УДК 621.346.544

В. С. Хандецкий, Ю. А. Тонкошкур

Днепропетровский национальный университет им. Олеся Гончара

ОЦЕНКА ПАРАМЕТРОВ ГЕТЕРОГЕННЫХ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ ПО ДАННЫМ ИЗОТЕРМИЧЕСКОГО ДЕПОЛЯРИЗАЦИОННОГО АНАЛИЗА

Запропоновано і досліджено метод обробки релаксаційних залежностей струмів іЗОТермічної деполяризації в гетерогенних напівпровідникових матеріалах з використанням апроксимуючої функції Кольрауша-Уільямса-Ватта f_{кин}(t). В якості моделі елементу неоднорідної структури використовувалась одновимірна комірка, що представляє собою напівпровідниковий шар товщиною порядку 10 мкм, який є ізольованим з обох боків межкристалітними потенційними бар'єрами. Ці бар'єри створені збідненими приповерхніми областями просторового заряду напівпровідника, між якими розташована тонка плівка діелектричної фази товщиною від 2 і більше нм. На межі напівпровідник-діелектрик розташовані поверхневі локальні стани одного типу. Значення використаних параметрів: енергії іонізації, концентрації і коефіціснту захвату електронів із зони провідності напівпровідника обрані такими, що відповідають реальним для варисторної кераміки на основі оксиду цинку. Для визначення параметрів апроксимуючої функції f_{кич}(t) використані як часові так і спектральні характеристики деполярізаційного струму. Застосування функції f_{кин}(t) при інтерпретації кінетичних залежностей струму обумовлює наявність деякого розподілу часів релаксації в неоднорідній структурі, що розглядається. Визначені зв'язки між параметрами функції f_{кин}(t) і характеристиками локалізованих електронних станів гетерогенного матеріалу. Похибки визначення енергії іонізації і коефіцієнту захвату локалізованих станів не перевищують 1 %. Ключові слова: деполяризація, струм, ізотермічний, гетерогенний, напівпровідник, локалізовані електронні стани.

Предложен и исследован метод обработки релаксационных зависимостей токов изотермической деполяризации в гетерогенных полупроводниковых материалах с использованием аппроксимирующей функции Кольрауша-Уильямса-Ватта f_{кww}(t). В качестве модели элемента неоднородной структуры использовалась одномерная ячейка, представляющая собой полупроводниковый слой толщиной порядка 10 мкм, изолированный с обеих сторон межкристаллитными потенциальными барьерами. Эти барьеры образованы обедненными приповерхностными областями пространственного заряда полупроводника, между которыми расположена тонкая пленка диэлектрической фазы толщиной от 2 и более нм. На границе полупроводник-диэлектрик расположены поверхностные локальные состояния одного типа. Значения использованных параметров: энергии ионизации, концентрации и коэффициента захвата электронов из зоны проводимости полупроводника выбраны соответствующими реальным для варисторной керамики на основе оксида цинка. Для определения параметров аппроксимирующей функции f_{кww}(t) использованы как временные так и спектральные характеристики деполяризационного тока. Применение функции f_{кии}(t) при интерпретации кинетических зависимостей тока предполагает наличие определенного распределения времен релаксации в рассматриваемой неоднородной структуре. Определены связи между параметрами функции f_{кии}(t) и характеристиками локализованных электронных состояний гетерогенного материала. Погрешности определения энергии ионизации и коэффициента захвата локализованных состояний не превышают 1 %.

Ключевые слова: деполяризация, ток, изотермический, гетерогенный, полупроводник, локализованные электронные состояния.

