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ontrol problem asso
iated to a lineardegenerate ellipti
 equation with mixed boundary 
onditions. We adopt a weight
oe�
ient in the main part of ellipti
 operator as 
ontrol in BV (Ω). Sin
e theequations of this type 
an exhibit the Lavrentie� phenomenon and non-uniquenessof weak solutions, we show that this optimal 
ontrol problem is regular. Using thedire
t method in the Cal
ulus of variations, we dis
uss the solvability of the aboveoptimal 
ontrol problems in the 
lass of weak admissible solutions.Key words. Optimal 
ontrol problem, degenerate ellipti
 equation, mixed boundary 
onditions,Lavrentie� phenomenon, weak admissible solutions.1. Introdu
tionThe aim of this work is to study the existen
e of optimal solutions in 
oe�-
ients asso
iated to a linear degenerate ellipti
 equation with mixed boundary
ondition. By 
ontrol variable we mean the weight 
oe�
ient in the main partof the ellipti
 operator. The pre
ise answer of existen
e or none-existen
e of an
L1-optimal solutions is heavily depending on the 
lass of admissible 
ontrols. Hereare the main questions: what is the right setting of optimal 
ontrol problem with
BV -
ontrols in 
oe�
ients, and what is the right 
lass of admissible solutions tothe above problem? Using the dire
t method in the Cal
ulus of variations, wedis
uss the solvability of the above optimal 
ontrol problem in the so-
alled 
lassof weak admissible solutions.The optimal 
ontrol problem we 
onsider in this paper is 
losely related withthe optimal reinfor
ement of an elasti
 membranes [2℄. Reinfor
ing an elasti
stru
ture subje
ted to a given load is a problem whi
h arises in several appli
ations.The literature on the topi
 is very wide; for a 
lear des
ription of the problemfrom a me
hani
al point of view and a related bibliography we refer for instan
eto the beautiful paper by Villaggio [6℄.In the simplest 
ase when we have an elasti
 membrane o

upying a domain
Ω and subje
ted to a given exterior load f ∈ L2(Ω), the shape u of the membranein the equilibrium 
on�guration is 
hara
terized as the solution of the partialdi�erential equation

−div ρ(x)∇y + y = f in Ω
© I. G. Balanenko, P. I. Kogut, 2009



94 I. G. BALANENKO, P. I. KOGUTtogether with the 
orresponding Diri
hlet and Neumann boundary 
onditions on
∂Ω. The reinfor
ement of the membrane is usually performed by the additionof suitable sti�eners, whose total amount is pres
ribed. Mathemati
ally, this isdes
ribed by a nonnegative 
oe�
ient ρ(x) whi
h a
ts in Ω and is asso
iatedwith some weight 
oe�
ient in the main part of ellipti
 operator. As a result, theproblem of �nding an optimal reinfor
ement for the membrane then 
onsists inthe determination of a weight ρ(x) ≥ 0 whi
h optimizes a given 
ost fun
tional.In 
ontrast to the pioneer paper in this �eld (see [2℄), we do not restri
t of ouranalysis to the parti
ular 
ase of the reinfor
ement problems. We also do not makeuse any relaxations for the original optimal 
ontrol problem.2. Notation and PreliminariesIn this se
tion we introdu
e some notation and preliminaries that will be usefullater on.Let Ω be a bounded open subset of RN (N ≥ 1) with a Lips
hitz boundary.We assume that the boundary of Ω is made of two disjoint parts

∂Ω = ΓD ∪ ΓNwith Diri
hlet boundary 
onditions on ΓD, and Neumann boundary 
onditions on
ΓN . Let χE be the 
hara
teristi
 fun
tion of a subset E ⊆ Ω, i. e. χE(x) = 1 if
x ∈ E, and χE(x) = 0 if x 6∈ E.Let

