УДК 519.81:681.51

А.С. Мазманишвили, Т.Е. Александрова

Национальный технический университет «Харьковский политехнический институт», Харьков

К ВОПРОСУ О МОДЕЛИРОВАНИИ КОЛЕБАНИЙ ПОДРЕССОРЕННОЙ ЧАСТИ ОБЪЕКТОВ БРОНЕТАНКОВОЙ ТЕХНИКИ ПРИ КРИВОЛИНЕЙНОМ ДВИЖЕНИИ ПО СЛУЧАЙНОЙ ПОВЕРХНОСТИ

Оценку подвижности ОБТ целесообразно производить путем моделирования колебаний подрессоренной части при криволинейном движении ОБТ по случайной поверхности, в качестве которой рекомендуется использовать нормальное марковское двухмерное поле.

Ключевые слова: объект бронетанковой техники, подрессоренная часть корпуса, случайная поверхность движения, нормальное марковское двухмерное поле

Постановка задачи

Для оценки подвижности колесных и гусеничных объектов бронетанковой техники (ОБТ) широко используется математическое моделирование движения ОБТ в различных дорожных условиях и по пересеченной местности. В работах Н.И. Груздева [1], С.С. Бурова [2], В.А. Балдина [3], А.А. Дмитриева [4], Н.А. Забавникова [5], В.П. Аврамова [8], В.П. Писарева [9], В.В. Дущенко [10] рассматривается возмущенное прямолинейное движение ОБТ по поверхности синусоидального профиля, при этом основной упор делается на исследование резонансных явлений, в которых возмущения, действующие на подрессоренную часть ОБТ, достигают максимума.

В работах А.А. Силаева [11], А.Н. Туренко и Н.Я. Говорущенко [12], Е.Е. Александрова [13] рассматриваются задачи стохастического моделирования поверхности движения колесных и гусеничных ОБТ в их прямолинейном движении. В этих работах получены значения коэффициентов корреляции для различных дорожных условий (асфальтобетон, мостовая, грунтовая дорога, пересеченная местность) в предположении, что профиль поверхности движения под правым и левым бортами ОБТ одинаков.

В работе [14] авторами рассмотрена задача стохастического моделирования поверхности движения ОБТ при различных профилях поверхности по правому и левому бортам. Однако в рассмотренной задаче эти профили предполагаются некоррелированными, а движение ОБТ прямолинейным.

При рассмотрении криволинейного движения ОБТ необходимо решить задачу пространственного моделирования двухмерного поля на плоской поверхности с заданными стохастическими характеристиками. Из всего многообразия возможных вариантов и моделей двухмерных случайных поверхностей при отсутствии дополнительных априорных факторов нормальное марковское двухмерное поле (НМДполе) H(x, y) наиболее предпочтительное, поскольку является удобным объектом анализа, и любое его ортогональное сечение является стационарным процессом Орнштейна-Уленбека [15].

В работах авторов [16,17] рассмотрены задачи моделирования и построения случайной поверхности h(x, y) в прямоугольнике { $x \in [0, a], y \in [0, b]$ }.

Целью настоящей работы является моделирование вертикальних, продольно-угловых и поперечноугловых колебаний корпуса ОБТ при его криволинейном движении по случайной поверхности h(x, y)с различными стохастическими характеристиками.

Основная часть

В работе [14] рассмотрена математическая модель возмущенного движения подрессоренной части ОБТ в прямолинейном движении при различных профилях поверхности по правому и левому бортам. Эта модель взята за основу при рассмотрении колебаний подрессоренной части ОБТ в криволинейном двинении по случайной поверхности h(x,t). Для этого в уравнение поперечно-угловых колебаний подрессоренной части ОБТ введено слагаемое, описывающее возмущающее действие опрокидывающего момента от действия центробежной силы, возникающей при повороте ОБТ, а также введены зависимости, описывающие изменения координат пятен контакта опорных катков со случайной поверхностью движения h(x, y). Полученные уравнения возмущенного движения подрессоренной части ОБТ записываются в виде:

$$\frac{G_n}{g} \ddot{z}_k(t) + 2q\delta \dot{z}_k(t) + 2rcz_k(t) +
+ \delta \sum_{j=1}^{2q} \mu_j \dot{\varphi}_k(t) + c \sum_{i=1}^{2r} \nu_i \varphi_k(t) =
= c \sum_{i=1}^r h[x_{in}(t), y_{in}(t)] + c \sum_{i=1}^r h[x_{in}(t), y_{in}(t)] +
+ \delta \sum_{j=1}^q \dot{h}[x_{jn}(t), y_{jn}(t)] + \delta \sum_{j=1}^q \dot{h}[x_{jn}(t), y_{jn}(t)];$$
(1)

