On classification of groups generated by 3 -state automata over a 2 -letter alphabet

Ievgen Bondarenko, Rostislav Grigorchuk, Rostyslav Kravchenko, Yevgen Muntyan, Volodymyr Nekrashevych, Dmytro Savchuk and Zoran Šunić

Dedicated to V. V. Kirichenko on his 65th birthday and V. I. Sushchansky on his 60th birthday

Abstract

We show that the class of groups generated by 3 -state automata over a 2-letter alphabet has no more than 122 members. For each group in the class we provide some basic information, such as short relators, a few initial values of the growth function, a few initial values of the sizes of the quotients by level stabilizers (congruence quotients), and hystogram of the spectrum of the adjacency operator of the Schreier graph of the action on level 9 . In most cases we provide more information, such as whether the group is contracting, self-replicating, or (weakly) branch group, and exhibit elements of infinite order (we show that no group in the class is an infinite torsion group). A GAP package, written by Muntyan and Savchuk, was used to perform some necessary calculations. For some of the examples, we establish that they are (virtually) iterated monodromy groups of post-critically finite rational functions, in which cases we describe the functions and the limit spaces. There are exactly 6 finite groups in the class (of order no greater than 16), two free abelian groups (of rank 1 and 2), and only one free nonabelian group (of rank 3). The other examples in the class range from familiar (some virtually abelian groups, lamplighter group, Baumslag-Solitar groups $B S(1, \pm 3)$, and a free product $C_{2} * C_{2} * C_{2}$) to enticing (Basilica group and a few other iterated monodromy groups).

[^0]
1. Introduction

Automaton groups were formally introduced in the beginning of 1960's [Glu61, Hoř63] but it took a while to realize their importance, utility, and, at the same time, complexity. Among the publications from the first decade of the study of automaton groups let us distinguish [Zar64, Zar65] and the book [GP72].

The first substantial results came only in the 1970's and in the beginning of the 1980's when it was shown in [Ale72, Sus79, Gri80, GS83b] that automaton groups provide examples of finitely generated infinite torsion groups, thus making a contribution to one of the most famous problems in algebra - the General Burnside Problem (more information on all three versions of the Burnside problem can be found in [Adi79, Gol68, Gup89, Kos90, Zel91, GL02]). The methods used to study the properties of the examples from [Ale72, Sus79, Gri80] are very different. The methods used in [Ale72] are typical for the theory of finite automata (in fact the provided proof was incorrect; the first correct proof appears in [Mer83] as a combination of the results from [Gri80] and [Mer83], as well as in the third edition of the book [KM82] and in [KAP85]). The exposition in [Sus79] is based on Kalujnin's tableaux coming from his theory of iterated wreath products of cyclic groups of prime order p. The approach in [Gri80] is based on the ideas of selfsimilarity and contraction. These ideas are apparent both in the proof of the infiniteness and the torsion property of the group. The self-similarity is apparent from the fact that the set of all states of the automaton is used as a generating set for the group (now it is common to call such groups self-similar). The contraction property here means that the length of the elements contracts by a factor bounded away from 1 when one passes to sections. A principal tool introduced in the beginning of the 1980's was the language of actions on rooted trees suggested by Gupta and Sidki in [GS83b], which helped tremendously in bringing geometric insight to the subject.

A new indication of the importance of automaton groups came when it was shown that some of them provided the first examples of groups of intermediate growth [Gri83, Gri84, Gri85]. This not only answered the question of J.Milnor [Mil68] about existence of such groups, but also answered a number of other questions in and around group theory, including M. Day's problem [Day57] on existence of amenable but not elementary amenable groups. Basically, even to this day, all known examples of groups of intermediate growth and non-elementary amenable groups are based on automaton groups.

Investigations in the last two decades [Gri84, Gri85, GS83b, GS83a,

Lys85, Neu86, Sid87a, Sid87b, Gri89, Roz93, Gri98, Gri99, Gri00, BG00a, BG00b, GŻ01, Nek05, GŠ06] show that many automaton groups possess numerous interesting, and sometimes unusual, properties. This includes just infiniteness (the groups constructed in [Gri84, Gri85] as well as in [GS83a] answer a question from [CM82] on new examples of infinite groups with finite quotients), finiteness of width, or more generally polynomial growth of the dimension of the successive quotients in the lower central series [BG00b] (answering a question of E. Zelmanov on classification of groups of finite width), branch properties [Gri84, Neu86, Gri00] (answering some questions of S. Pride and M. Edjvet [Pri80, EP84]), finiteness of the index of maximal subgroups and presence or absence of the congruence property [Per00, Per02] (related to topics in pro-finite groups), existence of groups with exponential but not uniformly exponential growth [Wil04b, Wil04a, Bar03, Nek07b] (providing an answer to a question of M. Gromov), subgroup separability and conjugacy separability [GW00], further examples of amenable groups but not amenable (or even sub-exponentially amenable) groups [GŻ02a, BV05, GNŠ06a], amenability of groups generated by bounded automata [BKN], and so on. The word problem can be solved in contracting self-similar groups by using an extremely effective branch algorithm [Gri84, Sav03]. The conjugacy problem can also be solved in many cases [WZ97, Roz98, Leo98, GW00] (in fact we do not know of an example of an automaton group with unsolvable conjugacy problem). In some instances, it is even known that the membership problem is solvable [GW03].

In addition to the formulation of many algebraic properties of groups generated by finite automata, a number of links and applications were discovered during the last decade. This includes asymptotic and spectral properties of the Cayley graphs and Schreier graphs associated to the action on the rooted tree with respect to the set of generators given by the set of states of the automaton. For instance, it is shown in [GŻ01] that the discrete Laplacian on the Cayley graph of the Lamplighter group $\mathbb{Z} \ltimes(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}}$ has pure point spectrum. This fact was used to answer a question of M. Atiyah on L^{2}-Betti numbers of closed manifolds [GLSŻ00]. The methods developed in the study of the spectral properties of Schreier graphs of self-similar groups can be used to construct Laplacians on fractal sets and to study their spectral properties (see [GN07, NT08].

