. 

2. Materials and methods
The literature overview of QSAR, in silico screening, 

machine learning, molecular docking and molecular dy-
namics (MD) simulations is given in the context of 
COVID-19. The literature search was performed using on-
line databases, such as Scopus, Web of Science, PDB-pro-
tein databank, and PubMed focusing on the following key-
words – human coronavirus, QSAR, molecular docking, 
virtual screening, machine learning, molecular dynamics, 
Mpro and PLpro proteases, SARS-CоV-2, respectively.

3. Result and discussion
3. 1. Computational methods in drug discovery
Rapid progress in developing new anti-COVID-19 

drugs has been achieved due to the critical role of com-

putational methods and approaches, which become an 
essential complementary tool in drug discovery. One of 
popular workflows of computer-aided drug discovery for 
therapy against COVID-19 is summarized in Fig. 2. 

Most available in silico screening tools can be di-
vided into two large groups. The first one is based on 
statistical Quantitative Structure – Activity Relation-
ships (QSAR) methodology. The second group includes 
molecular modelling approaches.

3. 1. 1. QSAR methods
Various implementations of QSAR methods in 

the context of COVID-19 studies have been report-
ed [6, 14, 21, 22]. 

In brief, a QSAR study can be proceeded through 
the following steps:

(i) collection of experimental data: biological activ-
ity parameters IC50, EC50, RBA (Relative Binding Affini-
ty), or binary information – active/inactive, etc., identifica-
tion of a set of systems with known biological activity;

(ii) separation of molecular systems with known 
activity into two groups: training and test sets;

(iii) computation of different molecular descrip-
tors for each molecule from the training set;

(iv) formulation of a possible mathematical (statis-
tical) model of biological activity: multilinear and non-
linear regression models, classification rules (discrimina-
tion function, logistic regression), artificial neural 
network;

(v) validation of the obtained model using a test 
set: comparison with experimental data, verification of 
the predictive ability of the model.

Each step in the above list can include many dif-
ferent approaches. The first step (i) involves collecting 
experimental data on the activity of certain molecules, 
detailing the molecular structure, and creating an appro-
priate database. Task (ii) divides the sample into test and 
training samples. Because of such division, statistically 
representative samples should be obtained. In practice, 
this stage determines the success of the subsequent vali-
dation procedure of the accepted statistical models. The 

Fig. 1. A typical workflow of structure-based drug design

Fig. 2. Common workflow and key approaches in 
computer-aided drug discovery for therapy against 

COVID-19. Reproduced from [2] with permission from 
the Royal Society of Chemistry
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rational selection of train and test sets has been discussed 
elsewhere [23, 24].

Task (iii) requires the computation of a wide set of 
descriptors, outlining the most diverse aspects of molecu-
lar structure. To date, there are several thousands of such 
molecular descriptors implemented in computer programs. 
Among the popular programs for computing descriptors 
are DRAGON [25] and PaDEL-Descriptor [26]. A contem-
porary version of DRAGON-7 can calculate up to 5270 
molecular descriptors, organized in different logical 
blocks, which correspond to different aspects of molecular 
structure. Among these descriptors, in addition to 1-, 2-, 
and 3-dimensional molecular parameters, such as constitu-
tional, topological and electro-topological, this set also 
includes some drug-like indices, physicochemical molecu-
lar properties, etc. Comprehensive overviews of available 
descriptors are given elsewhere [27, 28].

The next part (iv) is the most complex and multi-
faceted. The main problem associated with using a wide 
descriptor set is likely multicollinearity and redundancy 
of the data. Therefore, it requires reducing the descriptor 
set and selecting the most important descriptors relevant 
to the activity under consideration. To date, many ap-
proaches have been considered to accomplish this goal. 
Among them, classical approaches based on the analysis 
of the factor structure of the task should be mentioned. 
However, factor analysis (or its simplified version – prin-
cipal component analysis) [29] does not correspond to 
such a purely pragmatic goal as descriptor selection. 
Nevertheless, such information provides the deepest un-
derstanding of mutual correlations of descriptors.

Several methods exist for reducing the descriptor 
set and constructing compact regression equations. Popu-
lar in recent years, the genetic algorithm method allows 
the generate of equations with a given number of descrip-
tors [30]. In addition to full search and genetic algorithms, 
methods based on stochastic predictor search strategies, 
such as the “ant colony” method [31] and the “random 
forest” method [32], should be mentioned. It should be 
noted that, unlike regularization approaches, these search 
methods are prone to overfitting. Some competition to the 
genetic algorithms approach is a relatively new application 
to QSAR problem – method LASSO (Least Absolute 
Shrinkage and Selection Operator), which allows to unam-
biguously rank the descriptors and construct the corre-
sponding regression equations, including a given number 
of parameters [33, 34]. Ideologically, the LASSO approach 
(L1-regularization of Least Squares method) is close to 
stepwise selection [35] and ridge regression [36] (L2-regu-
larization of Least Squares method). As a result, the ap-
proaches mentioned above give the possibility to obtain a 
function that describes biological activity (BA) as a func-
tion of linear combination (1).

0 ,
<<

= + ∑ i i
i N

BA a a d                  (1)

where the number of descriptors (di) must be significantly 
less than the number of objects/molecules (N), ai – re-
gression coefficients.

Unfortunately, in a number of cases, it is impossi-
ble to obtain a compact regression (1). In this case, the 
arsenal of chemoinformatics includes regression models 
based on the use of the factor structure of the descriptor 
set together with the response of the system (biological 
activity data). Principal Component Regression (PCR) 
and Partial Least Squares (PLS) allow to build a regres-
sion model without explicitly selecting “important” de-
scriptors [37]. PCR and PLS models can lead to a linear 
equation in which the number of descriptors can be much 
larger than the number of objects (molecules) (2).
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where PCj – principal components of the correlation ma-
trix, ns – number of factors to be taken into account.