C∞
0 (RN ; ΓD) =

{
ϕ ∈ C∞

0 (RN ) : ϕ = 0 on ΓD

}
.The spa
eW 1,1(Ω; ΓD) is the 
losure of C∞

0 (RN ; ΓD) in the 
lassi
al Sobolev spa
e
W 1,1(Ω). For any subset E ⊂ Ω we denote by |E| its N -dimensional Lebesguemeasure LN (E).Hereinafter a lo
ally integrable fun
tion ρ on RN su
h that ρ(x) ≥ 0 for a. e.
x ∈ RN is 
alled a weight fun
tion. As a matter of fa
t every weight ρ gives riseto a measure on the measurable subsets of RN through integration. This measurewill also be denoted by ρ. Thus ρ(E) =

∫
E ρ dx for measurable sets E ⊂ RN .Let ρ be a weight. We will use the standard notation L2(Ω, ρ dx) for the setof measurable fun
tions f on Ω su
h that

‖f‖L2(Ω,ρ dx) =

(∫

Ω
f2ρ dx

)1/2

< +∞.We say that a weight fun
tion ρ : RN → R+ is degenerate on Ω if
ρ+ ρ−1 ∈ L1

loc(R
N ), (2.1)that is, the sum ρ + ρ−1 does not belong to L∞(Ω). Note that in this 
ase thefun
tions in L2(Ω, ρ dx) are integrable on Ω.With ea
h of the degenerate weight fun
tions ρ we will asso
iate two weightedSobolev spa
es Wρ = W (Ω, ρ dx) and Hρ = H(Ω, ρ dx), where Wρ is the set offun
tions y ∈W 1,1(Ω; ΓD) for whi
h the norm

‖y‖ρ =

(∫

Ω

(
y2 + ρ |∇y|2

)
dx

)1/2 (2.2)
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losure of C∞
0 (Ω; ΓD) inWρ. Note that due to the estimates

∫

Ω
|y| dx ≤

(∫

Ω
|y|2 dx

)1/2

|Ω|1/2 ≤ C‖y‖ρ, (2.3)
∫

Ω
|∇y| dx ≤

(∫

Ω
|∇y|2ρ dx

)1/2 (∫

Ω
ρ−1 dx

)1/2

≤ C‖y‖ρ, (2.4)the spa
eWρ is 
omplete with respe
t to the norm ‖·‖ρ. It is 
lear that Hρ ⊆Wρ,and Wρ, Hρ are Hilbert spa
es. If ρ is a non-degenerate weight fun
tion, thatis, ρ is bounded between two positive 
onstants, then it is easy to verify that
Wρ = Hρ. However, for a "typi
al" degenerate weight ρ the spa
e of smoothfun
tions C∞

0 (Ω) is not dense in Wρ. Hen
e the identity Wρ = Hρ is not alwaysvalid (for the 
orresponding examples we refer to [3, 7, 8℄.Weak Compa
tness Criterion in L1(Ω). Throughout the paper we will oftenuse the 
on
epts of the weak and strong 
onvergen
e in L1(Ω). Let {aε}ε>0 be asequen
e in L1(Ω). We re
all that {aε}ε>0 is 
alled equi-integrable if for any δ > 0there is τ = τ(δ) su
h that ∫S |aε| dx < δ for every measurable subset S ⊂ Ω ofLebesgue measure |S| < τ .Then the following assertions are equivalent:(i) a sequen
e {aε}ε>0 is weakly 
ompa
t in L1(Ω);(ii) the sequen
e {aε}ε>0 is equi-integrable;(iii) given δ > 0 there exists λ = λ(δ) su
h that sup
ε>0

∫

{|aε|>λ}
|aε| dx < δ.Theorem 1 (Lebesgue's Theorem). If a sequen
e {aε}ε>0 ⊂ L1(Ω) is equi-integ-rable and aε → a almost everywhere in Ω then aε → a in L1(Ω).Radon measures. By a nonnegative Radon measure on Ω we mean a nonnega-tive Borel measure whi
h is �nite on every 
ompa
t subset of Ω. The spa
e of allnonnegative Radon measures on Ω will be denoted by M+(Ω). A

ording to theRiesz theory, ea
h Radon measure µ ∈ M+(Ω) 
an be interpreted as element ofthe dual of the spa
e C0(Ω) of all 
ontinuous fun
tions vanishing at in�nity. Let