A new and fruitful direction, bringing further applications of selfsimilar groups, was established by the introduction of the notions of iterated monodromy groups and limit spaces by V. Nekrashevych. The theory established a link between contracting self-similar groups and the geometry of Julia sets of expanding maps. An example of an application of self-similar groups to holomorphic dynamics is given by the solution
(by L. Bartholdi and V. Nekrashevych in [BN06]) of the "twisted rabbit" problem of J. Hubbard. The book [Nek05] provides a comprehensive introduction to this theory.

In many situations automaton groups serve as renorm groups. For instance this happens in the study of classical fractals, in the study of the behavior of dynamical systems [Oli98], and in combinatorics - for example in Hanoi Towers games on k pegs, $k \geq 3$, as observed by Z. Šunić (see [GŠ06]).

There is interest of computer scientists and logicians in automaton groups, since they may be relevant in the solution of important complexity problems (see [RS] for ideas in this direction). Self-similar groups of intermediate growth are mentioned by Wolfram in [Wol02] as examples of "multiway systems" with complex behavior.

Among the major problems in many areas of mathematics are the classification problems. If the objects are given combinatorially then it is naturally to try to classify them first by complexity and then within each complexity class.

A natural complexity parameter in our situation is the pair (m, n) where m is the number of states of the automaton generating the group and n is the cardinality of the alphabet.

There are 64 invertible 2-state automata acting on a 2-letter alphabet, but there are only six non-isomorphic (2,2)-automaton groups, namely, the trivial group, $\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z}$, the infinite dihedral group D_{∞}, and the lamplighter group $\mathbb{Z} \imath \mathbb{Z} / 2 \mathbb{Z}$ [GNS00, GŻ01] (more details are given in Theorem 7 below). A classification of semigroups generated by 2-state automata (not necessary invertible) over a 2-letter alphabet is provided by I. Reznikov and V. Sushchanskiĭ [RS02a]. Some examples from this class, including an automaton generating a semigroup of intermediate growth, were studied in the subsequent papers [RS02c, RS02b, BRS06].

It is not known how many pairwise non-isomorphic groups exists for any class (m, n) when either $m>2$ or $n>2$. Unfortunately, the number of automata that has to be treated grows super-exponentially with either of the two arguments (there are $m^{m n}(n!)^{m}$ invertible (m, n)-automata).

Nevertheless, a reasonable task is to consider the problem of classification for small values of m and n and try to classify the (3,2)-automaton groups and (2,3)-automaton groups.

Our research group (with some contribution by Y. Vorobets and M. Vorobets) has been working on the problem of classification of $(3,2)$ automaton groups for the last four yeas and some of the obtained results are presented in this article. Our research goals moved in three main directions:

1. Search for new interesting groups and an attempt to use them to
solve known problems. An example of such a group is the Basilica group (see automaton [852]). It is the first example of an amenable group (shown in [BV05]) that is not sub-exponentially amenable group (shown in [GŻ02a]).
2. Recognition of already known groups as self-similar groups, and use of the self-similar structure in finding new results and applications for such groups. As examples we can mention the free group of rank 3 (see automaton [2240]), the free product of three copies of $\mathbb{Z} / 2 \mathbb{Z}$ (see automaton [846]), Baumslag-Solitar groups $B S(1, \pm 3)$ (see automata [870] and [2294]), the Klein bottle group (see automaton [2212]), and the group of orientation preserving automorphisms of the 2-dimensional integer lattice (see automaton [2229]).
3. Understanding of typical phenomena that occur for various classes of automaton groups, formulation and proofs of reasonable conjectures about the structure of self-similar groups.

The results on the class of groups generated by $(3,2)$-automata proven in this article are the following.

Theorem 1. There are at most 122 non-isomorphic groups generated by $(3,2)$-automata.

The numbers in brackets in the next two theorems are references to the numbers of the corresponding automata (more on this encoding will be said later). Here and thereafter, C_{n} denotes the cyclic group of order n.

Theorem 2. There are 6 finite groups in the class: the trivial group $\{1\}$ [1], C_{2} [1090], $C_{2} \times C_{2}$ [730], D_{4} [847], $C_{2} \times C_{2} \times C_{2}$ [802] and $D_{4} \times C_{2}$ [748].

Theorem 3. There are 6 abelian groups in the class: the trivial group $\{1\}$ [1], C_{2} [1090], $C_{2} \times C_{2}$ [730], $C_{2} \times C_{2} \times C_{2}$ [802], \mathbb{Z} [731] and \mathbb{Z}^{2} [771].

Theorem 4. The only nonabelian free group in the class is the free group of rank 3 generated by the Aleshin-Vorobets-Vorobets automaton [2240].

Theorem 5. There are no infinite torsion groups in the class.
The short list of general results does not give full justice to the work that has been done. Namely, in most individual cases we have provided detailed information for the group in question.

More work and, likely, some new invariants are required to further distinguish the 122 groups that are listed in this paper as potentially
non-isomorphic. In some cases one could try to use the rigidity of actions on rooted trees (see [LN02]), since in many cases it is easier to distinguish actions than groups. In the contracting case one could use, for instance, the geometry of the Schreier graphs and limit spaces to distinguish the actions.

Next natural step would be to consider the case of $(2,3)$-automaton groups or 2-generated self-similar groups of binary tree automorphisms defined by recursions in which every section is either trivial, a generator, or an inverse of a generator. The cases $(4,2)$ and $(5,2)$ also seem to be attractive, as there are many remarkable groups in these classes.

Another possible direction is to study more carefully only certain classes of automata (such as the classical linear automata, bounded and polynomially growing automata in the sense of Sidki [Sid00], etc.) and the properties of the corresponding automaton groups.

