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In this paper we study the optimal control problem associated to a linear
degenerate elliptic equation with mixed boundary conditions. We adopt a weight
coefficient in the main part of elliptic operator as control in BV(Q2). Since the
equations of this type can exhibit the Lavrentieff phenomenon and non-uniqueness
of weak solutions, we show that this optimal control problem is regular. Using the
direct method in the Calculus of variations, we discuss the solvability of the above

optimal control problems in the class of weak admissible solutions.
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1. Introduction

The aim of this work is to study the existence of optimal solutions in coeffi-
cients associated to a linear degenerate elliptic equation with mixed boundary
condition. By control variable we mean the weight coefficient in the main part
of the elliptic operator. The precise answer of existence or none-existence of an
L'-optimal solutions is heavily depending on the class of admissible controls. Here
are the main questions: what is the right setting of optimal control problem with
BV -controls in coefficients, and what is the right class of admissible solutions to
the above problem? Using the direct method in the Calculus of variations, we
discuss the solvability of the above optimal control problem in the so-called class
of weak admissible solutions.

The optimal control problem we consider in this paper is closely related with
the optimal reinforcement of an elastic membranes |2|. Reinforcing an elastic
structure subjected to a given load is a problem which arises in several applications.
The literature on the topic is very wide; for a clear description of the problem
from a mechanical point of view and a related bibliography we refer for instance
to the beautiful paper by Villaggio [6].

In the simplest case when we have an elastic membrane occupying a domain
Q and subjected to a given exterior load f € L?(2), the shape u of the membrane
in the equilibrium configuration is characterized as the solution of the partial
differential equation

—divp(z)Vy+y=f in Q
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together with the corresponding Dirichlet and Neumann boundary conditions on
0f). The reinforcement of the membrane is usually performed by the addition
of suitable stiffeners, whose total amount is prescribed. Mathematically, this is
described by a nonnegative coefficient p(x) which acts in Q and is associated
with some weight coefficient in the main part of elliptic operator. As a result, the
problem of finding an optimal reinforcement for the membrane then consists in
the determination of a weight p(z) > 0 which optimizes a given cost functional.
In contrast to the pioneer paper in this field (see [2]), we do not restrict of our
analysis to the particular case of the reinforcement problems. We also do not make
use any relaxations for the original optimal control problem.

2. Notation and Preliminaries

In this section we introduce some notation and preliminaries that will be useful
later on.

Let © be a bounded open subset of RV (N > 1) with a Lipschitz boundary.
We assume that the boundary of €2 is made of two disjoint parts

oN=I'pUl'y

with Dirichlet boundary conditions on I'p, and Neumann boundary conditions on
I'y. Let xg be the characteristic function of a subset £ C Q, i. e. xg(z) = 1 if
x € E, and xg(x) =0ifz ¢ E.

Let

CPRN:T'p) ={p e CPRY) : ¢p=00n I'p}.

The space WH1(Q;T'p) is the closure of C$°(RY;T'p) in the classical Sobolev space
WH(Q). For any subset £ C Q we denote by |E| its N-dimensional Lebesgue
measure LV (E).

Hereinafter a locally integrable function p on RY such that p(x) > 0 for a. e.
r € RY is called a weight function. As a matter of fact every weight p gives rise
to a measure on the measurable subsets of RY through integration. This measure
will also be denoted by p. Thus p(E) = [}, pdx for measurable sets £ C RY.

Let p be a weight. We will use the standard notation L?($, pdz) for the set
of measurable functions f on €2 such that

1/2
”f”Lz(prdx) = </Q f2pd$> < +00.

We say that a weight function p : RV — R, is degenerate on € if
p+p~t € Lig(RY), (2.1)

that is, the sum p + p~! does not belong to L>(Q2). Note that in this case the
functions in L2(Q, pdz) are integrable on €.

With each of the degenerate weight functions p we will associate two weighted
Sobolev spaces W, = W(Q,pdx) and H, = H(, pdx), where W, is the set of
functions y € WH1(€;Tp) for which the norm

Iyll, = </Q (V" +pIVyl) déﬂ) " (2.2)
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is finite, and H,, is the closure of C§°(Q2;T'p) in W,,. Note that due to the estimates

1/2
/Q ] de < ( /Q |y|2d:v> Q112 < Cllyll,. (2.3)

1/2 1/2
[ 19ldr < ( / rwpda:) ( / p—lda:) <Clyl, @4
Q Q Q

the space W), is complete with respect to the norm || ||,. It is clear that H, C W,
and W,, H, are Hilbert spaces. If p is a non-degenerate weight function, that
is, p is bounded between two positive constants, then it is easy to verify that
W, = H,. However, for a "typical" degenerate weight p the space of smooth
functions C§°(Q2) is not dense in W,. Hence the identity W, = H,, is not always
valid (for the corresponding examples we refer to (3, 7, 8].