M(Ω; RN ) denotes the spa
e of all RN -valued Borel measures. Then
µ = (µ1, . . . , µN ) ∈M(Ω; RN ) ⇔ µi ∈ C ′

0(Ω), i = 1, . . . , N.If µ is a nonnegative Radon measure on Ω, we will use Lr(Ω, dµ), 1 ≤ r ≤
∞, to denote the usual Lebesgue spa
e with respe
t to the measure µ with the
orresponding norm

‖f‖Lr(Ω,dµ) =

(∫

Ω
|f(x)|r dµ

)1/r

.Fun
tions with Bounded Variation. Let f : Ω → R be a fun
tion of L1(Ω).De�ne
∫

Ω
|Df | = sup

{∫

Ω
f divϕdx : ϕ = (ϕ1, . . . , ϕN ) ∈ C1

0 (Ω; RN ),

|ϕ(x)| ≤ 1 for x ∈ Ω
}
,
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divϕ =

N∑

i=1

∂ϕi

∂xi
.Then Df is a measure, in general. A

ording to the Radon-Nikodym theorem, if

∫

Ω
|Df | < +∞then there exist a ve
tor-valued fun
tion ∇f ∈ [L1(Ω)]N and a measure Dsf ,singular with respe
t to the N -dimensional Lebesgue measure LN⌊Ω restri
ted to

Ω, su
h that
Df = ∇fLN⌊Ω +Dsf.De�nition 1. A fun
tion f ∈ L1(Ω) is said to have bounded variation in Ω if

∫

Ω
|Df | <∞.By BV (Ω) we denote the spa
e of all fun
tions in L1(Ω) with bounded variation.Under the norm

‖f‖BV (Ω) = ‖f‖L1(Ω) +

∫

Ω
|Df |,

BV (Ω) is a Bana
h spa
e. It is well-known the following 
ompa
tness result for
BV -fun
tions:Proposition 1. The uniformly bounded sets in BV -norm are relatively 
ompa
tin L1(Ω).De�nition 2. A sequen
e {fk}∞k=1 ⊂ BV (Ω) weakly 
onverges to some f ∈
BV (Ω), and we write fk ⇀ f i� the two following 
onditions hold: fk → fstrongly in L1(Ω), and Dfk ⇀ Df weakly-∗ in M(Ω; RN ).In the proposition below we give a 
ompa
tness result related to this 
onver-gen
e, together with the lower semi
ontinuity property (see [4℄):Proposition 2. Let {fk}∞k=1 be a sequen
e in BV (Ω) strongly 
onverging to some
f in L1(Ω) and satisfying supk∈N

∫
Ω |Dfk| < +∞. Then(i) f ∈ BV (Ω) and ∫

Ω
|Df | ≤ lim inf

k→∞

∫

Ω
|Dfk|;(ii) fk ⇀ f in BV (Ω).Convergen
e in variable spa
es. Let {µk}k∈N

, µ be Radon measures su
h that
µk

∗
⇀ µ in M+(Ω), i. e.,

lim
k→∞

∫

Ω
ϕdµk =

∫

Ω
ϕdµ ∀ϕ ∈ C0(R

N ), (2.5)where C0(RN ) is the spa
e of all 
ompa
tly supported 
ontinuous fun
tions. Thetypi
al example of su
h measures is
dµk = ρk(x) dx, dµ = ρ(x) dx, where 0 ≤ ρk ⇀ ρ in L1(Ω).Let us re
all the de�nition and main properties of 
onvergen
e in the variable

L2-spa
e (see [7℄).
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e {vk ∈ L2(Ω, dµk)
} is 
alled bounded if

lim sup
k→∞

∫

Ω
|vk|2 dµk < +∞.2. A bounded sequen
e {vk ∈ L2(Ω, dµk)