Many computations used in our work were performed by the package AutomGrp for GAP system, developed by Y. Muntyan and D. Savchuk [MS08]. The package is not specific to $(3,2)$-automaton groups (in fact, many functions are implemented also for groups of tree automorphisms that are not necessarily generated by automata).

2. Regular rooted trees, automorphisms, and selfsimilarity

Let X be an alphabet on $d(d \geq 2)$ letters. Most often we set $X=$ $\{0,1, \ldots, d-1\}$. The set of finite words over X, denote by X^{*}, has the structure of a regular rooted d-ary tree, which we also denote by X^{*}. The empty word \emptyset is the root of the tree and every vertex v has d children, namely the words $v x$, for x in X. The words of length n constitute level n in the tree.

The group of tree automorphisms of X^{*} is denoted by $\operatorname{Aut}\left(X^{*}\right)$. Tree automorphisms are precisely the permutations of the vertices that fix the root and preserve the levels of the tree. Every automorphism f of X^{*} can be decomposed as

$$
\begin{equation*}
f=\alpha_{f}\left(f_{0}, \ldots, f_{d-1}\right) \tag{1}
\end{equation*}
$$

where f_{x}, for x in X, are automorphisms of X^{*} and α_{f} is a permutation of the set X. The permutation α_{f} is called the root permutation of f and the automorphisms f_{x} (denoted also by $\left.f\right|_{x}$, x in X, are called sections of f. The permutation α_{f} describes the action of f on the first letter of every word, while the automorphism f_{x}, for x in X, describes the action of f on the tail of the words in the subtree $x X^{*}$, consisting of the words
in X^{*} that start with x. Thus the equality (1) describes the action of f through decomposition into two steps. In the first step the d-tuple $\left(f_{0}, \ldots, f_{d-1}\right)$ acts on the d subtrees hanging below the root, and then the permutation α_{f}, permutes these d subtrees. Thus we have

$$
\begin{equation*}
f(x w)=\alpha_{f}(x) f_{x}(w) \tag{2}
\end{equation*}
$$

for x in X and w in X^{*}. Second level sections of f are defined as the sections of the sections of f, i.e., $f_{x y}=\left(f_{x}\right)_{y}$, for $x, y \in X$, and more generally, for a word u in X^{*} and a letter x in X the section of f at $u x$ is defined as $f_{u x}=\left(f_{u}\right)_{x}$, while the section of f at the root is f itself.

The group $\operatorname{Aut}\left(X^{*}\right)$ decomposes algebraically as

$$
\begin{equation*}
\operatorname{Aut}\left(X^{*}\right)=\operatorname{Sym}(X) \ltimes \operatorname{Aut}\left(X^{*}\right)^{X}=\operatorname{Sym}(X) \imath \operatorname{Aut}\left(X^{*}\right), \tag{3}
\end{equation*}
$$

where 2 is the permutational wreath product in which the active group $\operatorname{Sym}(X)$ permutes the coordinates of $\operatorname{Aut}\left(X^{*}\right)^{X}=$ (Aut $\left.\left(X^{*}\right), \ldots, \operatorname{Aut}\left(X^{*}\right)\right)$. For arbitrary automorphisms f and g in $\operatorname{Aut}\left(X^{*}\right)$ we have

$$
\alpha_{f}\left(f_{0}, \ldots, f_{d-1}\right) \alpha_{g}\left(g_{0}, \ldots, g_{d-1}\right)=\alpha_{f} \alpha_{g}\left(f_{g(0)} g_{0}, \ldots, f_{g(d-1)} g_{d-1}\right)
$$

For future use we note the following formula regarding the sections of a composition of tree automorphisms. For tree automorphisms f and g and a vertex u in X^{*},

$$
\begin{equation*}
(f g)_{u}=f_{g(u)} g_{u} \tag{4}
\end{equation*}
$$

The group of tree automorphisms $\operatorname{Aut}\left(X^{*}\right)$ is a pro-finite group. Namely, $\operatorname{Aut}\left(X^{*}\right)$ has the structure of an infinitely iterated wreath product

$$
\operatorname{Aut}\left(X^{*}\right)=\operatorname{Sym}(X) \imath(\operatorname{Sym}(X) \imath(\operatorname{Sym}(X) \imath \ldots))
$$

of the finite group $\operatorname{Sym}\left(X^{*}\right)$ (this follows from (3)). This product is the inverse limit of the sequence of finitely iterated wreath products of the form $\operatorname{Sym}(X)$ 々 $(\operatorname{Sym}(X) \imath(\operatorname{Sym}(X) \imath \cdots \imath \operatorname{Sym}(X)))$. Every subgroup of Aut $\left(X^{*}\right)$ is residually finite. A canonical sequence of normal subgroups of finite index intersecting trivially is the sequence of level stabilizers. The n-th level stabilizer of a group G of tree automorphisms is the subgroup $\operatorname{Stab}_{G}(n)$ of $\operatorname{Aut}\left(X^{*}\right)$ that consists of all tree automorphisms in G that fix the vertices in the tree X^{*} up to and including level n.

The boundary of the tree X^{*} is the set X^{ω} of right infinite words over X (infinite geodesic rays in X^{*} connecting the root to "infinity"). The boundary has a natural structure of a metric space in which two infinite words are close if they agree on long finite prefixes. More precisely, for
two distinct rays ξ and ζ, define the distance to be $d(\xi, \zeta)=1 / 2^{|\xi \wedge \zeta|}$, where $|\xi \wedge \zeta|$ denotes the length of the longest common prefix $\xi \wedge \zeta$ of ξ and ζ. The induced topology on X^{ω} is the Tychonoff product topology (with X discrete), and X^{ω} is a Cantor set. The group of isometries Isom $\left(X^{\omega}\right)$ and the group of tree automorphisms $\operatorname{Aut}\left(X^{*}\right)$ are canonically isomorphic. Namely, the action of the automorphism group $\operatorname{Aut}\left(X^{*}\right)$ can be extended to an isometric action on X^{ω}, simply by declaring that (1) and (2) are valid for right infinite words.