One possible 3D QSAR regression model is the 
CoMFA (Comparative Molecular Field Analysis) approach. 
The CoMFA method is based on the observation that pri-
marily intermolecular effects, which are fundamentally 
noncovalent and depend mainly on molecular features and 
shape, determine ligand-target interaction. CoMFA aims 
is to study the correlations between 3D characteristics of 
molecules and their biological activity. The 3D molecular 
descriptors are steric (Lennard-Jones), electrostatic (Cou-
lomb) potential and possibly other parameters (e.g., lipo-
philicity). A feature of the CoMFA model is that such pa-
rameters are calculated as a three-dimensional map 
describing a given property in space. To describe such 
fields, the molecule is assumed to be in a three-dimension-
al spatial lattice defined by nodes. A given property (bio-
logical activity) is expressed through the superposition of 
field values in the nodes of the spatial lattice (3).

( ) ( )1log .= +∑ ∑i i i i
i i

a E r b S r
C

    (3)

The CoMFA approach allows not only to describe 
the relevant molecular property, but also to obtain a visu-
al map giving a view of the “localization” of the property 
on molecular fragments. Examples of the CoMFA calcu-
lations on the COVID-19 problem have recently been re-
ported [38, 39].

Another helpful group of approaches is related to the 
construction of classification functions. For typical binary 
classification (e.g. active/inactive, carcinogen/non-carcino-
gen, etc.), the discriminant function, which is traditional for 
such purposes, can be used [40]. The linear variant of which 
(linear discriminant analysis, LDA) is connected with the 
construction of a hyperplane in the multidimensional space 
of descriptors, separating active objects from inactive ones. 
The results of the LDA analysis can be represented as an 
inequality (4):

0
1,

0,
=

+ >∑ i i
i M

b b d        (4)

where bi is the optimal LDA coefficients that guarantee 
the separation of active and inactive molecules. A system 
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with a certain activity (or inactivity, depending on the 
calibration of the equation) must satisfy (4).

Logistic regression (sigmoid function) is an alterna-
tive approach to solving the classification problem [41] (5):

( )( )1/ 1 exp ,= + −p z  0
1,

.
=

= + ∑ i i
i M

z b b d   (5)

In (5), the parameter 0≤p≤1 defines the classifica-
tion of the object into two classes. The problem of descrip-
tor selection is also essential for LDA and logistic regres-
sion. In connection with the classification problem, a 
relatively new approach should be mentioned, such as 
support vector machine (SVM) [42]. The main idea of 
SVM is transforming high-dimensional descriptor space 
to make the active/inactive groups linearly separable. In 
the transformed space, the boundaries are constructed in 
such a way as to maximize the difference between groups. 

Moreover, in the context of the classification prob-
lem, the kernel approach [43, 44] and the classification 
tree method should also be mentioned [45]. However, an 
artificial neural network (ANN) is perhaps the most pop-
ular machine learning technique that can be used for 
QSAR description of a wide range of molecular proper-
ties [19]. The recent update on artificial intelligence 
methods for repurposing and discovering new drugs 
against COVID-19 is given in [46, 47]. In the case of the 
classification problem, the formal mathematical descrip-
tion of a single neuron can be represented as (5). The 
number of neurons in ANN determines the flexibility of 
the nonlinear predictive model. An example of ANN 
discrimination of organic molecules by antibacterial ac-
tivity has been given [48].

Schematically, a neural network for classification 
or quantitative prediction of molecular properties can be 
represented as shown in Fig. 3. Neurons are usually di-
vided according to their functional features into input, 
hidden and output neurons. The topology of a neural 
network (neural network architecture) can be incredibly 
diverse [46, 49]. Deep generative models are powerful 
tools for exploring chemical space, enabling the on-de-
mand generation of molecules with desired physical, 
chemical or biological properties. To build chemical 
space with up to 67 million molecules, some chemical 
language models have been suggested [50–52]. Genera-
tive modelling approaches for drug discovery have been 
reviewed in [53].

There are a significant number of practical appli-
cations of ANN to describe the physicochemical proper-
ties of molecules (boiling and melting points, vapour 
pressure, viscosity, heat capacity, flash point, enthalpy of 
formation, etc.) and biological activity (toxicity, carcino-
gen activity, antibacterial properties, various medication 
effects, etc.) [54]. Some comprehensive reviews and a 
general description of the above-mentioned methods are 
given elsewhere [46, 55, 56].

Part (v) is the most problematic step of QSAR in-
vestigations. The importance of validating QSPR/QSAR 
models has been pointed out [23, 24, 57]. However, only 
recently several papers have been published that pro-

posed some coefficients characterizing the quality of the 
obtained equations [58, 59]. The optimal partitioning of 
datasets into training and test samples is also closely re-
lated to the validation problem. There are a number of 
publications discussing approaches to such partition-
ing [60, 61]. Historically, the first validation criteria used 
to assess the effectiveness of models were a number of 
indices that are now known as “internal validation” ap-
proaches. Among them are the well-known determina-
tion coefficient (R2) and root means squares deviation 
(RMSD) calculated for a train set. Moreover, correspond-
ing values R2 and RMSD were obtained by means of 
Leave–One (or Many) – Out cross-validation and boot-
strap methods [62]. The “external validation” mainly 
uses the calculation of different parameters for a test set.

The second group of in silico methods in drug 
discovery is based on molecular modelling (MM). MM 
includes computational approaches that focus on direct 
ligand-protein modelling and the screening for the iden-
tification of promising molecular structures. In general, 
the following steps can outline a procedure for such mod-
elling:

(a) identification of target (proteins, binding sites), 
collection of experimental screening data, collection of 
drug activity data, database building or database selection;

(b) virtual screening (VS);
(c) structure-based modelling, docking;
(d) hit identification;
(e) lead generation (optimization);
( f ) validation in vitro, in vero, in vivo.
For step (a), there are many important databases 

containing information on the biological activity (espe-
cially with respect to COVID-19) and theoretical studies 
of known compounds. The most important databases are 
given in Table 1.