Method of processing the relaxation dependences of the isothermal depolarization currents in heterogeneous semiconductor materials using the approximating function Kohlrausch-Williams-Watts $f_{KWW}(t)$ is proposed and investigated. As a model of the inhomogeneous structure element is used one-dimensional cell presented a semiconductor layer with thickness order of 10 microns, isolated from both sides of intergranular potential barriers. These barriers are formed by depleted near-surface space-charge regions of a semiconductor, between regions is located the thin film of the insulating phase with thickness of 2 nm or more. At the semiconductor-insulator surface are local states of the same type. The values of the parameters used: ionization energy, concentration and capture coefficient of electrons from the conduction band of a semiconductor selected corresponding to the actual for the varistor ceramics based on zinc oxide. To determine the parameters of the approximating function $f_{KWW}(t)$ or the interpretation of the kinetic dependences of current assumes a certain distribution of relaxation times in this heterogeneous structure. The relationship between parameters of the function $f_{KWW}(t)$ and the characteristics of localized electronic states of heterogeneous material is determined. Error of the ionization energy and the capture coefficient of the localized states determination do not exceed 1 %.

Key words: depolarization, current, isothermal, heterogeneous, semiconductor, localized electronic states.

[©] В. С. Хандецкий, Ю. А. Тонкошкур, 2012

Введение

В последнее время интенсифицировалось применение изотермического деполяризационного анализа для исследования электронных локализованных состояний в неоднородных полупроводниковых структурах с межкристаллитными потенциальными барьерами (в частности, варисторной металлоксидной керамике) [1; 2]. Тем не менее, задача построения теоретических моделей, учитывающих неупорядоченно-неоднородную структуру таких материалов, до настоящего времени является неразрешенной. Это связано как с наличием математических трудностей, так и с недостаточным уровнем исследованности электронных процессов в них.

Одним из перспективных направлений преодоления указанных трудностей при изотермическом деполяризационном анализе гетерогенных полупроводниковых материалов является использование аппроксимационных методов для описания кинетики релаксационного тока, в частности, с использованием функции Кольрауша-Уильямса-Ватта $f_{KWW}(t)$. При этом важным является определение связей между параметрами указанной функции и физическими характеристиками локализованных состояний.

В настоящей работе методами численного моделирования:

– апробированы конкретные алгоритмы обработки релаксационных зависимостей токов изотермической деполяризации с использованием функции $f_{KWW}(t)$;

 проведен анализ связей между параметрами этой функции и характеристиками локализованных электронных состояний, обусловливающих токи изотермической деполяризации в гетерогенных полупроводниковых материалах.

Модель неоднородной структуры

В качестве модели элемента неоднородной структуры использовалась одномерная ячейка, представляющая собой полупроводниковый слой (толщиной ~10 мкм), изолированный с обеих сторон межкристаллитными потенциальными барьерами. Эти барьеры образованы обедненными приповерхностными областями пространственного заряда полупроводника, между которыми расположена тонкая пленка диэлектрической фазы толщиной в 20 А и более. На границах полупроводник–диэлектрик расположены поверхностные локальные состояния одного типа (энергия ионизации ΔE_s , концентрация N_s и коэффициент захвата электрона из зоны проводимости полупроводника c_{ns}). Значения всех использованных параметров структуры выбраны соответствующими реальным для варисторной керамики на основе оксида цинка [1–3].

В первом приближении выражение для тока изотермической деполяризации такого материала согласно [4] имеет вид

$$j_{ID}^{(LS)}(t) = j_0^{(LS)} \cdot \exp(-t/\tau_{LS}), \qquad (1)$$

где

$$j_0^{(LS)} = -ec_n N_S n_1 \cdot \left(f_{POL}^{(1)} - f_{POL}^{(2)} \right); \ \tau_{LS} \approx \left(c_n n_S \right)^{-1}; \ n_1 = N_C \exp\left(-\Delta E / k_B T \right)$$

концентрация электронов в зоне проводимости, при условии совпадения уровня Ферми с энергетическим уровнем локальных состояний ΔE ; c_n – коэффициент захвата электронов из зоны проводимости полупроводникового кристаллита; $f_{POL}^{(1,2)}$ – распределения электронов на границах полупроводникового слоя при $V=V_{POL}$ (V_{POL} – величина поляризующего напряжения), которые находят решением системы уравнений непрерывности электрической индукции и потенциала при поляризации; N_c – эффективная плотность состояний в зоне проводимости полупроводника; k_B – постоянная Больцмана; T – температура. При учете структурно-электрической неупорядоченности рассматриваемого объекта выражение (1) целесообразно преобразовать к виду

$$j_{ID}(t) = j_{ID}(0) \cdot f_{KWW}(t) = j_{ID}(0) \cdot \exp\left[-\left(\frac{t}{\tau}\right)^{\beta}\right]$$
(2)

где $j_{ID}(0) = Q/\tau$; Q – заряд участвующий, в процессах поляризации и деполяризации; τ – постоянная (наиболее вероятное время) релаксации заряда; β – параметр, позволяющий описать распределение времен релаксации.

