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Introduction. The research of linear dynamic systems of 
regulation of the process of biological purification of contaminated 
water with fractional regulators was conducted in order to determine 
the boundaries of D- domains of their global stability and to determine 
the space of the parameters of the adjustment of the fractional 
controller for fixed orders of the diereintegrators in its composition. 

Materials and methods. Studies were conducted on the stability 
of the automatic control of the water treatment process. Using the D-
split method, we obtain analytical formulas that determine the limits of 
the region of stable stabilization of the "object" + "fractional-
regulator" system.  

Result and discussion. Automatic control systems of fractional 
order are more precisely described by dynamic equations, in which the 
order of derivatives can be any number, valid and not only integer. 
Proportional-integral-differential (PID-) regulators that are widely 
used in practice of automation also fall under a fractional 
generalization, if in their structure, instead of ordinary integer 
derivatives and integrals, fractional analogues are used. The 
controllers of the fractional order denote how PI D  , where 
 and  are the orders of integration and differentiation of the error 
signal, with orders  and   may have valid non-integer (fractional) 
values. 

On the basis of the D-split method, analytical formulas are 
described that describe the boundaries of global stability of linear 
dynamic systems of fractional order. Domains of stability are built in 
the space of parameters of the configuration of fractional domains 
PI D  -regulators for fixed orders of dipintegrators. An appropriate 
algorithmic software is developed that implements the proposed 
method for selecting the domain of stability. Some results of 
computational experiments are given, an estimation of fractional 
PI D  - regulator efficiency is given. 

Conclusions. On the basis of the D-split method, analytical 
expressions were obtained, which describe the boundaries of the 
global region of stability of linear dynamic systems of fractional order 
of type "input-output" with fractional PI D   -regulators. 
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Introduction 
 
From the beginning of the development of the theory of integro-differential calculus of 

fractional order [1], its first applications in control problems appeared only about 50 years 
ago [2]. It has been shown that fractional calculus becomes an effective tool for describing 
numerous dynamic systems. The classical results of the PID control theory have spread to 
the fractional order controllers, which denote how PI D  , where   and  are the orders 
of integration and differentiation of the error signal, with orders  and  may have valid 
non-integer (fractional) values [3,4]. 

 
 
Materials and methods 
 
Studies were conducted on the stability of the automatic control of the water treatment 

process. Analytical studies are based on Laplace's transformation with respect to the 
operator of a dipintegrator, which generalizes the functions of differentiation and 
integration, on the use of the structural theory of closed systems and on the target 
mathematical transformations of the transfer functions of the object-regulator system.  

On the basis of the D-split method, analytical formulas are described that describe the 
boundaries of global stability of linear dynamic systems of fractional order.  

Domains of stability are built in the space of parameters of the configuration of 
fractional domains PI D  -regulators for fixed orders of dipintegrators.  

An appropriate algorithmic software is developed that implements the proposed 
method for selecting the domain of stability.  

Analytical studies and computational experiment in the MATLAB environment have 
been conducted. Using the D-split method, we obtain analytical formulas that determine the 
limits of the region of stable stabilization of the "object" + "fractional-regulator" system.  

 
 
Result and discussion 
 
The well-known problem of the allocation of the global region of stability (D-split 

method) required the distribution of fractional dynamic systems in the space of the 
parameters of the adjustment PI D 

-regulator, depending on the value of the orders of 
powers   and  . 

The purpose of the article is to study the possibility of applying the D-split method to 
automatic control systems for process control with fractional controllers. 

A fundamental operator a tD  is often referred to as a differintegrator. 
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where  – fractional order, a –constant associated with the initial conditions. 
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More fundamental is the definition of Grunwald-Letnikov for the order  according to 
which 
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, ( )x  – gamma Euler's function,   0h   – gain of the 

time coordinate, ( )f x  – the function to which the operator of the differential integration is 
used, [ ] – means an integer part of the number. This definition shows that integer 
derivatives require the use of finite series, and fractional derivatives – an infinite number of 
members of a series. 

It can be proved [5] that the Laplace transform, which is the basis of the definition of 
the concept of a transfer function, for the differintegrator has the form 
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where  ( ) ( )F s L f t  – ordinary Laplace transform function ( )f x , n  – an integer that 

satisfies the condition 1n n   . Note that if 1
0 0

( ) 0j
t t

D f t 


 , 0,1, 2,..., 1j n  , 

then from (3) it follows that  0 ( ) ( )tL D f t s F s  . Systems with fractional orders have 
transfer functions of arbitrary real order. 

Consider the transfer function of fractional order, which is given by the following 
expression 
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where ia , ib , 1 1 0... 0n n        , 1 1 0... 0n n         – arbitrary valid 
numbers. 

In the time domain, the transfer function corresponds to an inhomogeneous differential 
equation of the fractional order of the form 
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where ( )y t  – exit, and ( )u t  – input of the control object, a tD – differintegrator.  