$$J_{y}\ddot{\varphi}_{k}(t) + \delta \sum_{j=1}^{2q} \mu_{j}^{2}\dot{\varphi}_{k}(t) + c \sum_{i=1}^{2r} v_{i}^{2}\varphi_{k}(t) + \\ + \delta \sum_{j=1}^{2q} \mu_{j}\dot{z}_{k}(t) + c \sum_{i=1}^{2r} v_{i}z_{k}(t) = \\ = c \sum_{i=1}^{r} v_{i}h[x_{in}(t), y_{in}(t)] + c \sum_{i=1}^{r} v_{i}h[x_{in}(t), y_{in}(t)] + \\ + \delta \sum_{j=1}^{q} \mu_{i}\dot{h}[x_{jn}(t), y_{jn}(t)] + \delta \sum_{j=1}^{q} \mu_{i}\dot{h}[x_{jn}(t), y_{jn}(t)]; \\ J_{x}\ddot{\vartheta}_{k}(t) + \frac{q\delta B^{2}}{2}\dot{\vartheta}_{k}(t) + \frac{rcB^{2}}{2}\vartheta_{k}(t) + \\ + q\delta B\dot{z}_{k}(t) + rcBz_{k}(t) = \\ = \frac{cB}{2}\sum_{i=1}^{r}h[x_{in}(t), y_{in}(t)] + \frac{cB}{2}\sum_{i=1}^{r}h[x_{in}(t), y_{in}(t)] + \\ + \frac{\delta B}{2}\sum_{j=1}^{q}\dot{h}[x_{in}(t), y_{in}(t)] + \frac{\delta B}{2}\sum_{j=1}^{q}\dot{h}[x_{in}(t), y_{in}(t)] - \\ - \frac{G_{n}}{g}v(t)\dot{\psi}(t)[h_{0} + z_{k}(t)]sign\dot{\psi}(t). \end{cases}$$

$$(2)$$

Последнее слагаемое в правой части уравнения (3) характеризует действие центробежной силы на подрессоренную часть корпуса ОБТ.

В уравнениях (1)-(3) приняты обозначения: v(t)текущая скорость центра масс ОБТ; $\psi(t)$ - текущий угол поворота продольной оси ОБТ; g(t) - ускорение силы тяжести; $z_k(t)$ - вертикальное перемещение подрессоренной части корпуса ОБТ; $\varphi_k(t)$ - продольноугловое перемещение подрессоренной части; $\mathcal{G}_k(t)$ поперечно-угловое перемещение подрессоренной части корпуса; G_n - вес подрессоренной части корпуса; I_{χ} - момент инерции подрессоренной части корпуса относительно собственной продольной оси; I_v - момент инерции подрессоренной части корпуса относительно собственной поперечной оси; q - число амортизаторов по одному из бортов ОБТ; Г - число рессор по одному из бортов ОБТ; б - среднее значение коэффициента демпфирования амортизатора; С - коэффициент жесткости рессоры; µ_j - расстояние в горизонтальной плоскости в направлении продольной оси от центра тяжести подрессоренной части корпуса до точки крепления j -го амортизатора; v_i - расстояние в горизонтальной плоскости в направлении продольной оси от центра тяжести корпуса до точки крепления *i*-й рессоры; *l_i* - расстояние в горизонтальной плоскости в направлении продольной оси от центра тяжести подрессоренной части корпуса до точки контакта *i*-го опорного катка с поверхностью движения; S_i - pacстояние в горизонтальной плоскости от центра тяжести корпуса до точки контакта *i*-го опорного катка с поверхностью движения; *B* - ширина колеи ОБТ; h_0 - расстояние от поверхности грунта до центра тяжести подрессоренной части корпуса; $x_{in}(t), y_{in}(t), x_{in}(t), y_{in}(t)$ - текущие координаты точек контакта опорных катков ОБТ с поверхностью движения по правому и левому бортам.

Для украинского танка «ОПЛОТ» значения постоянных параметров составляют:

$$\begin{split} G_n &= 42 \cdot 10^4 \, H; \ I_x = 10, 4 \cdot 10^4 \, H \cdot m \cdot c^2; \\ I_y &= 16 \cdot 10^4 \, H \cdot m \cdot c^2; \ q = 3; \ r = 6; \\ \delta &= 103836 \, H \cdot m^{-1} \cdot c; \ c = 200000 \, H \cdot m^{-1}; \\ \mu_1 &= 2,273 \, m; \ \mu_2 = 1,575 \, m; \ \mu_3 = -1,755 \, m; \\ v_1 &= 2,230 \, m; \ v_2 = 1,485 \, m; \ v_3 = 0,620 \, m; \\ v_4 &= -0,100 \, m; \ v_5 = 0,980 \, m; \ v_6 = -1,845 \, m; \\ l_1 &= 2,528 \, m; \ l_2 = 1,817 \, m; \ l_3 = 0,954 \, m; \ l_4 = 0,233 \, m; \\ l_5 &= -0,649 \, m; \ l_6 = -1,515 \, m; \ S_1 = 2,873 \, m; \\ S_2 &= 2,272 \, m; \ S_3 = 1,665 \, m; \ S_4 = 1,385 \, m; \\ S_5 &= 1,511 \, m; \ S_6 = 2,084 \, m; \ B = 2,73 \, m; \ h_0 = 1,1 \, m. \end{split}$$