Weak Compactness Criterion in L*(§2). Throughout the paper we will often
use the concepts of the weak and strong convergence in L*(€2). Let {ac},., be a
sequence in L*(€2). We recall that {a.}.. is called equi-integrable if for any § > 0
there is 7 = 7(8) such that [ |a-|dz < § for every measurable subset S C Q of
Lebesgue measure |S| < 7.

Then the following assertions are equivalent:

(i) a sequence {a.},., is weakly compact in L'(Q);

(ii) the sequence {a.},. is equi-integrable;

(iii) given d > 0 there exists A = A(d) such that sup/ lac| dz < 6.
e>0 J{Jac|>A}

Theorem 1 (Lebesgue’s Theorem). If a sequence {a:}.., C L*(2) is equi-integ-
rable and a. — a almost everywhere in ) then a. — a in L*(Q).

Radon measures. By a nonnegative Radon measure on {2 we mean a nonnega-
tive Borel measure which is finite on every compact subset of £2. The space of all
nonnegative Radon measures on 2 will be denoted by M (). According to the
Riesz theory, each Radon measure p € M4 () can be interpreted as element of
the dual of the space Cy(2) of all continuous functions vanishing at infinity. Let
M(Q;RY) denotes the space of all RY-valued Borel measures. Then

p=(p1,...,pn) € M(QGRY) & eCHQ), i=1,...,N.

If i is a nonnegative Radon measure on Q, we will use L"(Q,du), 1 < r <
00, to denote the usual Lebesgue space with respect to the measure p with the

corresponding norm
1/r
im0 = ([ 1£6@ dn)

Functions with Bounded Variation. Let f :  — R be a function of L'(Q).
Define

/IDflzsup{/fdiwd:r s o= (g1, ,0N) € CHURY),
Q Q

lo(x)] <1 for x e Q},
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where N
divo — i
vy = .
— Jx;
i=1
Then Df is a measure, in general. According to the Radon-Nikodym theorem, if
/ |IDf| < +o0
Q

then there exist a vector-valued function Vf € [L'(Q)]" and a measure D,f,
singular with respect to the N-dimensional Lebesgue measure £V | restricted to
Q, such that

Df =VfLN|Q+ D,f.

Definition 1. A function f € L'(Q) is said to have bounded variation in Q if

[ 1psl <.

By BV (Q2) we denote the space of all functions in L'(Q2) with bounded variation.
Under the norm
Ilave = 1l + [ 1011,
BV (Q) is a Banach space. It is well-known the following compactness result for
BV-functions:

Proposition 1. The uniformly bounded sets in BV-norm are relatively compact
in L'(9).

Definition 2. A sequence {fx}r; C BV(Q) weakly converges to some f €
BV (Q), and we write fr — f iff the two following conditions hold: fr — f
strongly in L' (), and D f;, — Df weakly-* in M (Q;RY).

In the proposition below we give a compactness result related to this conver-
gence, together with the lower semicontinuity property (see [4]):

Proposition 2. Let {f;}7— be a sequence in BV () strongly converging to some
fin L'(Q) and satisfying sup,ey [ |D.fi| < +00. Then

(i) f € BV(Q) and/Q|Df|§nggf/Q|ka|;

(i) fr — fin BV(Q).
Convergence in variable spaces. Let { i },cn, i be Radon measures such that
= pin My (Q), 1. e,

lim sodukz/sodu Vo € Co(RY), (2.5)
Q Q

k—oo

where Co(RY) is the space of all compactly supported continuous functions. The
typical example of such measures is

duy, = pr(z) dz, du = p(x)dz, where 0 < p, — pin LY(Q).

Let us recall the definition and main properties of convergence in the variable
L2-space (see [7]).
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1. A sequence {vj, € L*(,dpuy)} is called bounded if

limsup/ o) dpg < +o00.
Q

k—o00

2. A bounded sequence {vy € L*(Q,dpuy)} converges weakly to v € L?(Q, dp)
if

lim | vppdu, = / vpdp for any ¢ € C5°(Q),
k—oo Jq Q
and it is written as vy — v in L?(, dug).