We now turn to the concept of self-similarity. The tree X^{*} is a highly self-similar object (the subtree $u X^{*}$ consisting of words with prefix u is canonically isomorphic to the whole tree) and we are interested in groups of tree automorphisms in which this self-similarity structure is reflected.

Definition 1. A group G of tree automorphisms is self-similar if, every section of every automorphism in G is an element of G.

Equivalently, self-similarity can be expressed as follows. A group G of tree automorphisms is self-similar if, for every g in G and a letter x in X, there exists a letter y in X and an element h in G such that

$$
g(x w)=y h(w)
$$

for all words w over X.
Self-replicating groups constitute a special class of self-similar groups. Examples from this class are very common in applications. A self-similar group G is self-replicating if, for every vertex u in X^{*}, the homomorphism $\varphi_{u}: \operatorname{Stab}_{G}(u) \rightarrow G$ from the stabilizer of the vertex u in G to G, given by $\varphi(g)=g_{u}$, is surjective.

At the end of the section, let us mention the class of branch groups. Branch groups were introduced [Gri00] where it is shown that they constitute one of the three classes of just-infinite groups (infinite groups with no proper, infinite, homomorphic images). If a class of groups \mathcal{C} is closed under homomorphic images and if it contains infinite, finitely generated examples then it contains just-infinite examples (this is because every infinite, finitely generated group has a just-infinite image). Such examples are minimal infinite examples in \mathcal{C}. We note that, for example, the group of intermediate growth constructed in [Gri80] is a branch automaton group that is a just-infinite 2 -group. i.e., it is an infinite, finitely generated, torsion group that has no proper infinite quotients. The Hanoi Towers group [GŠ07] is a branch group that is not just infinite [GNŠ06b]. The iterated monodromy group $\operatorname{IMG}\left(z^{2}+i\right)$ [GSŠ07] is a branch groups, while $\mathcal{B}=\operatorname{IMG}\left(z^{2}-1\right)$ is not a branch group, but only weakly branch. More generally, it is shown in [BN07] that the iterated
monodromy groups of post-critically finite quadratic maps are branch groups in the pre-periodic case and weakly branch groups in the periodic case (the case refers to the type of post-critical behavior).

We now define regular (weakly) branch groups. A level transitive group $G \leq \operatorname{Aut}\left(X^{*}\right)$ of k-ary tree automorphisms is a regular branch group over K if K is a normal subgroup of finite index in G such that $K \times \cdots \times K$ is geometrically contained in K. By definition, the subgroup K has the property that $K \times \cdots \times K$ is geometrically contained in K, denoted by $K \times \cdots \times K \preceq K$, if

$$
K \times \cdots \times K \leq \psi\left(K \cap \operatorname{Stab}_{G}(1)\right)
$$

where ψ is the homomorphism $\psi: \operatorname{Stab}_{G}(1) \rightarrow \operatorname{Aut}\left(X^{*}\right) \times \cdots \times \operatorname{Aut}\left(X^{*}\right)$ given by $\psi(g)=\left(g_{0}, g_{1}, \ldots, g_{k-1}\right)$. If instead of asking for K to have finite index in G we only require that K is nontrivial, we say that G is regular weakly branch group over K. Note that if G is level transitive and K is normal in G, in order to show that G is regular (weakly) branch group over K, it is sufficient to show that $K \times 1 \times \cdots \times 1 \preceq K$ (i.e. $\left.K \times 1 \times \cdots \times 1 \leq \psi\left(K \cap \operatorname{Stab}_{G}(1)\right)\right)$. More on the class of branch group can be found in [Gri00] and [BGS03].

3. Automaton groups

The full group of tree automorphisms $\operatorname{Aut}\left(X^{*}\right)$ is self-similar, since the section of every tree automorphism is just another tree automorphism. However, this group is rather large (uncountable). For various reasons, one may be interested in ways to define (construct) finitely generated selfsimilar groups. Automaton groups constitute a special class of finitely generated self-similar groups. We provide two ways of thinking about automaton groups. One is through finite wreath recursions and the other through finite automata.

Every finite system of recursive relations of the form

$$
\left\{\begin{align*}
& s^{(1)}=\alpha_{1}\left(s_{0}^{(1)}, s_{1}^{(1)}, \ldots, s_{d-1}^{(1)}\right) \tag{5}\\
& \cdots \\
& s^{(k)}=\alpha_{k}\left(s_{0}^{(k)}, s_{1}^{(k)}, \ldots, s_{d-1}^{(k)}\right)
\end{align*}\right.
$$

where each symbol $s_{j}^{(i)}, i=1, \ldots, k, j=0, \ldots, d-1$, is a symbol in the set of symbols $\left\{s^{(1)}, \ldots, s^{(k)}\right\}$ and $\alpha_{1}, \ldots, \alpha_{k}$ are permutations in $\operatorname{Sym}(X)$, has a unique solution in $\operatorname{Aut}\left(X^{*}\right)$ (in the sense that the above recursive relations represent the decompositions of the tree automorphisms
$\left.s^{(1)}, \ldots, s^{(k)}\right)$. Thus, the action of the automorphism defined by the symbol $s^{(i)}$ is given recursively by $s^{(i)}(x w)=\alpha_{i}(x) s_{x}^{(i)}(w)$.

The group G generated by the automorphisms $s^{(1)}, \ldots, s^{(k)}$ is a finitely generated self-similar group of automorphisms of X^{*}. This follows since sections of products are products of sections (see (4)) and all sections of the generators of G are generators of G.

When a self-similar group is defined by a system of the form (5), we say that it is defined by a wreath recursion. We switch now the point of view from wreath recursions to invertible automata.