Отыщем функции $x_{in}(t), y_{in}(t), x_{in}(t), y_{in}(t)$, для чего рассмотрим три системы координат, представленные на рис.1: неподвижную *оху*; подвижную $o_n x_n y_n$, начало которой связано с центром масс ОБТ, а оси параллельные осям неподвижной системы; связанную $o_c x_c y_c$, начало которой связано с центром масс ОБТ, а оси $o_c x_c$ и $o_c y_c$ совпадают с главными центральными осями инерции ОБТ.

Рис. 1. Системы координат: оху – неподвижная; $o_n x_n y_n$ – подвижная; $o_c x_c y_c$ – связанная: l_i – расстояние точки контакта *i*-го опорного катка от поперечной связанной оси ОБТ; S_i – расстояние в горизонтальной плоскости от центра масс ОБТ до точки контакта *i*-го опорного катка; *B* – ширина колеи ОБТ

Координаты точек контактов опорных катков ОБТ с поверхностью грунта обозначим x_{in} , y_{in} по правому борту и x_{ia} , y_{ia} по левому борту ОБТ, где i – номер опорного катка при начале отсчета от переднего катка. Расстояния l_i в горизонтальной плоскости от точки контакта *i*-го опорного катка до поперечной связанной оси oy_c положительно для опорных катков, расположенных впереди центра масс, и отрицательно для опорных катков, расположенных позади центра масс ОБТ. Расстояние S_i в горизонтальной плоскости от центра масс ОБТ до точки контакта *i*-го опорного катка с грунтом определяется соотношением

$$S_i = \sqrt{\frac{B^2}{4} + l_i^2}, \ (i = \overline{1, n}),$$

где n – число опорных катков по одному из бортов ОБТ, а углы ϕ_{in} и ϕ_{in} в горизонтальной плоскости составляют:

$$\varphi_{in} = \operatorname{arctg} \frac{2l_i}{B}; \ \varphi_{in} = \pi - \operatorname{arctg} \frac{2l_i}{B}, \ (i = \overline{1, n}).$$

Криволинейное движение ОБТ характеризуется текущей скоростью движения центра масс v(t) и текущим углом поворота корпуса ОБТ относительно вертикальной оси $\psi(t)$. Текущий радиус поворота ОБТ при этом определяется формулой

$$R(t) = \frac{v(t)}{\dot{\psi}(t)},$$

а координаты центра масс изменяются в соответствии с формулами:

$$x(t) = x_0 + \int_0^t v(t) \cos \psi(t) dt;$$

$$y(t) = y_0 - \int_0^t v(t) \sin \psi(t) dt,$$

где x_0 , y_0 – координаты начальной точки отсчета.

Из рассмотрения рис. 1 можно записать соотношения для текущих координат точек контакта опорных катков правого и левого бортов в процессе криволинейного движения ОБТ:

$$x_{in}(t) = x(t) + S_i \sin\left[\psi(t) + \arctan\frac{2l_i}{B}\right], (i = \overline{1, n});$$

$$y_{in}(t) = y(t) + S_i \cos\left[\psi(t) + \arctan\frac{2l_i}{B}\right], (i = \overline{1, n});$$

$$x_{in}(t) = x(t) + S_i \cos\left[\psi(t) + \pi - \arctan\frac{2l_i}{B}\right], (i = \overline{1, n});$$

$$y_{in}(t) = y(t) + S_i \sin\left[\psi(t) + \pi - \operatorname{arctg}\frac{2l_i}{B}\right], (i = \overline{1, n}).$$

(4)

Принимая соотношения (4) в качестве аргументов случайных функций h(x, y) и $\dot{h}(x, y)$, причем

$$\dot{h}(x,y) = \frac{\partial h(x,y)}{\partial x} \cdot \dot{x}(t) + \frac{\partial h(x,y)}{\partial y} \dot{y}(t)$$

© А.С. Мазманишвили, Т.Е. Александрова

подставим эти функции в уравнения (1)-(3), решения которых определяют изменения обобщенных координат и скоростей возмущенного движения подрессоренной части корпуса ОБТ.

На рис. 2 приведены случайные процессы $z_k(t)$, $\dot{z}_k(t)$, $\phi_k(t)$, $\dot{\phi}_k(t)$, полученные интегрированием системы дифференциальных уравнений (1)-(3) при $\varphi(t) = 0$, $v(t) = 6_M \cdot c^{-1}$ на грунтовой дороге.