3. The strong convergence vy — v in L?(€2, duy,) means that v € L2(Q, du) and

lim [ vizk d,uk:/fuzdu as zp — z in L*(Q,dug). (2.6)
Q Q

k—o0

The following convergence properties in variable spaces hold:

(a) Compactness criterium : if a sequence is bounded in L?(f2,duy), then this
sequence is compact in the sense of the weak convergence;

(b) Property of lower semicontinuity : if v, — v in L?*(, duz), then
liminf/ lo|? dpy, > / v? dy; (2.7)
e—0 Q Q
(¢) Criterium of strong convergence : vy, — v if and only if vy — v in L2(€Q, duy,)

and
lim / \vk\2d,uk:/vzdu. (2.8)
k—oo Jq Q

3. Setting of the Optimal Control Problem

Let m € R, be some positive value, and let &, & be given elements of L(Q)
satisfying the conditions

&(z) < &(x) ae. in Q &1 e LYQ). (3.1)
To introduce the class of admissible BV -controls we adopt the following concept:

Definition 3. We say that a nonnegative weight p is an admissible control to the
boundary value problem

—divp(x)Vy+y=f in Q, (3.2)
0
y=0on I'p, p(a;)—y =0on Iy, (3.3)
ov
(it is written as p € Rgq) if

p € BV(Q), /Q,od:z: =m, &(x) <plr) <&(x)ae in Q. (3.4)

Here f € L?() is a given function.
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Hereinafter we assume that the set R,4 is nonempty.

Remark 1. In view of the property (3.1), we have the boundary value problem
for the degenerate elliptic equation. It means that for some admissible controls
p € Rgq the boundary value problem (3.2)-(3.3) can exhibit the Lavrentieff
phenomenon, the nonuniqueness of the weak solutions as well as other surprising
consequences.

The optimal control problem we consider in this paper is to minimize the
discrepancy between a given distribution y4 € L?(€) and the solution of boundary
valued problem (3.2)—(3.3) by choosing an appropriate weight function p € Rq4.
More precisely, we are concerned with the following optimal control problem

Minimize {I<p,y>= [ 1)~ vato) P o

+ [ Wu@Bpde+ [ Do} 33)

subject to the constraints (3.2)—(3.4).

Definition 4. We say that a function y = y(p, f) € W, is a weak solution to
the boundary value problem (3.2)-(3.3) for a fixed control p € R4 if the integral
identity

[ @0V tue) dr= [ fodo (3.6)
holds for any ¢ € C§°(2;T'p).

It is clear that the question of uniqueness of a weak solution leads us to
the problem of density of the subspace of smooth functions C§°(Q2;T'p) in W,,.
However, as was indicated in [9], for a "typical" degenerate weight function p the
subspace C3°(2;T'p) is not dense in W), and hence there is no uniqueness of weak
solutions (for more details and another types of solutions we refer to [1, 5, 7, 9]).
Thus the mapping p — y(p, f) is multivalued, in general. Taking this fact into
account, we introduce the following set

Ew ={(Bp,y) | p € Rad» y € W,, (p,y) are related by (3.6) } . (3.7)

Note that the set Zy is always nonempty. Indeed, let V, be some intermediate
space with H, C V, C W,. We say that a function y = y(p, f) € V, is a V-
solution or variational solution to the boundary value problem (3.2)—(3.3) if the
integral identity (3.6) holds for every test function ¢ € V,. Hence, in this case the
energy equality

| (Voo +0?) do= [ fudo (33)
Q Q

must be valid. Since

1/2 1/2
/ny' < (/szdx> (/Qdex> < Clll,

for every fixed f € L%(12), it follows that the existence and uniqueness of a V-
solution are the direct consequence of the Riesz Representation Theorem. Thus
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every variational solution is also a weak solution to the problem (3.2)—(3.3). Hence
Zw # (0 and therefore the corresponding minimization problem

<( inf I(p,y)> (3.9)

is regular. In view of this, we adopt the following concept:

Definition 5. We say that a pair
(r°,9°) € LY Q) x WHH(Q;Tp)

is a weak optimal solution to the problem (3.4)—(3.5) if (p°,4°) is a minimizer for

< inf I(p,y)>,i. e.,
(py)€Ew

(P y°) €eEw and I(p%y°) = inf I(p,y).
(py)e Ew

The main question to be answered on the optimal control problem (3.4)-(3.5)
in this paper is about its solvability in the class of the weak solutions. It should
be noted that to the best knowledge of the authors, the existence of optimal pairs
to the above problem in the sense of Definition 5 has not been considered in the
literature.

4. Existence Theorem for Weak Optimal Solutions

Our prime interest in this section deals with the solvability of optimal control
problem (3.4)—(3.5) in the class of the weak solutions. To begin with we establish
soma auxiliary results that will be useful later. Let {(pk,yr) € Ew }1ey be any
sequence of the weak admissible solutions.