Definition 2. A finite automaton A is a 4 -tuple $\mathcal{A}=(S, X, \pi, \tau)$ where S is a finite set of states, X is a finite alphabet of cardinality $d \geq 2$, $\pi: S \times X \rightarrow X$ is a map, called output map, and $\tau: S \times X \rightarrow S$ is a map, called transition map. If in addition, for each state s in S, the restriction $\pi_{s}: X \rightarrow X$ given by $\pi_{s}(x)=\pi(s, x)$ is a permutation in $\operatorname{Sym}(X)$, the automaton \mathcal{A} is invertible.

In fact, we will be only concerned with finite invertible automata and, in the rest of the text, we will use the word automaton for such automata.

Each state s of the automaton \mathcal{A} defines a tree automorphism of X^{*}, which we also denote by s. By definition, the root permutation of the automorphism s (defined by the state s) is the permutation π_{s} and the section of s at x is $\tau(s, x)$. Therefore

$$
\begin{equation*}
s(x w)=\pi_{s}(x) \tau(s, x)(w) \tag{6}
\end{equation*}
$$

for every state s in S, letter x in X and word w over X.
Definition 3. Given an automaton $\mathcal{A}=(S, X, \pi, \tau)$, the group of tree automorphisms generated by the states of \mathcal{A} is denoted by $G(\mathcal{A})$ and called the automaton group defined by \mathcal{A}.

The generating set S of the automaton group $G(\mathcal{A})$ generated by the automaton $\mathcal{A}=(S, X, \pi, \tau)$ is called the standard generating set of $G(\mathcal{A})$ and plays a distinguished role.

Directed graphs provide convenient representation of automata. The vertices of the graph, called Moore diagram of the automaton $\mathcal{A}=$ (S, X, π, τ), are the states in S. Each state s is labeled by the root permutation $\alpha_{s}=\pi_{s}$ and, for each pair $(s, x) \in S \times X$, an edge labeled by x connects s to $s_{x}=\tau(s, x)$. Several examples are presented in Figure 1. The states of the 5 -state automaton in the left half of the figure generate the group \mathcal{G} of intermediate growth mentioned in the introduction (σ denotes the permutation exchanging 0 and 1 , and 1 denotes the trivial vertex permutation). The top of the three 2-state automata on the

Figure 1: An automaton generating \mathcal{G}, the binary adding machine, and two Lamplighter automata
right in Figure 1 is the so called binary adding machine, which generates the infinite cyclic group \mathbb{Z}. The other two automata both generate the Lamplighter group $L_{2}=\mathbb{Z} \imath \mathbb{Z} / 2 \mathbb{Z}=\mathbb{Z} \ltimes(\bigoplus \mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}}$ (see [GNS00]).

The corresponding wreath recursions for the adding machine and for the two automata generating the Lamplighter group are given by

$$
\begin{array}{lll}
a=\sigma(1, a) & a=\sigma(b, a) & a=(b, a) \\
1=(1,1) & b=(b, a), & b=\sigma(a, b) \tag{7}
\end{array}
$$

respectively.
The class of polynomially growing automata was introduced by Sidki in [Sid00]. Sidki proved in [Sid04] that no group generated by such an automaton contains free subgroups of rank 2. As we already indicated in the introduction, for the subclass of so called bounded automata the corresponding groups are amenable [BKN]. Recall that an automaton \mathcal{A} is called bounded if, for every state s of \mathcal{A}, the function $f_{s}(n)$ counting the number of active sections of s at level n is bounded (a state is active if its vertex permutation is nontrivial).

There are other classes of automata (and corresponding automaton groups) that deserve special attention. We end the section by mentioning several such classes.

The class of linear automata consists of automata in which both the set of states S and the alphabet X have a structure of a vector space (over a finite field) and both the output and the transition function are linear maps (see [GP72] and [Eil76]).

The class of bi-invertible automata consists of automata in which both the automaton and its dual are invertible. Some of the automata in our classification are bi-invertible, most notably the Aleshin-VorobetsVorobets automaton [2240] generating the free group F_{3} of rank 3 and
the Bellaterra automaton [846] generating the free product $C_{2} * C_{2} * C_{2}$. In fact, both of these have even stronger property of being fully invertible. Namely, not only the automaton and its dual are invertible, but also the dual of the inverse automaton is invertible.

Another important class is the class of automata satisfying the open set condition. Every automaton in this class contains a trivial state (a state defining the trivial tree automorphism) and this state can be reached from any other state.

One may also study automata that are strongly connected (i.e. automata for which the corresponding Moore diagrams are strongly connected as directed graphs), automata in which no path contains more than one active state (such as the automaton defining \mathcal{G} in Figure 1), and so on.

4. Schreier graphs

Let G be a group generated by a finite set S and let G act on a set Y. We denote by $\Gamma=\Gamma(G, S, Y)$ the Schreier graph of the action of G on Y. The vertices of Γ are the elements of Y. For every pair (s, y) in $S \times Y$ an edge labeled by s connects y to $s(y)$. An orbital Schreier graph of the action is the Schreier graph $\Gamma(G, S, y)$ of the action of G on the G-orbit of y, for some y in Y.

Let G be a group of tree automorphisms of X^{*} generated by a finite set S. The levels $X^{n}, n \geq 0$, are invariant under the action of G and we can consider the sequence of finite Schreier graphs $\Gamma_{n}(G, S)=$ $\Gamma\left(G, S, X^{n}\right), n \geq 0$. Let $\xi=x_{1} x_{2} x_{3} \ldots \in X^{\omega}$ be an infinite ray. Then the pointed Schreier graphs $\left(\Gamma_{n}(G, S), x_{1} x_{2} \ldots x_{n}\right)$ converge in the local topology (see [Gri84] or [GZ̈99]) to the pointed orbital Schreier graph $(\Gamma(G, S, \xi), \xi)$.