} 
onverges weakly to v ∈ L2(Ω, dµ)if
lim

k→∞

∫

Ω
vkϕdµk =

∫

Ω
vϕdµ for any ϕ ∈ C∞

0 (Ω),and it is written as vk ⇀ v in L2(Ω, dµk).3. The strong 
onvergen
e vk → v in L2(Ω, dµk) means that v ∈ L2(Ω, dµ) and
lim

k→∞

∫

Ω
vkzk dµk =

∫

Ω
vz dµ as zk ⇀ z in L2(Ω, dµk). (2.6)The following 
onvergen
e properties in variable spa
es hold:(a) Compa
tness 
riterium : if a sequen
e is bounded in L2(Ω, dµk), then thissequen
e is 
ompa
t in the sense of the weak 
onvergen
e;(b) Property of lower semi
ontinuity : if vk ⇀ v in L2(Ω, dµk), then

lim inf
ε→0

∫

Ω
|vk|2 dµk ≥

∫

Ω
v2 dµ; (2.7)(
) Criterium of strong 
onvergen
e : vk → v if and only if vk ⇀ v in L2(Ω, dµk)and

lim
k→∞

∫

Ω
|vk|2 dµk =

∫

Ω
v2 dµ. (2.8)3. Setting of the Optimal Control ProblemLet m ∈ R+ be some positive value, and let ξ1, ξ2 be given elements of L1(Ω)satisfying the 
onditions

ξ1(x) ≤ ξ2(x) a.e. in Ω, ξ−1
1 ∈ L1(Ω). (3.1)To introdu
e the 
lass of admissible BV -
ontrols we adopt the following 
on
ept:De�nition 3. We say that a nonnegative weight ρ is an admissible 
ontrol to theboundary value problem

−div ρ(x)∇y + y = f in Ω, (3.2)
y = 0 on ΓD, ρ(x)

∂y

∂ν
= 0 on ΓN , (3.3)(it is written as ρ ∈ Rad) if

ρ ∈ BV (Ω),

∫

Ω
ρ dx = m, ξ1(x) ≤ ρ(x) ≤ ξ2(x) a.e. in Ω. (3.4)Here f ∈ L2(Ω) is a given fun
tion.



98 I. G. BALANENKO, P. I. KOGUTHereinafter we assume that the set Rad is nonempty.Remark 1. In view of the property (3.1), we have the boundary value problemfor the degenerate ellipti
 equation. It means that for some admissible 
ontrols
ρ ∈ Rad the boundary value problem (3.2)�(3.3) 
an exhibit the Lavrentie�phenomenon, the nonuniqueness of the weak solutions as well as other surprising
onsequen
es.The optimal 
ontrol problem we 
onsider in this paper is to minimize thedis
repan
y between a given distribution yd ∈ L2(Ω) and the solution of boundaryvalued problem (3.2)�(3.3) by 
hoosing an appropriate weight fun
tion ρ ∈ Rad.More pre
isely, we are 
on
erned with the following optimal 
ontrol problemMinimize {

I(ρ, y) =

∫

Ω
|y(x) − yd(x)|2 dx

+

∫

Ω
|∇y(x)|2

RN ρ dx+

∫

Ω
|Dρ|

} (3.5)subje
t to the 
onstraints (3.2)�(3.4).De�nition 4. We say that a fun
tion y = y(ρ, f) ∈ Wρ is a weak solution tothe boundary value problem (3.2)�(3.3) for a �xed 
ontrol ρ ∈ Rad if the integralidentity ∫

Ω
((∇y,∇ϕ)

RN ρ+ yϕ) dx =

∫

Ω
fϕdx (3.6)holds for any ϕ ∈ C∞

0 (Ω; ΓD).It is 
lear that the question of uniqueness of a weak solution leads us tothe problem of density of the subspa
e of smooth fun
tions C∞
0 (Ω; ΓD) in Wρ.However, as was indi
ated in [9℄, for a "typi
al" degenerate weight fun
tion ρ thesubspa
e C∞