In the general structure of the closed control system of fractional order with one input 
and one output is presented ( )y t  – output, ( )r t  – input request signal, ( )e t  – error 
(mismatch), ( )u t  – control signal, ( )G s  – transfer function of the control object, ( )C s  – 
transfer function of the fractional order controller. 
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Transmission function of the fractional PI D 
-controller has the form 

 
( ) p i dC s k k s k s    ,                                               (6) 

where   и   – fractional orders whose values belong to the region (0,2) , pk , ik , dk  
– adjusting parameters of the regulator. 

In the time domain, the transfer function (6) corresponds to the type control  
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where – 0 tD  differintegrator. 
The task is to find the area of stability with allowable values of the settings pk , ik , dk  

fractional PI D   - controller, which stabilize the control object. This is important when 
designing PI D   - controllers, and then in the future and to find optimal regulators on the 
found parametric area of stabilization by the chosen criterion. 

Transmission function of the system "object + regulator" in Fig. 1 has the form 
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The area of stable stabilization, which we denote through S , in the space of 

parameters is subject to belonging to the left half-plane of the complex s - plane all real 
parts of the roots of the characteristic quasipolynomial ( )P s , which for convenience will 
be presented in the form 
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where   jq  – ordered fractional orders of powers, and moreover 1 0...n nq q q   ,  

jp  – coefficients determined by the factors of the transfer function of the control object 

and the parameters of the settings pk , ik , dk  fractional PI D   - regulator. 
To select the region of stable system stabilization (control object with the controller) 

we use the D-split method, the parameters space [6]. 
Recall that according to this method, the boundary between the areas of stability and 

instability in the space of the configuration parameters is three parts: 0      . 
Constituent 0  is determined from the condition of intersection of the real root of the 
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characteristic equation of the imaginary axis s - plane with 0s  . That is, the component 
0  is found by way of substitution 0s   in the equation ( ) 0P s  , where  ( )P s  which is 

determined by the equation (11). It follows that 0  can be determined from the condition 

0 0p  , if the value of the smallest order 0q  equals 0, i.e. with 0 1qs  . If 0 0q  , i.e. 
0 1qs  , then the boundaries 0  does not exist. 

Constituent    is determined from the condition of intersection of a pair of complex 

conjugate roots of the imaginary axis at s j  , where 1j    –  imaginary unit. So, in 
this case, quasipoline (11) becomes an unstable and valid and imaginary part of the 
equation ( ) 0P j   begin to equal zero at the same time. 

Constituent   is determined by intersection of the real roots of the quasi-polynomial 
(11) imaginary axis at s    and can be determined from the condition 0np  . 

Applying these preconditions to the investigated system "object + regulator" and 
analyzing the characteristic quasipolin (10), we come to the conclusion that the components 

0  and   the boundaries of the stability zone are straight lines: 
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To build a component    substitute s j   into the equation ( ) 0P s  , where ( )P s  

– quasipolin (10). Then we will get 
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where

  Re ( )P j  and  Im ( )P j  mean respectively the actual and imaginary parts of 
the quasipolin ( )P j . 

For further transformation of the expression (12) we recall that this is not an integer 
degree of complex number  can be calculated by the formula Muavr-Laplace 
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where  arctan /   ,   – real part,   – imaginary part and   – fractional order 
of a complex number. 



─── Automation of Food Processes ─── 

─── Ukrainian Journal of Food Science.  2017.  Volume 5. Issue 2 ─── 288 

Expression j , which is present in the equation (12), can be presented according to the 
formula (13),  so 

cos sin
2 2
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   

  
  .                                         (14) 

 
 Further, equating to zero the real and imaginary part of the equation (12), taking 

into account the formula (14), we will get 
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 The system of linear equations (15) contains more unknowns ( pk , ik , dk ), than the 

number of equations, one of the parameters of the system can be arbitrarily chosen for its 
unambiguous solution. If as a parameter, choose a coefficient pk , then the system (15) 
becomes a system of linear algebraic equations of the second order with respect to 
unknowns ik  and dk , the solution of which has the form 
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Note that for fractional PI   - regulator ( 0dk  ) system (15) has a single solution 
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2 1 1 2( ) ( ) ( ) ( ) ( )p i iH R H R       ,   1 2 2 1( ) ( ) ( ) ( ) ( )i p pH R H R       , 

 2 2
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         .          (19) 

  
We now apply these results to highlight the stability of the biological control system 

for contaminated water by active sludge with fractional PI D   - regulator. By the 
assumption that the kinetics of the growth process of biomass is described by the Mono 
equation [7], in work [8] the linearized model of the bioelectric system "aerotank + 
sedimentation tank" was obtained in the form of a model with one input and one output. 
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  ,     2( ) ( ) ( )Ty t x t c x t  ,                             (20) 

 
where  1 2 3( ) ( ), ( ), ( ) Tt x t x t x tx  – state vector in which 1( )x t , 2 ( )x t  – respectively, the 
concentration of biomass and substrate in aerotanks, 3 ( )x t  – the concentration of 
recirculating biomass from the settling tank to the aerosol bioreactor, ( )u t  – single-speed 
control function-speed of dilution (analogue of volume flow rate), ( )y t  – the observed 
output of the system is the concentration of the substrate. 