Schreier graphs may be sometimes used to compute the spectrum of some operators related to the group. For a group of tree automorphisms G generated by a finite symmetric set S there is a natural unitary representation in the space of bounded linear operators $\mathcal{H}=B\left(L_{2}\left(X^{\omega}\right)\right)$, given by $\pi_{g}(f)(x)=f\left(g^{-1} x\right)$ (the measure on the boundary X^{ω} is just the product measure associated to the uniform measure on X). Consider the spectrum of the operator

$$
M=\frac{1}{|S|} \sum_{s \in S} \pi_{s}
$$

corresponding to this unitary representation. The spectrum of M for a self-similar group G is approximated by the spectra of the finite dimensional operators induced by the action of G on the levels of the tree
(see [BG00a]. Denote by \mathcal{H}_{n} the subspace of $\mathcal{H}=B\left(L_{2}\left(X^{\omega}\right)\right.$) spanned by the characteristic functions $f_{v}, v \in X^{n}$, of the cylindrical sets corresponding to the $|X|^{n}$ vertices on level n. The subspace \mathcal{H}_{n} is invariant under the action of G and $\mathcal{H}_{n} \subset \mathcal{H}_{n+1}$. Denote by $\pi_{g}^{(n)}$ the restriction of π_{g} on \mathcal{H}_{n}. Then, for $n \geq 0$, the operator

$$
M_{n}=\frac{1}{|S|} \sum_{s \in S} \pi_{s}^{(n)}
$$

is finite dimensional. Moreover,

$$
s p(M)=\overline{\bigcup_{n \geq 0} s p\left(M_{n}\right)}
$$

i.e., the spectra of the operators M_{n} converge to the spectrum of M.

The table of information provided in Section 8 includes, in each case, the histogram of the spectrum of the operator M_{9}.

If P is the stabilizer of a point on the boundary X^{ω}, then one can consider the quasi-regular representation $\rho_{G / P}$ of G in $\ell^{2}(G / P)$.

Theorem 6 ([BG00a]). If G is amenable or the Schreier graph G / P (the Schreier graph of the action of G on the cosets of P) is amenable then the spectrum of M and the spectrum of the quasi-regular representation $\rho_{G / P}$ coincide.

In case the parabolic subgroup P is "small", the last result may be used to compute the spectrum of the Markov operator on the Cayley graph of the group. This approach was successfully used, for instance, to compute the spectrum of the Lamplighter group in [GŻ01] (see also [KSS06]).

5. Contracting groups, limit spaces, and iterated monodromy groups

Definition 4. A group G generated by an automaton over alphabet X is contracting if there exists a finite subset $\mathcal{N} \subset G$ such that for every $g \in G$ there exists n (generally depending on g) such that section g_{v} belongs to \mathcal{N} for all words $v \in X^{*}$ of length at least n. The smallest set \mathcal{N} with this property is called the nucleus of the group G.

The above definition makes sense for arbitrary self-similar groups not necessarily automaton groups and, moreover, not necessarily finitely generated groups. In the case of an automaton group the contracting property may be equivalently stated as follows. An automaton group $G=G(\mathcal{A})$ is contracting if there exist constants κ, C, and N, with
$0 \leq \kappa<1$, such that $\left|g_{v}\right| \leq \kappa|g|+C$, for all vertices v of length at least N and $g \in G$ (the length is measured with respect to the standard generating set S consisting of the states of \mathcal{A}). The contraction property is a key ingredient in many inductive arguments and algorithms involving the decomposition $g=\alpha_{g}\left(g_{0}, \ldots, g_{d-1}\right)$. Indeed, the contraction property implies that, for all sufficiently long elements g, all sections of g at vertices on level at least N are strictly shorter than g.

Contracting groups have rich geometric structure. Each contracting group is the iterated monodromy group of its limit dynamical system. This system is an (orbispace) self-covering of the limit space of the group. The limit space is a limit of the graphs of the action of G on the levels X^{n} of the tree X^{*} and is defined in the following way.

Definition 5. Let G be a contracting group over X. Denote by $X^{-\omega}$ the space of all left-infinite sequences $\ldots x_{2} x_{1}$ of elements of X with the direct product (Tykhonoff) topology. We say that two sequences ... $x_{2} x_{1}$ and $\ldots y_{2} y_{1}$ are asymptotically equivalent if there exists a sequences $g_{k} \in G$, assuming a finite set of values, and such that

$$
g_{k}\left(x_{k} \ldots x_{1}\right)=y_{k} \ldots y_{1}
$$

for all $k \geq 1$. The quotient of the space $X^{-\omega}$ by this equivalence relation is called the limit space of G.

The following proposition, proved in [Nek05] (Proposition 3.6.4) is a convenient way to compute the asymptotic equivalence.

Proposition 1. Let a contracting group G be generated by a finite automaton A. Then the asymptotic equivalence is the equivalence relation generated by the set of pairs $\left(\ldots x_{2} x_{1}, \ldots y_{2} y_{1}\right)$ for which there exists a sequence g_{k} of states of A such that $g_{k}\left(x_{k}\right)=y_{k}$ and $\left.g_{k}\right|_{x_{k}}=g_{k-1}$.

The limit dynamical system is the map induced by the shift $\ldots x_{2} x_{1} \mapsto$ $\ldots x_{3} x_{2}$. The limit space is a compact metrizable topological space of finite topological dimension (see [Nek05], Theorem 3.6.3). If the group is self-replicating, then the limit space is locally connected and path connected.

The main tool of finding the limit space of a contracting group is realization of the group as the iterated monodromy group of an expanding partial orbispace self-covering. An exposition of the theory of such self-coverings is given in [Nek05]. In particular, if G is the iterated monodromy group of a post-critically finite complex rational function, then the limit space of G is homeomorphic to the Julia set of the function (see Theorems 5.5.3 and 6.4.4 of [Nek05]).