В эксперименте, как правило, β принимает значения меньшие единицы. Зависимости (2) представлялись в виде таблиц $j_{ID}^{(k)}$ от t_k , где k=0,1,...K и использовалась в качестве данных для тестирования описываемой ниже методики анализа релаксационных кривых изотермического деполяризационного тока. Вид экспериментальных зависимостей, принятых за основу показан на рис. 1.

Определение параметров аппроксимирующей функции

В предлагаемом методе для определения параметров функции Кольрауша-Уильямса-Ватта $f_{KWW}(t)$ использовались как временные, так и спектральные зависимости деполяризационного тока.

При нахождении величины неизвестного коэффициента β исходная дискретная зависимость представляется в координатах $t \times \left[d \left(\log j_{ID}^{(k)} \right) / dt \right]$ и $\log \left(j_{ID}^{(k)} \right)$, k = 0, 1, ..., K (K – число ее точек). В этих координатах зависимость (2) имеет вид прямой. Параметр β , являющийся тангенсом угла наклона этой прямой, был получен с использованием метода наименьших квадратов. Для использованных тестовых зависимостей (рис.1) получено значение $\beta = 0,49$ (истинное значение $\beta = 0,5$).

Для определения постоянной релаксации заряда τ использовали мнимую составляющую спектра $J_{ID}(\omega)$, полученную с помощью интегрального синус-преобразования [5; 6] временной зависимости (2)

$$J(\omega) = \begin{cases} \frac{2}{\pi} \sum_{i=0}^{n-1} \int_{t_0 + \frac{2\pi}{\omega}}^{t_0 + \frac{2\pi}{\omega}(i+1)} \overline{j_{ID}}(t) \sin(\omega t) dt + \frac{2}{\pi} \sum_{i=0}^{n-1} \int_{t_0 + \frac{2\pi}{\omega}}^{t_K} \overline{j_{ID}}(t) \sin(\omega t) dt, \frac{2\pi}{\omega} < (t_K - t_0); \\ \frac{2}{\pi} \sum_{i=0}^{n-1} \int_{t_0}^{t_K} \overline{j_{ID}}(t) \sin(\omega t) dt, \quad \frac{2\pi}{\omega} \ge (t_K - t_0); \end{cases}$$
(3)

где $n = trunc \left(\frac{t_K - t_0}{2\pi/\omega}\right)$; t_0 и t_K – диапазон времени, где фиксировались значения деполяризационного тока; ω – угловая частота. Непрерывная функции $\overline{j_{ID}}(t)$ выра-128 жалась через линейную интерполяцию дискретной зависимости $\log \left[j_{ID}^{(k)}(\log t_k) \right]$. Интегралы в (3) вычислялись стандартными функциями пакета Mathcad.

На рис. 2 представлены полученные таким образом спектральные характеристики тока изотермической деполяризации.

Значение τ может быть найдено по частоте максимума зависимости $J_{ID}(\omega)$, которая связана с этим параметром следующим приближенным выражением

$$\omega_{\max}\tau = \left[\frac{\beta}{\Gamma(2/\beta)}\right]^{1/2},\tag{4}$$

где $\Gamma(x)$ – гамма функция [7].

Более точные соотношения между ω_{\max} и τ могут быть получены численными методами в виде таблиц по методике работы [8]. На рис. 3 представлены соответствующие графические зависимости, где частота ω_{\max} определялась непосредственно из спектральных зависимостей $J_{ID}(\omega)$. Как видно, (4) удовлетворительно описывает зависимость $\omega_{\max} \tau$ от β в диапазоне $\beta \ge 0.5$. При меньших β использовалась сплайновая интерполяция [9], где узловые точки находились численными методами (табл. 1).