0 (Ω; ΓD) is not dense inWρ, and hen
e there is no uniqueness of weaksolutions (for more details and another types of solutions we refer to [1, 5, 7, 9℄).Thus the mapping ρ 7→ y(ρ, f) is multivalued, in general. Taking this fa
t intoa

ount, we introdu
e the following set
ΞW = {(Bρ, y) | ρ ∈ Rad, y ∈Wρ, (ρ, y) are related by (3.6)} . (3.7)Note that the set ΞW is always nonempty. Indeed, let Vρ be some intermediatespa
e with Hρ ⊆ Vρ ⊆ Wρ. We say that a fun
tion y = y(ρ, f) ∈ Vρ is a Vρ-solution or variational solution to the boundary value problem (3.2)�(3.3) if theintegral identity (3.6) holds for every test fun
tion ϕ ∈ Vρ. Hen
e, in this 
ase theenergy equality ∫

Ω

(
|∇y|2

RNρ+ y2
)
dx =

∫

Ω
fy dx (3.8)must be valid. Sin
e

∣∣∣∣
∫

Ω
fy

∣∣∣∣ ≤
(∫

Ω
f2 dx

)1/2(∫

Ω
y2 dx

)1/2

≤ C‖y‖ρfor every �xed f ∈ L2(Ω), it follows that the existen
e and uniqueness of a Vρ-solution are the dire
t 
onsequen
e of the Riesz Representation Theorem. Thus



ON WEAK OPTIMAL BV -CONTROLS FOR ELLIPTIC PROBLEMS 99every variational solution is also a weak solution to the problem (3.2)�(3.3). Hen
e
ΞW 6= ∅ and therefore the 
orresponding minimization problem

〈
inf

(ρ,y)∈ΞW

I(ρ, y)

〉 (3.9)is regular. In view of this, we adopt the following 
on
ept:De�nition 5. We say that a pair
(ρ0, y0) ∈ L1(Ω) ×W 1,1(Ω; ΓD)is a weak optimal solution to the problem (3.4)�(3.5) if (ρ0, y0) is a minimizer for〈

inf
(ρ,y)∈ΞW

I(ρ, y)

〉, i. e.,
(ρ0, y0) ∈ ΞW and I(ρ0, y0) = inf

(ρ,y)∈ΞW

I(ρ, y).The main question to be answered on the optimal 
ontrol problem (3.4)�(3.5)in this paper is about its solvability in the 
lass of the weak solutions. It shouldbe noted that to the best knowledge of the authors, the existen
e of optimal pairsto the above problem in the sense of De�nition 5 has not been 
onsidered in theliterature.4. Existen
e Theorem for Weak Optimal SolutionsOur prime interest in this se
tion deals with the solvability of optimal 
ontrolproblem (3.4)�(3.5) in the 
lass of the weak solutions. To begin with we establishsoma auxiliary results that will be useful later. Let {(ρk, yk) ∈ ΞW}k∈N
be anysequen
e of the weak admissible solutions.Lemma 1. Let {ρk}k∈N

be a sequen
e in Rad su
h that ρk → ρ in L1(Ω) as
k → ∞. Then

(ρk)
−1 → ρ−1 in the variable spa
e L2(Ω, ρkdx).Proof. To proof this result we make use some ideas of the paper [9℄. By theproperties of the set of admissible 
ontrols Rad, we have
∫

Ω

∣∣ρ−1
k

∣∣ dx ≤
∫

Ω

∣∣ξ−1
1

∣∣ dx ∀ k ∈ N,that is the sequen
e {ρ−1
k

}
k∈N

is equi-integrable on Ω. Note that, up to a subse-quen
e, we have ρk → ρ a.e. in Ω. Sin
e
ξ−1
2 ≤ ρ−1

k ≤ ξ−1
1 ,Lebesgue Theorem implies

ρ−1
k → ρ−1 in L1(Ω). (4.1)
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0 (Ω) be a �xed fun
tion. Then the equality