In step (b), these data from public databases as 
well as local databases can be used for subsequent 
screening against selected proteins. The goal of VS is to 
choose subsets of chemical libraries so that they are en-
riched with compounds that have the desired affinity for 
a given target. 

Fig. 3. Schematic representation of neural network with 
hidden layer
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In this review, we separate docking-based ap-
proaches from those based on molecular similarity as-
sessment, which we consider virtual screening methods. 
Usually, VS is based on available quantitative informa-
tion about 3D protein structure, corresponding binding 
site and the reference (core) ligand. There currently are a 
large number of approaches to VS. They can be catego-
rized into several groups; however, conceptually, VS is 
based on similarity/diversity concept [63].

3. 1. 2. Similarity-based virtual screening 
According to the similarity principle, structurally re-

lated molecules should exhibit similar biological activity. As 
the similarity parameter, one can use the value SAB (6) [64, 65]:

where FA(r) and FB(r) are the molecular fields connected to 
the tested (A) and the target (B) molecules. The functions 
F(r) represent atom-centered steric (S(r)) and electrostatic 
fields (E(r)), so (6) can be viewed as a “distance” or cor-
relation coefficient between molecular fields. It is evident 
that the similarity parameter SAB depends on the mutual 
superposition of molecules and their conformations and 
can take the value parameter within a range of 0<SAB<1 for 
positively defined fields. To account for both steric- and 
electrostatic-fields, the similarity index can be defined as 
a weighted value of the two components F(r) by (7).

( ) ( ) ( )1 2 .= +F r w S r w E r        (7)

A method based on the Tanimoto coefficient is simi-
lar to the above approach. Chemical structures can be char-
acterized using binary data collected on the corresponding 

vectors 0101001100101.......=Ax  (for molecule A) and 
for molecule B. These vectors (fingerprints) describe the 
presence (or absence) of certain elements of the chemical 
structure [66, 67]. The fingerprints are popular elements 
for VS [68, 69]. The fingerprints can be obtained using var-
ious descriptor calculation programs (PaDEL-Descrip-
tor [26], DRAGON [25]) and RDKit, which is an important 
contemporary tool for chemoinformatics [70]. 

The Tanimoto index can then be calculated from a 
particular fingerprint as (8):

,= =
+ − + −

A B
AB

A A B B A B

x xcT
a b c x x x x x x

 (8)

where a is the total number of yes (or “1”) bits 
in molecule A, b is the number of “yes” bits in 
molecule B, and c is the number of “yes” bits in 

both structures A and B. A larger value corresponds to a 
greater similarity of the compounds. An example of a 
direct similarity search for SARS-CoV-2 Mpro inhibitors 
is given in [71], where the Tanimoto index was calculated 
using Morgan fingerprints [72], which is probably the 
most popular in contemporary investigations. A Tanimo-
to similarity threshold of 75 % was used to select several 
compounds from DrugBank as potentially active sub-
stances. Different fingerprint similarity-based approach-
es for VS are described elsewhere [73–75].

There are also a number of different approaches to 
VS based on graph theory indices and other methods. 
Some instructive examples have been described in [76, 77].

3. 1 .3. Pharmacophore-based virtual screening
Virtual screening based on pharmacophores is an 

important approach in modern drug design [78, 79]. 

Table 1
Online databases and chemical libraries.

Database Description Reference

ChEMBL Database of bioactive molecules with drug-like properties con-
taining chemical, bioactivity and genomic data https://www.ebi.ac.uk/chembl

PubChem Collection of freely accessible chemical information, such as 
chemicals by name, molecular formula, and structure https://pubchem.ncbi.nlm.nih.gov/

DrugBank Database for drug interactions, pharmacology, chemical struc-
tures, targets, metabolism https://go.drugbank.com/

KEGG
Database resource for understanding high-level functions and 
utilities of the biological system, such as the cell, the organism 

and the ecosystem
https://www.genome.jp/kegg/

Kaggle Data science community with powerful tools for machine learning https://www.kaggle.com/

U.S. Food and Drug 
Administration (FDA)

The FDA is responsible for protecting the public health by en-
suring the safety, efficacy, and security of human and veterinary 

drugs, and biological products
https://www.fda.gov

Therapeutic Target 
Database

Database providing information about the known and explored 
therapeutic protein and nucleic acid targets, the targeted disease http://db.idrblab.net/ttd

PharmGKB Comprehensive online resource for curating knowledge about 
the impact of genetic variation on drug response for clinicians https://www.pharmgkb.org

BindingDB Public molecular recognition database supporting research, educa-
tion and practice in drug discovery, pharmacology and related fields https://www.bindingdb.org/bind/index.jsp

STITCH Database of proteins from 630 organisms to over 74,000 differ-
ent chemicals, including 2,200 drugs http://stitch.embl.de

Protein Data Bank On-line public database of X-ray structure of proteins and their 
complexes

https://www.rcsb.org 
https://pdb101.rcsb.org

( ) ( ) ( ) ( ) ( ) ( )dr / dr dr ,= ∫ ∫ ∫AB A B A A B BS F r F r F r F r F r F r  (6)

https://www.rcsb.org
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Pharmacophores are usually defined as important 
chemical features corresponding to efficient protein-li-
gand interactions [80]. In other words, a pharmacophore 
can be understood as regions in three-dimensional 
space where certain functional groups can lead to effec-
tive intermolecular interactions. These regions are as 
follows:

– hydrogen bond donor regions. Recognize the 
structural elements (and spatial regions) of promising 
hydrogen bonding donor ligands located in the corre-
sponding sites favourable for the realization of hydro-
gen bonding. The region for donors or acceptors for 
hydrogen bonds in a protein corresponds to a typical 
distance of 2.5–3.5 Å, and the angle heteroatom do-
nor-hydrogen-acceptor should be 120° or more;

– hydrogen bond acceptor regions. Recognize the 
elements of ligand and corresponding region with accep-
tor of hydrogen bond;

– hydrophobic interaction region. These regions 
are located near the hydrophobic fragments of the protein 
surface and correspond to the centers of the most hydro-
phobic groups of ligands – hydrocarbon rings (benzene, 
aliphatic), hydrocarbon radicals and others. The hydro-
phobic regions are located at a distance from 3.5 to 5.0 Å 
from the nearest protein atom;

– positively and negatively charged groups. Start 
with the new paragraph, there are several commercial pro-
grams that give a possibility to analyze a binding site and 
formulate pharmacophore hypothesis. Among them, the 
popular tools are MOE (Molecular Operating Environ-
ment) [81] and LigandScout [82]. As an example, we repre-
sent the pharmacophore structure obtained by means of 
LigandScout in Fig. 4, a, b for Mpro complex with a li-
gand. In Fig. 4, a, green arrows denote hydrogen bond 
donors, red arrows correspond to hydrogen bond acceptors, 
and yellow regions denote hydrophobic regions.

VS offers the possibility to significantly reduce 
the set of ligands; however, the most direct way to find 
active ligands is the docking procedure (struc-
ture-based approach) (step c). Docking calculations 
can be viewed as a model of the molecular recognition 
process that plays a crucial role in protein-ligand inter-
actions [83].

The most crucial aspect of docking is the selec-
tion of the Scoring function. The scoring function gives 
an evaluation of a ligand-to-protein affinity. In modern 
docking studies, various scoring functions are usually 
calculated. Some of the most important functions are 
the following:

– force-field scoring. It describes the interaction 
energy as the sum of the Coulomb (electrostatic), van der 
Waals (Lennard-Jones potential), tensile, bending and 
angular torsional components of the coupling by means 
of a definitely chosen molecular mechanic force field 
(AMBER, TRIPOS, etc.) [84];

– knowledge-based scoring. This scoring function 
utilizes information from a database of ligand-protein 
complexes. It is designed to reproduce experimental 
structures rather than binding energies. Analysis of such 
information yields the paired atom-atom potential [85];

– empirical scoring. In this approach, scoring 
functions are fitted to reproduce experimental data, 
such as binding energies and conformations energies. It 
is based on counting and evaluating certain types of 
interactions corresponding to functional groups in con-
tact. The total contribution can be divided into compo-
nents: electrostatic, hydrophobic-hydrophilic, and hy-
drophobic-hydrophobic interactions. The enthalpy and 
entropic components are also taken into account in the 
calculation of Gibbs energy [86, 87];

– machine learning scoring. This approach, which 
is currently the most promising, does not assume an un-
ambiguous functional form describing the ligand-protein 
interaction [19]. The results for the scoring function are 
estimated from previously obtained data for different 
supramolecular complexes. The machine learning ap-
proach to scoring functions demonstrated high accuracy. 
In particular, it was stated that the Random Forest (RF) 
approach was used to implicitly capture binding effects 
that are hard to model explicitly [88]. The SVM regres-
sion, as well as RF, were reported in [89];

– consensus docking (scoring). In this approach, 
several scoring functions are combined to balance er-
rors from individual functions. The method is based 
on evaluating different poses to obtain the more cor-
rect one [90].

Fig. 4. Different pharmacophore models generated by 
LigandScout for 6LU7 Mpro complex with a ligand:  

a – 2D pharmacophore; b – 3D pharmacophore model

a

b
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Comprehensive reviews of the description [91–94] 
and comparison of different scoring functions are given 
in [67–70] and references therein. A pharmacoph-
ore-guided deep learning approach for bioactive molecu-
lar generation has been discussed in [95].

An essential stage of rational drug design is lead 
generation (step e). At this stage, new structures are 
generated from hit structures obtained in the previous 
stages of the study (virtual screening, docking) [96]. 
Scaffold-constrained molecular generation is used to 
obtain a set of systems with higher activity. Usually, the 
term “scaffold” is defined as the basic (core) structure 
of a molecule or set of molecules. A scaffold can be 
thought of as a system with a specific shape and number 
of functional groups corresponding to a particular tar-
get. There are a number of approaches 
(usually implemented in corresponding 
computer programs) to efficiently work 
with chemical space. The most interesting 
approaches are the following:

– Scaffold Hunter is a computer pro-
gram for hierarchical structuring, visual-
ization, and analysis of complex structures 
and the bioactivity of data [97]. The pro-
gram reads the data, identifies a biochemis-
try-related compound, and then iteratively 
removes one ring at a time from the “child” 
structure, creating a “parent” structure.

The importance of the scaffold con-
cept is connected with a set of restrictions 
imposed on designed molecules. Without 
such restrictions, the probability of ob-
taining molecules with the desired activi-
ty corresponding to the target is low. 
There are several effective algorithms for 
scaffold generation. A new SOMOA 
(Scaffold Constrained Molecular Genera-
tion) algorithm has been proposed [98]. A 
SMILES-based recurrent neural net-
work (RNN) [50] is used to generate new 
molecular structures optimized for differ-
ent properties while exploring only the 
relevant chemical space;

– ScaffoldGraph is an open-source 
Python library for the generation and anal-
ysis of molecular scaffold networks that 
can be further optimized into drug mole-
cules [99]. We use ScaffoldGraph to identi-
fy scaffolds that are statistically enriched 
for bioactivity utilizing a method called 
compound set enrichment;

– Scaffold Generator is an open-
source Java library for generating, pro-
cessing and displaying molecular scaf-
folds, scaffold trees, and networks [100]. 
The main function of the Scaffold Gener-
ator tools is to construct trees and net-
works of scaffolds from given collections 
of molecules;

– Scaffold hopping is a procedure of exchanging 
one scaffold for another while maintaining molecular 
features that are important for biological properties [101]. 
The scaffold hopping primarily focuses on existing struc-
tures [102, 103]. 