 System matrix A  and vectors b  and c  are defined as follows 
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3,1 (1 )a r u  ,   3,2 0a  ,   3,3 ( )a r u   , 

1 1 3(1 )b r x rx     ,   2 2(1 ) inb r x s    ,   3 3 1( ) (1 )b r x r x      . 
 
It is marked here: u  – nominal control given, 1 2 3( , , )Tx x x x     – the corresponding 

equilibrium state vector calculated for it; max  – maximum specific growth rate of biomass; 

sk  – saturation constant, determined experimentally; ins  – concentration of the substrate in 
the inlet stream; Y  – the factor of output (profitability) of biomass; r ,   – coefficients that 
determine respectively the ratio of the recirculation flow and biomass waste stream to the 
input stream. 

Numerical simulation of a controlled biocleaning system was carried out at the 
following output data: 200ins   [mg / l], 0.65Y  , max 0.15  [h-1], 100sk   [mg / l], 
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0.6r  , 0.2 , 0.05u   [h-1], 0 0t  , 1T   [h], vector of the initial state of the system 
(20) relied on equal 0 0 0 0

1 2 3( , , ) (286,  17,  568)T Tx x x x [mg / l].  
Note that the vector of the equilibrium state of the system (20) with this data was 

calculated as the solution of the corresponding system of nonlinear equations of the third 
order and equaled 1 2 3( , , ) (285,  15.38,  570)T Tx x x    x . 

In frequency domain model (20) can be presented in the form 
 

( ) ( ) ( )Y s G s U s , 
 

where ( )U s , ( )Y s  – Laplace transforms according to input and output, ( )G s  – transfer 
function of the control object. 

 

    
 

2
1 2 1 0

3 2
2 1 0

( )
det

T
T c adj sE A b p s p s pG s c sE A b

sE A s q s q s q
   

   
   

.          (21) 

 
Here through  adj sE A  the matrix attached to the matrix is indicated s E A , and 

the coefficients ip , iq  polynomial numerator and denominator are calculated by the 
formulas 

 
0 2 11 33 1 21 33 2 13 31p b a a b a a b a a   ,   0 12 21 33 13 31 22 11 22 33q a a a a a a a a a   , 

1 1 21 2 11 2 33p b a b a b a   ,   1 11 22 11 33 22 33 13 31 12 21q a a a a a a a a a a     ,            (22) 
 

2 2p b ,   2 11 22 33q a a a    . 
 
If control ( )u t  in the time domain construct in a fractional class PI D   - regulators of 

the form (6) 
 

    0 0( ) ( ) ( ) ( )p i t d tu t k y t k D y t k D y t        ,                       (23) 

 
then the transfer function of the "biocleaning" + "regulator" system will be determined by 
the expression ( ) ( ) ( )W s Q s P s , where ( ) ( ) ( )Q s C s G s , ( ) 1 ( ) ( )P s C s G s  , ( )C s  – 
transfer function of the fractional controller, determined by the formula (6), ( )G s  – transfer 
function of the control object, calculated by the formulas (21), (22). 

To determine the range of valid values for the configuration parameters pk , ik , dk  

fractional PI D   - regulator, which stabilizes the work of the bio-treatment system, uses 
the calculated formulas (16), (17) і (18), (19), that describe the boundaries of the stability 
regions of the system with a fractional controller. Computational experiments were carried 
out in the MATLAB mathematical system environment. Below are some results from 
computational experiments. 
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In  figure 1 in the parameter space  ,p iZ k k  the global region of stability (shaded 

area) of a bio-waste fractional system is presented PI  - regulator at 1 , that is when 
using the classic PI - regulator (  , 0  – the boundaries of the area of stability). 

 

 
Figure 1. Global region of system stability with PI  - regulator at 1  

 
 
In figure 2 the areas of stability of the system of bio-purification with fractionation 

PI  -regulator are constructed at different values of the order of the differintegrator.  

 
Figure 2. Global areas of stability of the biocleaning system with PI  -regulator at 0 1   
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Figure 3. Global areas of stability of the biocleaning system with з PI D  -regulator at 

0.7 , 0.1  
 

 
Here, the areas of stability are limited to the bottom of the abscissa, and on the top – 

the curve that matches the value of the order of the parameter. From the graphs it can be 
seen that with increasing order, the region of stability of the system also increases. 

Then studied areas of stability of the system with fractional PI D  -regulator. In fig. 3 
in the parameter space  , ,p i dZ k k k  The system stability zone is depicted with PI D  -
regulator for fractional orders 0.7 , 0.1 . In this figure, the sections of the stability 
region are represented by planes perpendicular to the coordinate axis. The cross sections are 
closed shapes whose areas increase as the setting parameter increases. 

Similar areas of stability were obtained with other values of fractional orders   and 
 . 

 
Conclusions 
 
On the basis of the D-split method, analytical expressions were obtained, which 

describe the boundaries of the global region of stability of linear dynamic systems of 
fractional order of type "input-output" with fractional PI D   -regulators. The stability 
areas are built on the basis of computational experiments in the space of the parameter 
settings for fractional PI D  - regulators for fixed orders of diereintegrators in the 
regulator. An appropriate algorithmic software is developed. 
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