Таблица 1

β	$\log(\omega_{\max}\tau)$	β	$\log(\omega_{\max}\tau)$	β	$\log(\omega_{\max}\tau)$
0,10	-10,186	0,50	-0,681	0,90	-0,071
0,15	-5,670	0,55	-0,573	1,00	0
0,20	-3,661	0,60	-0,441	1,10	0,072
0,25	-2,565	0,65	-0,343	1,25	0,089
0,30	-1,891	0,70	-0,263	1,50	0,190
0,35	-1,436	0,75	-0,215	2,00	0,275
0,40	-1,115	0,80	-0,151	2,50	0,305
0,45	-0,883	0,85	-0,108	3,00	0,319

Зависимость $\omega_{\max} \tau$ от β в диапазоне от 0,1 до 3

Полученные параметры релаксационной функции $f_{KWW}(t)$ удовлетворительно совпадают с данными тестирующей функции.

Относительная погрешность не превышает 0,5 %. Следует отметить, что интегрирование зависимости $j_{ID}(t)$ приводит к следующему выражению для величины заряда, участвующего в процессе деполяризации:

$$Q = \int_{0}^{\infty} j_{ID}(t) dt = j_{ID}(0) \int_{0}^{\infty} \exp\left[-(t/\tau)^{\beta}\right] dt = j_{ID}(0) \frac{\tau}{\beta} \Gamma\left(\frac{1}{\beta}\right).$$
(5)

129

Рис. 3. Зависимости величины $\omega_{\text{max}} \times \tau$ от β в разных координатах (а) и (б) для τ , с: $1 - 10^3$; 2 - 10; $3 - 10^{-1}$. Кривая 4 соответствует приближенной формуле (4)

Определение параметров локализованных состояний. Использование функции $f_{KWW}(t)$ вместо экспоненциальной зависимости (1) при интерпретации кинетических зависимостей тока изотермической деполяризации предполагает наличие определенного распределения времен релаксации τ_{LS} в рассматриваемой модели неоднородной структуры. При этом значения параметров $f_{KWW}(t)$, определяют характеристики локализованных состояний. Учитывая статистический характер этих зависимостей, обусловленный неупорядоченными структурными свойствами исследуемой физической системы, в первом приближении можно принять, что $\tau=\tau_{LS}$, где величины c_n и ΔE , его определяющие являются наиболее вероятными. В рамках такого предположения для определения указанных параметров локализованных состояний можно использовать кинетические зависимости деполяризационного тока при разных температурах (рис. 1). Приведенные здесь расчетные соотношения корректны в предположении, что параметр аппроксимирующей функции β не зависим от температуры.

Энергию ионизации локализованных состояний можно найти из температурнойзависимостивременирелаксациипоформуле $\Delta E = \ln(10) \cdot k_B \cdot \Delta [\log \tau (T)] / \Delta (1/T)$ (см. обозначения в (1)). Здесь $\Delta [\log \tau (T)]$ относительное изменение времени релаксации τ при изменении обратной температуры на величину $\Delta (1/T)$.

Учитывая, что частота максимума спектра релаксационной зависимости ω_{max} обратно пропорциональна времени релаксации τ и коэффициент пропорциональности независим от температуры (см. соотношение (4) и табл. 1), величину ΔE можно найти из спектральных зависимостей деполяризационного тока, полученных при различных температурах

$$\Delta E = -\ln(10) \cdot k_B \cdot \frac{\Delta(\log \omega_{\max})}{\Delta(1/T)}, \qquad (6)$$

где $\Delta(\log \omega_{\max})$ – смещение максимума или всего спектра $J_{ID}(\omega)$ при изменении температуры.

Температурные зависимости τ и ω_{max} для тестовых зависимостей рис. 1, представленные на рис. 4 в координатах ($\log \tau$, 1/T), линейны. Найденные значение энергии ионизации ΔE представлены в табл. 2.