In practice, molecular docking calculations are 
significantly software-dependent (Table 2). The AutoDo-
ck suite (MGLTools) [104] requires that some settings, 
such as the selection of docking cell, grid space, etc., 
have to be performed manually. On the other hand, most 
of these procedures are implemented automatically in the 
LigandScout suite [82]. A critical assessment of docking 
programs and scoring functions in terms of reproducing 
crystallographically determined protein/ligand complex 
structures is available in [93].

Table 2
Available software and online tools for molecular docking calculations

Software Description References

AutoDock
AutoDock is open-source molecular 

modelling simulation software for pro-
tein-ligand docking

[105]

AutoDock Vina

AutoDock Vina uses an improved local 
search routine and a sophisticated gra-
dient optimization method, achieving 
approximately two orders of magni-

tude improvement in speed and better 
accuracy in predicting binding modes 

compared to AutoDock

[106, 107]

GOLD

GOLD is the validated, configurable pro-
tein–ligand docking software for expert 
virtual screening, lead optimization and 

drug discovery

[108]

Schrödinger

The Schrodinger suite of software has a 
large number of applications for a variety 
of modeling, analysis and computational 

tasks. It enables using both ligand and 
structure-based methods. A license is 

required

Schrödinger Re-
lease 2023-3: Mae-
stro, Schrödinger, 
LLC, New York, 

NY, 2023

LigandScout

LigandScout is computer software for 
an advanced molecular design that uti-
lizes a concept of creating 3D pharma-

cophore models derived from structural 
data of macromolecule–ligand complex-
es or from sets of ligands. A license is 

required

[82]

SwissDock

SwissDock is a web service to predict 
the molecular interactions that may 
occur between a target protein and a 

small molecule.  
http://www.swissdock.ch

[109]

FlexX

FlexX is an automated docking tool us-
ing ultra-high-speed approach to predict 
the binding mode of ligands at a target 

binding site

[110]

MOE

Molecular Operating Environment 
(MOE) is a drug discovery software 
platform that integrates visualization, 
modeling and simulations, as well as 
methodology development, combined 
in one program package. A license is 

required

[81]
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Numerous molecular docking studies have been 
reported in the context of repurposing and discovering 
potent non-covalent and covalent inhibitors for critical 
proteases of the virus SARS-CoV-2 [111–118]. Some excel-
lent reviews of this topic are given elsewhere [1, 2, 7, 119].

In successful examples of drug repurposing 
studies, pharmacophore-based virtual screening has 
been utilized in combination with other tools, such as 
machine learning, MD simulations, and in vitro exper-
imental validation assays (Fig. 5, A). Such a combined 
approach has been used for discovering small-mole-
cule inhibitors of Mpro with micromolar activity by 
applying pharmacophore-based VS for identifying 
functional chemical groups responsible for the molec-
ular recognition of ligands by the Mpro binding pock-
et (Fig. 5, B, C) [79].

In another instructive example, pharmacoph-
ore-based virtual screening of 2122 FDA-approved drugs 
was performed for repurposing against Mpro protease of 
SARS-CoV-2 [120]. The docking with flexible active site 
residues allowed to identify seven hit candidates, among 
which Boceprevir and Telaprevir (HCV drugs) and Nel-
finavir (HIV drug) revealed high potency in an inhibition 
assay [120] (Fig. 6).

A series of computational tools were employed for 
redesigning perampanel, which is the known hit inhibitor 
of Mpro protease, for discovering multiple noncovalent, 
nonpeptidic inhibitors with ca. 20 nM IC50 values [121]. 
The study was initiated from 14 known drugs, as shown 
in Fig. 7. The suggested ligand designs were confirmed 
and augmented by resolving of high-resolution X-ray 
crystal structures. 

Fig. 5. Example of pharmacophore-based in silico screening: A – a workflow for a screening procedure, operating with 
a compound library over 1 billion compounds from the databases ZINC, SWEETLEAD, and the MolPort. The selected 

compound repository was pre-filtered focusing on commercially available and drug-like chemicals. The reduced 
dataset was a subject of receptor-based screening followed by ligand-based screening. More computationally expensive 

approaches, such as receptor-based and machine learning-based screening were only applied to the smaller libraries; 
B – a pharmacophore model for Mpro derived from the reference inhibitor GC-376/GC-373 (PDB ID 7D1M) using the 
LigandScout suite; C – a pharmacophore model for Mpro derived from the inhibitor Rottlerin. Adopted with permission 

from [79]. Copyright © 2022 The Authors. Published by American Chemical Society
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3. 2. Molecular dynamics simulations of pro-
tein-ligand complexes

The molecular dynamics (MD) simulation method 
calculates and analyzes the physical movements of atoms 
and molecules for a fixed period of time. The MD trajec-
tories of atoms and molecules are calculated by numeri-
cally solving Newton’s equations of motion for a system 
of interacting particles, where forces between the parti-
cles and their potential energies are often calculated us-
ing interatomic potentials or molecular mechanical force 
fields [122]. The fundamentals of MD simulations are 
given elsewhere [123].

In the last few years, MD simulations have be-
come one of the most widely used computational meth-
ods in biomolecular simulation. The main advantages of 
an MD technique are the following: 

1) it uses empirical molecular mechanics (MM) 
force fields, which are very low-CPU/GPU consuming;

2) it can now be utilized to explore time-dependent 
phenomena in atomic detail over microseconds, which 
are within the time scale of many biochemical processes. 
Popular MD software and its capability are summarized 
in Table 3.