∫

Ω
ρ−1

k ϕρkdx ≡
∫

Ω
ϕdx =

∫

Ω
ρ−1ϕρdx ∀k ∈ Nleads us to the weak 
onvergen
e ρ−1

k ⇀ ρ−1 in L2(Ω, ρkdx). It should be stressedhere that, by the initial assumptions, ρkdx
∗
⇀ ρdx in the spa
e of Radon measures

M+(Ω) (see (2.5)). However, taking into a

ount the strong 
onvergen
e ρ−1
k →

ρ−1 in L1(Ω) and the fa
t that Ω is a bounded domain, we get
lim

k→∞

∫

Ω
|ρk|−2 ρkdx ≡ lim

k→∞

∫

Ω
ρ−1

k dx =

∫

Ω
ρ−1dx ≡

∫

Ω
|ρ|−2 ρdx.Hen
e, by the 
riterium of the strong 
onvergen
e in variable spa
e L2(Ω, ρkdx),we just 
ome to the required 
on
lusion. The proof is 
omplete.Our next intension deals with the study of topologi
al properties of the set ofweak admissible solutions ΞW to the problem (3.2)�(3.5). To do so, we introdu
ethe following 
on
epts:De�nition 6. A sequen
e {(ρk, yk) ∈ ΞW}k∈N

is 
alled to be bounded if
sup
k∈N

[
‖ρk‖BV (Ω) + ‖yk‖L2(Ω) + ‖∇yk‖L2(Ω,ρkdx)N

]
< +∞.De�nition 7. We say that a bounded sequen
e {(ρk, yk) ∈ ΞW}k∈N

of the weakadmissible solutions τ -
onverges to a pair (ρ, y) ∈ BV (Ω) ×W 1,1(Ω) if(a) ρk ⇀ ρ in BV (Ω);(d) yk ⇀ y weakly in L2(Ω);(e) ∇yk ⇀ ∇y ∋ L2(Ω, ρ dx)N in the variable spa
e L2(Ω, ρkdx)
N .Note that due to the suppositions (3.1), (3.4), and estimates like (2.3)�(2.4),the in
lusion y ∈W 1,1(Ω) is obvious.Lemma 2. Let {(ρk, yk) ∈ ΞW}k∈N

be a bounded sequen
e. Then there is a pair
(ρ, y) ∈ BV (Ω)×W 1,1(Ω) su
h that, up to a subsequen
e, (ρk, yk)

τ−→ (ρ, y) and
y ∈Wρ.Proof. To begin with, we note that by Proposition 1 and the 
ompa
tness 
riteriumof the weak 
onvergen
e in variable spa
es, there exist a subsequen
e of

{(ρk, yk) ∈ ΞW}k∈N
,still denoted by the su�x k, and fun
tions ρ ∈ BV (Ω), y ∈ L2(Ω), and v ∈

L2(Ω, ρ dx)N su
h that
ρk → ρ in L1(Ω), ρk dx

∗
⇀ ρdx in M+(Ω), (4.2)

yk ⇀ y in L2(Ω), ∇yk ⇀ v in the variable spa
e L2(Ω, ρk dx). (4.3)



ON WEAK OPTIMAL BV -CONTROLS FOR ELLIPTIC PROBLEMS 101Let us show that y ∈ W 1,1(Ω), and v = ∇y. Sin
e ξ1 ≤ ρk ≤ ξ2 for every k ∈ N,the 
laim (4.2) and Lemma 1 imply the property (see (4.1))
ρ−1

k → ρ−1 in L1(Ω), ξ1 ≤ ρ ≤ ξ2 a.e. in Ω. (4.4)This yields that the sequen
e {∇yk}k∈N
is weakly 
ompa
t in L1(Ω)N . Indeed,the property of its equi-integrability immediately follows from the inequality