Lemma 1. Let {p;},cy be a sequence in Roq such that pp — p in L'(Q) as
k — oo. Then

(pe) "t = p~' in the variable space L*(Q, ppda).

Proof. To proof this result we make use some ideas of the paper [9]. By the
properties of the set of admissible controls R4, we have

/\p,;1|dg;g/|§;1\da; Vk €N,
Q Q

that is the sequence {plzl}keN is equi-integrable on 2. Note that, up to a subse-
quence, we have pp — p a.e. in €. Since

&' <o <&
Lebesgue Theorem implies

pet —p b in LYQ). (4.1)



100 I. G. BALANENKO, P. I. KOGUT

Let ¢ € C§°(12) be a fixed function. Then the equality

/plzlgppkdznz/godx:/p_lgppd:r Vk e N
Q Q Q

leads us to the weak convergence ,0,;1 — p~lin L?(Q, prdz). It should be stressed

here that, by the initial assumptions, ppdz — pdz in the space of Radon measures
M (Q) (see (2.5)). However, taking into account the strong convergence p; ' —
p~lin L1(Q) and the fact that Q is a bounded domain, we get

lim / \pie| 2 prdz = lim /pgldm:/p_ldxz/ Ip| ™2 pdux.
k—oo JO k—oo J 9 9

Hence, by the criterium of the strong convergence in variable space L?(2, ppdx),
we just come to the required conclusion. The proof is complete. O

Our next intension deals with the study of topological properties of the set of
weak admissible solutions Zyy to the problem (3.2)-(3.5). To do so, we introduce
the following concepts:

Definition 6. A sequence {(py,yx) € Ew };cy is called to be bounded if
sup ok llBv () + [lvkllL2@) + IVUEl L2 (0, ppdayn | < +00.
€

Definition 7. We say that a bounded sequence {(pg,yr) € Ew } ey of the weak
admissible solutions 7-converges to a pair (p,y) € BV (Q) x WhH1(Q) if

(a) ok — pin BV(Q);
(d) yx — vy weakly in L?(€);
(e) Vyr — Vy 2 L%(Q, pdz)" in the variable space L%(, prdz)V.

Note that due to the suppositions (3.1), (3.4), and estimates like (2.3)—(2.4),
the inclusion y € W11(Q) is obvious.

Lemma 2. Let {(pr,yr) € Ew }pen be a bounded sequence. Then there is a pair
(p,y) € BV(Q) x Wh(Q) such that, up to a subsequence, (px,yr) — (p,y) and
y € W,.

Proof. To begin with, we note that by Proposition 1 and the compactness criterium
of the weak convergence in variable spaces, there exist a subsequence of

{(or,Ur) € Ew bren >

still denoted by the suffix k, and functions p € BV(Q), y € L?(Q), and v €
L?(Q, pdx)™ such that

pr — pin LYQ), ppdz > pdrin M, (Q), (4.2)
yr —yin L*(Q), Vy, — v in the variable space L*(Q, py, dz). (4.3)
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Let us show that y € WH1(Q), and v = Vy. Since & < pp < & for every k € N,
the claim (4.2) and Lemma 1 imply the property (see (4.1))

plzl —ptin LYQ), & <p<&aein Q. (4.4)

This yields that the sequence {Vyy}yey is weakly compact in L'(Q)N. Indeed,
the property of its equi-integrability immediately follows from the inequality

1/2 1/2 1/2
/ |Vyi| dz < (/ pglda:> (/ IVl pr dx) <C (/ pglda:> :
Q Q Q Q

As a result, using the strong convergence (pp) ' — p~

L?(, prpdz) (see Lemma 1) and its properties, we obtain

in the variable space

lim 0 (Vykv ¢)RN dr = kli{{olo /Q Iolzl (vyk7 w)RN Pk dx

k—o0
- / P (0, ) pdi = / (0, )y d
Q Q

for all ¢ € C§°(Q)N. Thus Vy — vin L(Q)Y. Since by estimate (2.3) y € L*(2),
this implies that y € Wh1(Q) and Vy = v. As for the inclusion y € W, this is
immediately follows from the claims (4.2)-(4.3). The proof is complete. O

The next result is crucial for our analysis.

Theorem 2. For every f € L?OC(RN) the set Zyw s sequentially closed with respect
to the T-convergence.

Proof. Let {(pk,yx)}tken C Ew be a bounded 7-convergent sequence of weak
admissible pairs to the optimal control problem (3.2)-(3.5). Let (po,yo) be its
7-limit. Our aim is to prove that (79, yo) € Ew.