Atomistic MD simulations are a powerful tool to 
examine the stability and conformational dynamics of 
proteins and its complex with ligands. Root means 
square deviation (RMSD) measures the deviation of a set 
of coordinates of a protein to a reference set of coordi-
nates. RMSD are calculated by least-square fitting the 
instant structure (τ2) to its crystallographic or pre-equili-
brated structure (τ1=0) by (9): 

( ) ( ) ( )
1
22

1 2 1 2
1

1, ,
=

 τ τ = τ − τ 
 
∑

N

i i
i

RMSD r r
N

 (9)

where N and ri(τ) are the numbers of atoms, and the posi-
tion atom i and its reference position at time τ [125, 131].

Numerous examples of using MD simulations for 
resolving SARS-CoV-2 protein structure, folding, binding 
hotspots and functions have been reported [117, 132–139]. 
In these MD studies, a typical sampling time scale was 
about hundreds of nanoseconds; however, in some reports, 
it has already reached up to 100 μs, as in the case of recent 
MD simulations of allosteric inhibition of the SARS-
CoV-2 Mpro [140]. 

Fig. 6. Binding poses of Boceprevir (green ball and stick, 6WNP crystal pose, dark green line) and Telaprevir 
(salmon ball and stick) in the PPC1:2AMD cavity (with the reference 2AMD ligand crystal pose, violet ball and 

stick). 2D diagrams highlight the compound moieties. Adopted with permission from [120].  
Copyright © 2022 American Chemical Society

Fig. 7. Redesigning Perampanel using computational tools: A – molecular structure of Perampanel;  
B – docked structures for perampanel with Mpro. Surface rendering noting the binding pockets colored by atomic 

number; C – key interacting residues near the binding site including the catalytic residues His41 and Cys145. 
Adopted with permission from [121]. Copyright © 2022 The Authors. Published by American Chemical Society
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Another example is given by homology modeling, 
combined with all-atom MD simulations and molecular 
mechanics Poisson-Boltzmann surface area (MMPBSA) 
scanning, which were performed to explore the trimeric 
form of the Spike protein and its interface with human 
ACE2 [141]. Twenty interacting residues in the Spike 
protein have been identified as responsible for tightly 
binding to ACE2 [141].

3. 2. 1. Stability of protein-ligand complexes
In the last two years, numerous studies of 

atomistic MD simulations of the structure and 
dynamics of Mpro and PLpro proteases, 
Spike-protein and their complexes with non-co-
valent inhibitors have been per-
formed [117, 136, 139, 142–157]. Different physi-
cochemical properties, such as site-mapping and 
pandemic mutations, were subject to investiga-
tion [142, 158]. The role of temperature in the 
thermal stability of the enzyme and its complex-
es was evaluated [148]. Depending on research 
strategies and used software, various biomolecu-
lar force fields were utilized, including AM-
BER [134, 141, 142, 147, 148, 152, 159], OPLS-
AA [143, 144, 153], CHARMM27 [149, 158], 
CHARMM36 [145, 146, 151, 154], and Gromos 
G43a1 [156, 160] and G54a7 [150], respectively.

All-atom MD simulations have been 
performed to examine the conformational be-
havior of the monomeric and dimeric form of 
Mpro structure by microsecond time scale 
MD sampling [147]. The stability of the X-ray 
structure (PDB ID 6LU7) of Mpro was probed 
for monomeric and dimeric forms by utilizing 
the Amber99 force field (Fig. 8). It was found 
that the deviations of the equilibrated struc-
tures from their starting crystallographic co-
ordinates measured as RMSD for the back-
bone Cα atoms were at 0.3–0.5 nm after 

1.5 μs (Fig. 8, A), which suggest a relatively high struc-
tural stability. The residue-based fluctuations revealed 
that the most flexible protein regions were located at the 
loops within residues 40–65 and 180–200 (Fig. 8, B), re-
spectively. The distance distribution for Cα atoms in the 
His-41 and Cys-145 demonstrated two distinct sub-states 
at 0.26 nm and 0.5 nm, which corresponded to some en-
largement compared to the starting distance in the X-ray 
structure (0.19 nm in chain A and 0.26 nm in 
chain B) (Fig. 8, C–D).  

Table 3
Popular molecular dynamic (MD) simulation software

Software Description References

GROMOS GROningen MOlecular Simulation (GROMOS) software package for classical MD simulations developed the 
University of Groningen and the Swiss Federal Institute of Technology (ETH Zurich). A license is required [124]

GROMACS

GROMACS (Groningen MAchine for chemical simulation) is an efficient and versatile open-source program for 
classical MD simulations suited for the simulation of biological (macro) molecules in aqueous environments. It 
is compatible with various force fields such as GROMOS, OPLS, AMBER, and ENCAD. All-atom, atomistic 

and coarse-grained approaches are implemented

[125]

NAMD NAMD is a high-performance biomolecular simulation program based on open-source codes optimized for 
executing at parallel supercomputers and workstation clusters. It is compatible with CHARMM force field [126]

CHARMM
CHARMM (chemistry at HARvard molecular mechanics) is a MD simulation program that is primarily de-

signed to study biological molecules, such as proteins, peptides, lipids, nucleic acids, carbohydrates, and small 
molecule ligands

[127]

AMBER Amber is a biomolecular simulation suite divided into three major step-system preparation (antechamber, 
LEaP programs), simulation (sander), and trajectory analysis (ptraj analysis program). A license is required [128]

LAMMPS
LAMMPS (large-scale atomic/molecular massively parallel simulator) is an open-source classical MD program 

for material science modeling. It has a library of intermolecular potentials for soft matter (biomolecules, poly-
mers), solid-state materials (metals, semiconductors), and coarse-grained or mesoscopic systems

[129]

DL_POLY DL_POLY is a general-purpose MD simulation package for studying of liquids of large complexity [130]

Fig. 8. All-atom MD simulations of the monomeric and dimeric form 
of Mpro: A – root means square deviation (RMSD) of Cα atoms during 

MD simulation of the monomer (upper graph) and the dimer (lower 
graph). The total RMSD is given in black, whereas those of the domain 

I, II, and III are color-coded; B – comparison of residue-based root 
mean square fluctuation (RMSF) of the monomeric and dimeric Mpro. 