∫

Ω
|∇yk| dx ≤

(∫

Ω
ρ−1

k dx

)1/2(∫

Ω
|∇yk|2ρk dx

)1/2

≤ C

(∫

Ω
ρ−1

k dx

)1/2

.As a result, using the strong 
onvergen
e (ρk)
−1 → ρ−1 in the variable spa
e

L2(Ω, ρkdx) (see Lemma 1) and its properties, we obtain
lim

k→∞

∫

Ω
(∇yk, ψ)

RN dx = lim
k→∞

∫

Ω
ρ−1

k (∇yk, ψ)
RN ρk dx

=

∫

Ω
ρ−1 (v, ψ)

RN ρ dx =

∫

Ω
(v, ψ)

RN dxfor all ψ ∈ C∞
0 (Ω)N . Thus∇yk ⇀ v in L1(Ω)N . Sin
e by estimate (2.3) y ∈ L1(Ω),this implies that y ∈ W 1,1(Ω) and ∇y = v. As for the in
lusion y ∈ Wρ this isimmediately follows from the 
laims (4.2)�(4.3). The proof is 
omplete.The next result is 
ru
ial for our analysis.Theorem 2. For every f ∈ L2

loc(R
N ) the set ΞW is sequentially 
losed with respe
tto the τ -
onvergen
e.Proof. Let {(ρk, yk)}k∈N ⊂ ΞW be a bounded τ -
onvergent sequen
e of weakadmissible pairs to the optimal 
ontrol problem (3.2)�(3.5). Let (ρ0, y0) be its

τ -limit. Our aim is to prove that (τ0, y0) ∈ ΞW .By Lemma 2 we have
ρk → ρ0 in L1(Ω), ρ0 ∈ BV (Ω), ξ1 ≤ ρ0 ≤ ξ2 a.e. in Ω. (4.5)Then passing to the limit as k → ∞ in the relation ∫Ω ρk dx = m, we just 
ometo the 
on
lusion: ρ0 ∈ Rad, i. e. the limit weight fun
tion ρ0 is an admissible
ontrol.It remains to show that the pair (ρ0, y0) is related by the integral identity(3.6) for all ϕ ∈ C∞

0 (Ω; ΓD). For every �xed k ∈ N we denote by (ρ̂k, ŷk) ∈
BVloc(RN )×W 1,1

loc (RN ) an extension of the fun
tions (ρk, yk) ∈ ΞW to the wholeof spa
e RN su
h that the sequen
e {(ρ̂k, ŷk)}k∈N satis�es the properties:
ρ̂k ∈ BV (Q), ξ1 ≤ ρ̂k ≤ ξ2 a.e. in Q, (4.6)

sup
k∈N

[
‖ρ̂k‖BV (Q) + ‖ŷk‖L2(Q) + ‖∇ŷk‖L2(Q,ρ̂kdx)N

]
< +∞. (4.7)�r any bounded domain Q in RN . Hen
e, by analogy with Lemma 2 it 
an beproved that for every bounded domain Q ⊂ RN there exist fun
tions ρ̂0 ∈ BV (Q)and ŷ0 ∈Wρ̂0

= W (Q, ρ̂0 dx) su
h that
ρ̂k ⇀ ρ̂0 in L1(Q), ŷk ⇀ ŷ0 in L2(Q), (4.8)

∇ŷk ⇀ ∇ŷ0 ∋ L2(Ω, ρ̂0 dx)
N in the variable spa
e L2(Ω, ρ̂kdx)

N . (4.9)



102 I. G. BALANENKO, P. I. KOGUTIt is important to note that in this 
ase we have
ŷ0 = y0 and ρ̂0 = ρ0 a.e. in Ω. (4.10)In what follows, we rewrite the integral identity (3.6) in the equivalent form

∫

RN

((∇ŷk,∇ϕ)
RN ρ̂k + ŷkϕ)χΩ(x) dx

=

∫

RN

fϕχΩ(x) dx ∀ϕ ∈ C∞
0 (RN ,ΓD), (4.11)and pass to the limit in (4.11) as k → ∞. Using the properties (4.8)�(4.9), andthe fa
t that χΩ → χΩ strongly in the variable spa
e L2(Q, ρ̂k dx), i. e.