Учитывая, что $\tau_{LS} = \tau$, а также значения ω_{max} и ΔE , можно получить

$$c_n(T) = \frac{\omega_{\max}(T)}{K(\beta) \cdot N_C} \exp\left[\frac{\Delta E}{k_B \cdot T}\right],\tag{7}$$

где T – произвольная фиксированная температура; $K(\beta) = \omega_{\max} \cdot \tau$.

Полученные значения $c_n(300 \ K)$ для тестовых зависимостей рис. 1, представлены в табл. 2.

Рис. 4. Температурные зависимости времени релаксации деполяризационного тока $\tau(T)$ (1) и обратной частоты $1/\omega_{max}(T)$ максимума его спектральной зависимости $J_{ID}(\omega)$, полученной непосредственно из (4) – (2) и интерполяцией данных табл. 1 – (2'). Зависимость для базовой модели, используемой для тестирования обозначена как (3)

Таблица 2

Параметры локализованных электронных состояний

Параметр	Тестирующая зависимость	Оценка из спектральных зависимостей, формулы (6) и (7)
Энергия ионизации ΔE , эВ	0,6	0,59
Коэффициент захвата электронов c_n , см ³ /с	10-14	9,838·10 ⁻¹⁵ {6,78·10 ⁻¹⁵ для приближенной формулы (6)}

Полученные оценки показали, что погрешности определения энергии ионизации и коэффициента захвата локализованных состояний с использованием предложенного метода обработки данных кинетики деполяризационного тока незначительны (не превышают 1 %).

Выводы

Исследован алгоритм обработки релаксационных зависимостей токов изотермической деполяризации с использованием аппроксимирующей функции Кольрауша-Уильямса-Ватта. Показано, что параметры функции могут быть определены с точностью, достаточной для анализа процессов проводимости в гетерогенных полупроводниковых материалах. Показано, что путем отождествления постоянной времени этой функции с наиболее вероятным временем релаксации локализованных электронных состояний в неоднородных полупроводниковых структурах, можно получить достоверные оценки их параметров (энергии ионизации и коэффициента захвата электронов).

Библиографические ссылки

1. Тонкошкур А. С. Особенности изотермической деполяризации в оксидноцинковой варисторной керамике / А. С. Тонкошкур, И. В. Гомилко, А. Ю. Ляшков // Неорганические материалы. – 1998. – Т. 34, № 9. – С. 1123–1127.

2. **Tsonos C.** Dielectric response of ZnO-based varistor / C. Tsonos, A. Kanapitsas, E. Neagu, I. Stavrakas, C. Anastasiades, D. Triantis, P. Pissis // 6th International Discussion Meeting on Relaxations in Complex Systems. – Rome, Italy. –2009. – P. 175.

3. **Gupta T. K.** Application of Zinc Oxide Varistors / T. K. Gupta // J. Am. Ceram. – 1990. V. 73, № 7. – P. 1817–1840.

4. Тонкошкур Ю. А. Изотермическая деполяризация в металлоксидных керамических варисторных структурах / Ю. А. Тонкошкур // І-а наукова-практична конф. «Напівпровідникові матеріали, інформаційні технології та фотовольтаїка»: Тези доповідей. – Кременчук, 2011. – С. 62–64.

5. Neagu E. R. A new method for analysis of isothermal discharging current / E. R. Neagu, R. M. Neagu // Thin Solid Films. – 2000. –V. 358. – P. 283–291.

6. **Baeurle S. A.** A new semi-phenomenological approach to predict the stress relaxation behavior of thermoplastic elastomers / S. A. Baeurle, A. Hotta, A. A. Gusev // Polymer. -2005. - V. 46, No 12. - P. 4344-4354.

7. Корн Г. Справочник по математике. Для научных работников и инженеров / Г. Корн, Т. Корн – М., 1974. – 832 с.

8. Dishon M. Stable Law Densities and Linear Relaxation Phenomena / M. Dishon, G. H. Weiss and J. T. Bendler // J. Res. N. B. S. – 1985. – V. 90, № 1. – 27–39.

9. Бабак В. П. Обробка сигналів / В. П. Бабак, В. С. Хандецький, Е. Шрюфер. – К., 1999. – 495 с.

Надійшла до редколегії 13.07.12.