RMSF plots for Cα carbons of chain A and B are presented in black and 
red, respectively; C – the catalytic dyad residue His41 and Cys145; 

D – the distance distribution between the residues His-41 and Cys-145 
during MD simulations of the dimeric Mpro, in which chains A and 

B are plotted in black and red, respectively. Adapted with permission 
from [147]. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
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A typical protocol starts with the best affinity 
docking structure of a protein-ligand complex with the 
highest docking score and lowest root-mean-square devi-
ation (RMSD), which is then employed for further evalu-
ation by atomistic MD simulations in explicit aqueous 
solution [134, 135, 139, 156, 157, 161]. 

Atomistic MD simulations of the effects of the 
ensemble-based mutations on binding for the SARS-
CoV-2 Spike-protein/RBD complexes to various 
nanobodies were performed to identify dynamic, 
energetics, and binding affinity fingerprints [132].

3. 2. 2. Binding free energy calculations 
of protein-ligand complexes

One of the remaining bottlenecks in com-
puter-aided drug design is the initial selection and 
further optimization of the identified hits. One of 
the computational approaches that can guide these 
screening efforts is binding free energy calcula-
tions of ligand-protein complexes for newly select-
ed hit candidates [162]. In addition, alchemical free 
energy (AFE) calculations can offer high accuracy 
at a low computational cost, keeping a growing 
interest in their application during hit-to-lead opti-
mization campaigns [163].

Free energy calculations based on MD sim-
ulations are computationally expensive, and, there-
fore, they are often applied to explore smaller sub-sets of 
compounds preselected by in silico screening of the 
larger chemical spaces. This technique is up-and-com-
ing in hit-to-lead and lead optimization studies.

In thermodynamics, the binding free energy ΔGb 
(in kcal/mol) is the measure of the interaction affinity 
between a ligand and target protein (10), which is de-
fined by the dissociation constant KD (in mol/L) of a 
complex:

ΔGb=kBT*lnKD,   (10)

where kB is the Boltzmann constant in kcal/K and T is the 
temperature in K. Therefore, KD is a measure of the affin-
ity of a ligand towards its protein target. In equilibrium, 
KD equals the ligand concentration at which half of the 
protein molecules are ligand-bound. ΔGb is related through 
the KD to the binding affinity of a drug candidate.

Several computational methods have been sug-
gested for calculating ΔG using MD simulations:

– the linear interaction energy (LIE) [164];
– fast pulling of ligand (FPL) [165];
– molecular mechanism-Poisson−Boltzmann (gen-

eralized Born) surface area (MM-PB(GB)SA) [166];
– non-equilibrium molecular dynamics 

(NEMD) [167];
– thermodynamic integration [168];
– free energy perturbation (FEP) approaches [169].
Accurate estimation of absolute binding free ener-

gy relies on several subprocesses that require human in-
tervention for introducing geometric restraints, defining 
the collective variables, and performing post-treatments. 

Therefore, a novel approach for automating and stream-
lining free-energy calculations, referred to as the binding 
free energy estimator (BFEE2) [170], has been suggested. 
It provides both standardized alchemical and geometrical 
workflows (Fig. 9) for protein–ligand and host–guest 
complexes. In addition, BFEE2 supports such popular 
force fields as CHARMM, Amber, OPLS, and GROMOS, 
respectively [170].

One of a strategy for free-binding energy estima-
tion is the so-called “geometrical route”, in which two 
molecular components (protein-ligand, protein-protein) 
are progressively separated from one another in the pres-
ence of conformational restraints [171]. Recently, this 
approach has been used for studying key SARS-CoV-2 
proteins. The standard binding free energy of the recep-
tor-binding domain of the most widespread variants, 
namely, Alpha, Beta, Delta, and Omicron BA.2, as well 
as the wild type (WT) in complex with ACE2 have been 
determined using a rigorous theoretical framework that 
combines MD simulations and potential-of-mean-force 
calculations, as shown in Fig. 10 [172].

Fig. 9. Alchemical and geometrical workflows for binding free 
energy estimation: A – definition of collective variables describing 

the degrees of freedoms of the protein−ligand complex;  
B – the alchemical absolute binding free-energy calculation 

workflow. Reproduced with permission from [170].  
Copyright © 2021, American Chemical Society

Fig. 10. Free-energy profiles for separation of ACE2 and 
RBD SAR-CoV-2 proteins estimated by potential-of-mean-

force MD simulations. Adopted with permission from [172]. 
Copyright © 2022, American Chemical Society
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3. 2. 3. Hybrid MM/QM Approaches
Popular protocols based on molecular docking of 

best protein-ligand structures in combination with MD 
simulations of their stability in explicit water solutions 
can reveal interaction fingerprints that potentially hold 
promises for designing novel potent drugs. Moreover, the 
modern biomolecular simulations 
based on classical molecular mechan-
ics (MM) force fields, such as OPLS-
AA, CHARMM, and AMBER, can 
reproduce the majority of experimen-
tal properties of biomolecular systems 
with high accuracy [139]. However, 
some crucial aspects of covalent bond 
formation and breakage within cata-
lytic pockets are still beyond the realm 
of classical force fields, so these cal-
culations require quantum-chemical 
formalism (i.e., electronic and nuclear 
interactions) to be taken into account. 
Therefore, some hybrid MM/QM ap-
proaches have also been suggested.