∫

RN

χ2
Ωρ̂k dx =

∫

RN

χΩρ̂k dx −→
∫

RN

χΩρ̂0 dx =

∫

RN

χ2
Ωρ̂0 dxwe just 
ome to the relation

∫

RN

((∇ŷ0,∇ϕ)
RN ρ̂0 + ŷ0ϕ)χΩ(x) dx =

∫

RN

fϕχΩ(x) dx ∀ϕ ∈ C∞
0 (RN ,ΓD)whi
h is equivalent to the following one

∫

Ω
((∇ŷ0,∇ϕ)

RN ρ̂0 + ŷ0ϕ) dx =

∫

Ω
fϕdx ∀ϕ ∈ C∞

0 (Ω,ΓD).As a result, taking into a

ount (4.10) and the fa
t that ŷ0 ∈Wρ̂0
(by Lemma 2),we 
on
lude: y0 is a weak solution to the boundary valued problem (3.2)�(3.3)under ρ = ρ0. Thus the τ -limit pair (τ0, y0) belongs to set ΞW , and this 
on
ludesthe proof.Now we are in a position to state the existen
e of weak optimal pairs to theproblem (3.2)�(3.5).Theorem 3. Let ξ1 ∈ L1

loc(R
N ) and ξ2 ∈ L1

loc(R
N ) be su
h that ξ1 ≤ ξ2 a.e.in

RN and ξ−1
1 ∈ L1

loc(R
N ). Let f ∈ L2

loc(R
N ) and yd ∈ L2(Ω) be given fun
tions.Then the optimal 
ontrol problem (3.2)�(3.5) admits at least one weak solution

(ρopt, yopt) ∈ ΞW ⊂ L1(Ω) ×W 1,1(Ω,ΓD), yopt ∈W (Ω, ρopt dx)if and only if Rad 6= ∅.Proof. Be
ause the 
onverse statements is obvious, we suppose that the set ofadmissible 
ontrols Rad is nonempty. Then the minimization problem (3.9) isregular (i. e. ΞW 6= ∅). Let {(ρk, yk) ∈ ΞW}k∈N
be a minimizing sequen
e to (3.9).Then as follows from the inequality

inf
(ρ,y)∈ΞW

I(ρ, y) = lim
k→∞

[∫

Ω
|yk(x) − yd(x)|2 dx

+

∫

Ω
|∇yk(x)|2RNρk dx+

∫

Ω
|Dρk|

]
< +∞, (4.12)
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onstant C > 0 su
h that
sup
k∈N

‖yk‖L2(Ω) ≤ C, sup
k∈N

‖∇yk‖L2(Ω,ρkdx)N ≤ C,

∫

Ω
|Dρk| ≤ C.Hen
e, in view of the de�nition of the 
lass of admissible 
ontrols Rad, thesequen
e {(ρk, yk) ∈ ΞW}k∈N

is bounded in the sense of De�nition 6. Hen
e, byLemma 2 there exist fun
tions ρ∗ ∈ BV (Ω) and y∗ ∈ W (Ω, ρ∗ dx) su
h that,within a subsequen
e, (ρk, yk)
τ−→ (ρ∗, y∗). Sin
e the set ΞW is sequentially
losed with respe
t to the τ -
onvergen
e (see Theorem 2), it follows that the

τ -limit pair (ρ∗, y∗) is an admissible weak solution to optimal 
ontrol problem(3.2)�(3.5) (i. e. (ρ∗, y∗) ∈ ΞW ). To 
on
lude the proof it is enough to observethat by property (2.7) and Proposition 2, the 
ost fun
tional I is sequentiallylower τ -semi
ontinuous. Thus
I(ρ∗, y∗) ≤ lim inf

k→∞
I(ρk, yk) = inf

(ρ, y)∈ΞW

I(ρ, y).Hen
e (ρ∗, y∗) is a weak optimal pair, and we 
ome to the required 
on
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