By Lemma 2 we have

pr— poin L'(Q), po€ BV(Q), & <po<éae in Q. (4.5)

Then passing to the limit as & — oo in the relation fQ pr dx = m, we just come
to the conclusion: pg € Ryq, 1. e. the limit weight function pg is an admissible
control.

It remains to show that the pair (pg, o) is related by the integral identity
(3.6) for all ¢ € C§°(;T'p). For every fixed k € N we denote by (pk,Jk) €
BVjoe(RY) x Wlf;cl(RN) an extension of the functions (pg,yr) € Zw to the whole
of space RY such that the sequence {(pk, Jk) }ren satisfies the properties:

ﬁk S BV(Q), & < ﬁk <& aee. in Q, (46)
up (17l vy + 1kl120) + IVl 2@ oy | < +oo (47)
€
fir any bounded domain @ in RY. Hence, by analogy with Lemma 2 it can be

proved that for every bounded domain @ C RY there exist functions py € BV(Q)
and yo € W5, = W(Q, po dx) such that

pr—po in LYQ), Gr—70 in L*(Q), (4.8)
Vir — Vo > L*(Q, po dz)¥ in the variable space L2(Q, ppdx)™.
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It is important to note that in this case we have
Yo=1wyo and pg=py a.e. in €. (4.10)

In what follows, we rewrite the integral identity (3.6) in the equivalent form

/RN (VU Vo)ry Pk + i) Xa(2) dz
- [ Fexal@)ds Vo e CEERY.To), (@)

and pass to the limit in (4.11) as k& — oo. Using the properties (4.8)—(4.9), and
the fact that yo — xq strongly in the variable space L?(Q, py dz), i. e.

[ oxiede= [ opede— [ xaprde= [ b
RN RN RN RN

we just come to the relation

L (V0. Volax o+ e xale)de = [ foxale)ds Vi€ CGF(RY.Tp)

which is equivalent to the following one

/Q (Y50, Vo)an o + Gop) do = /Q fode Ve CR(Q,Tp).

As a result, taking into account (4.10) and the fact that yo € W5, (by Lemma 2),
we conclude: yg is a weak solution to the boundary valued problem (3.2)—(3.3)
under p = pg. Thus the 7-limit pair (79, yo) belongs to set =y, and this concludes
the proof. O

Now we are in a position to state the existence of weak optimal pairs to the
problem (3.2)-(3.5).

Theorem 3. Let & € L (RY) and & € L} (RYN) be such that & < & a.e.in

loc loc

RN and &' € L (RN). Let f € L2 (RN) and yg € L*(Q) be given functions.

loc
Then the optimal control problem (3.2)-(3.5) admits at least one weak solution

(7', y™") € Bw C L'(Q) x WH(QTp), 4" € W(Q,p™" dr)
if and only if Raq # 0.

Proof. Because the converse statements is obvious, we suppose that the set of
admissible controls R,q is nonempty. Then the minimization problem (3.9) is
regular (i. e. Zyw # 0). Let {(pk.yYx) € Ew }jen be a minimizing sequence to (3.9).
Then as follows from the inequality

inf  I(p,y) = lim [/ lyr(z) — ya(z)[* do
(py)€Ew k—oo | Jo

—i—/Q]Vyk(x)\%Npkdx—k/Q]Dpk@ < oo, (4.12)



ON WEAK OPTIMAL BV-CONTROLS FOR ELLIPTIC PROBLEMS 103

there is a constant C' > 0 such that
sup [|ykllz2) < €, sup [[Vykll 20 ppdnyy < C, / |Dpi| < C.
keN keN Q

Hence, in view of the definition of the class of admissible controls R,q, the
sequence {(pk,Yr) € Ew }ren is bounded in the sense of Definition 6. Hence, by
Lemma 2 there exist functions p* € BV(Q) and y* € W(Q, p* dz) such that,
within a subsequence, (pr,yr) — (p*,y*). Since the set Zy is sequentially
closed with respect to the 7-convergence (see Theorem 2), it follows that the
7-limit pair (p*,y*) is an admissible weak solution to optimal control problem
(3.2)-(3.5) (i- e. (p*,y*) € Ew). To conclude the proof it is enough to observe
that by property (2.7) and Proposition 2, the cost functional I is sequentially
lower 7-semicontinuous. Thus

I(p*,y*) < liminf I(pg,yx) = inf_ I(p,y).
k—oo (p,y)EEW

Hence (p*,y*) is a weak optimal pair, and we come to the required conclusion. O
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