The limit space does not change when we pass from X to X^{n} in the natural way (we will change then the limit dynamical system to its nth iterate). It also does not change if we post-conjugate the wreath recursion by an element of the wreath product $\operatorname{Symm}(X) \ltimes G^{X}$, i.e., conjugate the group G by an element of the form $\gamma=\pi\left(g_{0} \gamma, g_{1} \gamma\right)$, where $\pi \in \operatorname{Symm}(X)$ and $g_{0}, g_{1} \in G$.

The limit space can be also visualized using its subdivision into tiles. This method is especially effective, when the group is generated by bounded automata.

Definition 6. Let G be a contracting group. A tile \mathcal{T}_{G} of G is the quotient of the space $X^{-\omega}$ by the equivalence relation, which identifies two sequences $\ldots x_{2} x_{1}$ and $\ldots y_{2} y_{1}$ if there exists a sequence $g_{k} \in G$ assuming a finite number of values and such that

$$
g_{k}\left(x_{k} \ldots x_{1}\right)=y_{k} \ldots y_{1},\left.\quad g_{k}\right|_{x_{k} \ldots x_{1}}=1
$$

for all k.
Again, an analog of Proposition 1 is true: the equivalence relation from Definition 6 is generated by the identifications $\ldots x_{2} x_{1}=\ldots y_{2} y_{1}$ of sequences for which there exists a sequence $g_{k}, k=0,1,2, \ldots$ of elements of the nucleus such that $g_{k}\left(x_{k}\right)=y_{k},\left.g_{k}\right|_{x_{k}}=g_{k-1}$ and $g_{0}=1$.

Suppose that G satisfies the open set condition, i.e., the trivial state can be reached from any other state of the generating automaton. Then the boundary of the tile \mathcal{T}_{G} is the image in \mathcal{T}_{G} of the set of sequences $\ldots x_{2} x_{1}$ such that there exists a sequence $g_{k} \in G$ assuming a finite number of values and such that $\left.g_{k}\right|_{x_{k} \ldots x_{1}} \neq 1$. If G is generated by a finite symmetric set S, then it is sufficient to look for the sequence g_{k} inside S.

The limit space of G is obtained from the tile by some identifications of the points of the boundary. If the group G is generated by bounded automata, then its boundary consists of a finite number of points and it is not hard to identify them (i.e., to identify the sequences encoding them).

For $v \in X^{n}$ denote by $\mathcal{T}_{G} v$ the image of the cylindrical set $X^{-\omega} v$ in \mathcal{T}_{G}. It is easy to see that the map $\ldots x_{2} x_{1} \mapsto \ldots x_{2} x_{1} v$ induces a homeomorphism of \mathcal{T}_{G} with $\mathcal{T}_{G} v$ and that

$$
\mathcal{T}_{G}=\bigcup_{v \in X^{n}} \mathcal{T}_{G} v
$$

It is proved in [Nek05] that two pieces $\mathcal{T}_{G} v_{1}$ and $\mathcal{T}_{G} v_{2}$ intersect if and only if $g\left(v_{1}\right)=v_{2}$ for an element g of the nucleus of G and that they intersect only along images of the boundary of \mathcal{T}_{G}.

This suggests the following procedure of visualizing the limit space in the case of bounded automata. Identify the points of the boundary of the tile. We get a finite list B of points, represented by a finite list W of infinite sequences (some points may be represented by several sequences). Draw the tile as a graph with $|B|$ "boundary points" (vertices) and identify the boundary points with the points of B labeled by sequences W. Take now $|X|$ copies of this tile, corresponding to different letters of X. Append the corresponding letters $x \in X$ to the ends of the labels $w \in W$ of the boundary points of each of the copy of the tile. Some of the obtained labels will be related by the equivalence relation of Definition 6, i.e., represent the same points of the tile \mathcal{T}_{G}. Glue the corresponding points together. Some of the obtained labels will belong to W. These points will be the new boundary points. In this way we get a new graph with labeled boundary points. Repeat now the procedure several times, rescaling the graph in such a way that the original first order graphs become small. We will get in this way a graph resembling the tile \mathcal{T}_{G} (see Chapter V in [Bon07] for more details). Making the necessary identifications of its boundary we get an approximation of the limit space of G. More details on this inductive approximation procedure can be found in [Nek05] Section 3.10.

The limit space of a finitely generated contracting self-similar group G can also be viewed as a hyperbolic boundary in the following way. For a given finite generating system S of G define the self-similarity graph $\Sigma(G, S)$ as the graph with set of vertices X^{*} in which two vertices $v_{1}, v_{2} \in X^{*}$ are connected by an edge if and only if either $v_{i}=x v_{j}$, for some $x \in X$ (vertical edges), or $s\left(v_{i}\right)=v_{j}$ for some $s \in S$ (horizontal edges). In case of a contracting group, the self-similarity graph $\Sigma(G, S)$ is Gromov-hyperbolic and its hyperbolic boundary is homeomorphic to the limit space \mathcal{J}_{G}.

The iterated monodromy group (IMG) construction is dual to the limit space construction. It may be defined for partial self-coverings of orbispaces, but we will only provide the definition in case of topological spaces, since we do not need the more general construction in this text (all iterated monodromy groups that appear later are related to partial self-coverings of the Riemann sphere).

Let \mathcal{M} be a path connected and locally path connected topological space and let \mathcal{M}_{1} be an open path connected subset of \mathcal{M}. Let $f: \mathcal{M}_{1} \rightarrow$ \mathcal{M} be a d-fold covering. Denote by f^{n} the n-fold iteration of the map f. Then $f^{n}: \mathcal{M}_{n} \rightarrow \mathcal{M}$, where $\mathcal{M}_{n}=f^{-n}(\mathcal{M})$, is a d^{n}-fold covering.