A recent study used a hybrid 
MM/QM approach to select a subset of 
FDA-approved drugs against Mpro pro-
tease [173]. The workflow is summa-
rized in Fig. 11, A and initiated with 
molecular docking of 1615 FDA-ap-
proved drugs, ending up with pre-se-
lected 62 candidates. In the next step, classical 
MD simulations based on the CHARMM36 
force field sampled these docked protein-drug 
complexes (Fig. 11, B), further reducing the 
candidate pool up to 26 molecules. In the final 
stage, the selected 26 drug molecules were 
treated by a pseudo-quantum mechanical (ANI) 
force field, which was trained by neural net-
work models on DFT (wB97X/6-31G(d)) calcu-
lation data points so that free energy MD anal-
ysis (MM/PBSA) reduced the final selection up 
to 9 drugs only [173].

Another example is given by long-
scale 5 μs steered-MD simulations aiming to 
examine the binding of PF-07321332 inhibi-
tor to SARS-CoV-2 Mpro. These steered po-
tential guided MD simulations revealed the 
important role of the ligand pyrrolidinyl 
group and the protease residues Glu166 and 
Gln189 in the ligand-binding process (Fig. 12). 
The MD-refined structures were further 
studied by QM/MM calculations to unravel 
the reaction mechanism for the formation of 
the thioimidate product between Mpro and 
the PF-07321332 inhibitor [174].

The thermodynamics of the catalytic 
reaction in SARS-CoV-2 Mpro, activated by 
a proton transfer (PT) from Cys145 to His41, 
has been studied by a hybrid quantum/classi-
cal MD approach and the perturbed matrix 

method (PMM) [175]. The proposed approach offered a 
cost-effective procedure for identifying a few key sites 
and some specific water molecules, which play a signifi-
cant role in enhancing or reducing the thermodynamic 
feasibility of the PT reaction by selective desolvation of 
the active site of Mpro [175].

Fig. 11. Workflow of a hybrid MM/QM approach: A – scheme of hybrid 
ANI/MM MD simulations of Mpro; B – an example of the simulated system 

consisting of a drug (red surface) bound to the enzyme and solvated with 
TIP3P water molecules and Na+ and Cl− ions. Reproduced with permission 

from [173]. Copyright © 2020 American Chemical Society

Fig. 12. Steered-MD simulations of inhibitor PF-07321332 binding 
to SARS-CoV-2 Mpro: A – scheme of the protonation states of the 
catalytic dyad in Mpro. The distance between the Cys145-Sg and 
His41-N3 atoms are given from the X-ray data (PDB ID 7JYC);  

B – 3D-structure of the SARS-CoV-2 Mpro+PF-07321332. Scheme of 
setting up a constant force for steered MD simulations;  

C – a RMSD plot of the complex SARS-CoV-2 Mpro+PF-07321332 
over MD simulations; D – the representative structure of the 

equilibrated complex. Dotted lines show H-bonds between the ligand 
and residue Asn142, Glu166, and Q189, respectively. The distances 

between atoms are given in Å. Adapted and reproduced from [174] with 
permission from RSC Advances and the Royal Society of Chemistry
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4. Conclusions
Current computational modelling methodologies 

for the discovery of novel agents against COVID-19 uti-
lize complex workflows combining several tools, such as 
ultra-virtual pharmacophore-based screening of large 
chemical spaces, molecular docking 
of pre-screened candidates and at-
omistic MD simulations of pro-
tein-ligand complexes for hit-li-
gands, followed by binding free 
energy calculations [176]. 

From a short-term perspec-
tive, in silico screening approaches 
are going to use a synergetic effect 
of both physics-based molecular 
docking and data-based scoring 
functions, which was reflected in 
the latest 3DR Grand Challenge 4 
results for ligand IC50 predic-
tions [177]. To accelerate in silico 
screening of ultra-large chemical li-
braries, some hybrid iterative ap-
proaches have been suggested, such 
as DeepDocking [178], in which 
structure-based docking of a sparse 
library subset is further utilized for 
training machine-leaning models, 
which, in turn, are used for filtering 
the whole library to reduce addition-
ally its chemical space size [8]. 

From a long-term perspective, 
further growth of readily accessible 
commercial and proprietary chemi-
cal space libraries is expected [51, 179]. It has been re-
ported that the xREAL extension of Enamine REAL 
Space currently consists of 173 billion compounds [8]. 
This number is expected to be further expanded up to 1015 
compounds by utilizing larger building block sets and 
four/five-component scaffolds [8]. However, focusing on 
specialized ultra-large libraries designed for specific 
scaffolds over general-purpose on-demand spaces seems 
more promising. In the last decade, the synergy between 
experiments and atomic-scale MD simulations, acceler-
ated by dramatic increases in computational power with 
the advent of GPUs and cloud computing, has opened 
opportunities for mesoscale all-atom MD simulations of 
the whole viruses (Fig. 13) [180].

Taking into account all the click-like chemistry 
challenges, the enormous abundance and diversity of 
drug-like on-demand chemical spaces, some transforma-
tions are now occurring from computer-aided to comput-
er-driven drug design [181]. Instead of a traditional view 

at computational chemistry and structure-based design, 
as a subset of tools capable of aiding acceleration of the 
drug discovery process, they become now regarded as a 
driving force in small molecule drug discovery for urgent 
therapy against coronavirus SARS-CoV-2.
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Fig. 13. Mesoscale all-atom MD simulations of viruses: A – 3D-structure of the 
full-length Spike protein in the open conformation (PDB ID: 6VSB); B – MD 
snapshot of glycosylated Spike protein embedded in a lipid membrane. (Front) 

Scheme of recognizing coronavirus SARS-CoV-2 of the host cell by interacting with 
the glycosylated Spike protein homotrimer. Adapted with permission from [180]. 

Copyright © 2022 American Chemical Society
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