Оценку подвижности ОБТ целесообразно производить путем моделирования колебаний подрессоренной части при криволинейном движении ОБТ по случайной поверхности, в качестве которой рекомендуется использовать нормальное марковское двухмерное поле.

Список литературы

1. Груздев Н. И. Танки, теория / Н.И. Груздев. – М.: Машгиз, 1944. – 402 с.

2. Буров С.С. Конструкция и расчет танков / С.С. Буров. – М.: АБТВ, 1973. – 602 с.

3. Балдин В. А. Теория и конструкция танков / В.А. Балдин. – М.: АБТВ, 1972. – 782 с.

4. Дмитриев А.А. Теория и расчет нелинейных систем подрессоривания гусеничных машин / А.А. Дмитриев, В.А. Чобиток, А.В. Тельминов. – М.: Машиностроение, 1975. – 448 с.

5. Забавников Н.А. Теория транспортных гусеничных машин / Н.А. Забавников. – М.: Машиностроение, 1974. – 442 с.

 Аврамов В.П. Динамика гусеничной транспортной машины при прямолинейном движении по неровностям / В.П. Аврамов. – Харьков: ХПИ, 1992. – 62 с.

7. Аврамов В. П. Проходимость, поворот и потери в ходовой системе транспортной гусеничной машины / В.П. Аврамов. – Харьков: ХПИ, 1992. – 98 с.

 Аврамов В.П. Динамика гусеничной транспортной машины при установившемся движении по неровностям / В.П. Аврамов, Н.Б. Калейчев. – Харьков: Вища школа, 1989. – 112 с.

9. Писарев В.П. Проектирование ходовых систем быстроходных гусеничных машин / В.П. Писарев. – Харьков: НТУ "ХПИ", 2002. – 218 с.

10. Дущенко В.В. Математическое моделирование колебаний подрессоренного корпуса многоопорной колесной машины / В.В. Дущенко, И.И. Якименко // Механіка та машинобудування. – 2004. – №2. – С. 139-147.

11. Силаев А.А. Спектральная теория подрессоривания транспортных машин / А.А. Силаев. – М.: Машиностроение, 1972. – 192 с.

12. Туренко А.Н. Системотехника транспорта / А.Н. Туренко, Н.Я. Говорущенко. – Харьков: ХНАДУ, 1998. – 255 с.

13. Александров Е.Е. Динамика транспортно-тяговых колесных и гусеничных машин / Е.Е. Александров, А.Т. Лебедев, А.Н. Туренко и др. – Харьков: ХНАДУ, 2001. – 642 с.

14. Александрова Т.Е. Имитационное моделирование внешних возмущений, действующих на танковую пушку / Т.Е. Александрова, И.Е. Александрова, С.Н. Беляев // Механіка та машинобудування. – 2011. – №1. – С. 43-50.

15. Мазманишвили А.С. Моделирование марковских случайных последовательностей и алгоритм генерации однородного двумерного марковского поля / А.С. Мазманишвили, В.Е. Щербань // Электронное моделирование. – 1996. – Т. 18. – №2. – С. 93-95.

16. Мазманишвили А.С. Стохастическое моделирование случайных поверхностей движения объектов бронетанковой техники / А.С. Мазманишвили, Т.Е. Александрова // Системи обробки інформації. – 2012. – №2(100). – С.63-66.

17. Мазманишвили А.С. Построение случайных поверхностей движения объектов бронетанковой техники / А.С. Мазманишвили, Т.Е. Александрова // Системи озброєння і війскова техніка. – 2012. – №1. –С.48-52.

Рецензент: д.т.н., проф. Д.О. Волонцевич, завідувач кафедри «Колісні та гусеничні машини ім. О.О.Морозова» НТУ «ХПІ», м. Харків.

До питання про моделювання коливань підресореної частини об'єктів бронетанкової техніки при криволінійному русі по випадковій поверхні

О.С. Мазманішвілі, Т.Є.Александрова

Оцінку рухомості ОБТ доцільно здійснювати шляхом моделювання коливань підресореної частини при криволінійному русі ОБТ по випадковій поверхні, в якості якої рекомендується використовувати нормальне марківське двомірне поле.

Ключові слова: об'єкт бронетанкової техніки, підресорена частина корпусу, випадкова поверхня руху, нормальне марківське двовимірне поле

On the modeling of vibrations of objects sprung armored vehicles in curvilinear motion on a random surface

O.Mazmanishvili, T. Alexandrova

Assessment of MBT mobility should be realized by modeling fluctuations in the suspension system of curvilinear motion of MBT on random surfaces, as which normal two-dimensional Markov field is recommended.

Keywords: armored vehicles, sprung part of the hull, the random sliding surface, the normal two-dimensional Markov field