Fix a base point $t \in \mathcal{M}$ and let T_{t} be the disjoint union of the sets $f^{-n}(t), n \geq 0$ (formally speaking, these sets may not be disjoint in \mathcal{M}). The set of pre-images T_{t} has a natural structure of a rooted d-ary tree.

The base point t is the root, the vertices in f^{-n} constitute level n and every vertex z in $f^{-n}(t)$ is connected by an edge to $f(z)$ in $f^{-n+1}(t)$, for $n \geq 1$. The fundamental group $\pi_{1}(\mathcal{M}, t)$ acts naturally, through the monodromy action, on every level $f^{-n}(t)$ and, in fact, acts by automorphisms on T_{t}.

Definition 7. The iterated monodromy group $I M G(f)$ of the covering f is the quotient of the fundamental group $\pi_{1}(\mathcal{M}, t)$ by the kernel of its action on the tree of pre-images T_{t}.

6. Classification guide

Every 3 -state automaton \mathcal{A} with set of states $S=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$ acting on the 2-letter alphabet $X=\{0,1\}$ is assigned a unique number as follows. Given the wreath recursion

$$
\left\{\begin{array}{l}
\mathbf{0}=\sigma^{a_{11}}\left(a_{12}, a_{13}\right), \\
\mathbf{1}=\sigma^{a_{21}}\left(a_{22}, a_{23}\right), \\
\mathbf{2}=\sigma^{a_{31}}\left(a_{32}, a_{33}\right),
\end{array}\right.
$$

defining the automaton \mathcal{A}, where $a_{i j} \in\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$ for $j \neq 1$ and $a_{i 1} \in\{0,1\}$, $i=1,2,3$, assign the number

$$
\begin{aligned}
& \operatorname{Number}(\mathcal{A})= \\
& \qquad \begin{array}{l}
a_{12}+3 a_{13}+9 a_{22}+27 a_{23}+81 a_{32}+ \\
243 a_{33}+729\left(a_{11}+2 a_{21}+4 a_{31}\right)+1
\end{array}
\end{aligned}
$$

to \mathcal{A}. With this agreement every (3,2)-automaton is assigned a unique number in the range from 1 to 5832 . The numbering of the automata is induced by the lexicographic ordering of all automata in the class. Each of the automata numbered 1 through 729 generates the trivial group, since all vertex permutations are trivial in this case. Each of the automata numbered 5104 through 5832 generates the cyclic group C_{2} of order 2, since both states represent the automorphism that acts by changing all letters in every word over X. Therefore the nontrivial part of the classification is concerned with the automata numbered by 730 through 5103.

Denote by \mathcal{A}_{n} the automaton numbered by n and by G_{n} the corresponding group of tree automorphisms. Sometimes we may use just the number to refer to the corresponding automaton or group.

The following three operations on automata do not change the isomorphism class of the group generated by the corresponding automaton (and do not change the action on the tree in essential way):
(i) passing to inverses of all generators,
(ii) permuting the states of the automaton,
(iii) permuting the alphabet letters.

Definition 8. Two automata \mathcal{A} and \mathcal{B} that can be obtained from one another by using a composition of the operations $(i)-(i i i)$, are called symmetric.

For instance, the two automata in the lower right part of Figure 1 are symmetric. The wreath recursion for the automaton obtained by permuting both the names of the states and the alphabet letters of the first of these two automata is

$$
\begin{aligned}
& a=(b, a) \\
& b=\sigma(b, a)
\end{aligned}
$$

and this wreath recursion describes exactly the inverses of the tree automorphism defining the second of the two automata.

Additional identifications can be made after automata minimization is applied.

Definition 9. If the minimization of an automaton \mathcal{A} is symmetric to the minimization of an automaton \mathcal{B}, we say that the automata \mathcal{A} and \mathcal{B} are minimally symmetric and write $\mathcal{A} \sim \mathcal{B}$.

There are 194 classes of $(3,2)$-automata that are pairwise not minimally symmetric. Of these, 10 are minimally symmetric to automata with fewer than 3 states and, as such, are subject of Theorem 7 ([GNS00], see below).

At present, it is known that there are no more than 122 nonisomorphic (3,2)-automaton groups. Some information on these groups is given in Section 8 .

The proofs of some particular properties of the 194 classes of nonequivalent automata (and in particular, all known isomorphisms) can be found in Section 9. The few general results that hold in the whole class were already mentioned in the introduction.

The table in Section 7 may be used to determine the equivalence and the group isomorphism class for each automaton. Every class is numbered by the smallest number of an automaton in the class. For instance, an entry such as $x \sim y \cong z$ means that the automata with the smallest number in the equivalence and the (known) isomorphism class of x are y and z, respectively. While the equivalence classes are easy to determine the isomorphism class is not. Therefore, there may still be some additional isomorphisms between some of the classes (which would
eventually cause changes in the z numbers and consolidation of some of the current isomorphism classes).

If one is interested in some particular $(3,2)$-automaton \mathcal{A}, we recommend the following procedure:

- Use the table in Section 7 to find numbers for the representatives of the equivalence and the isomorphism class of \mathcal{A}. Minimizing the automaton and finding the symmetry is a straightforward task, which is not presented here.
- Use Section 8 to find information on the group generated by \mathcal{A} (more precisely, the isomorphic group generated by the chosen representative in the class).
- Use Section 9 to find the proof of the isomorphism and some known properties.

7. Table of equivalence classes (and known isomorphisms)

For explanation of the entries see Section 6.
1 through $729 \sim 1 \simeq 1$,

$4 \cong 88$	$1088 \sim 969 \cong 969$	$1130 \sim 1094 \cong 1090$	$1172 \sim 1091 \cong 731$
$1047 \sim 885 \cong 885$	$1089 \sim 968 \cong 968$	$1131 \sim 1094 \cong 1090$	$1173 \sim 1091 \cong 731$
\sim	$1090 \sim 1090 \cong 1090$	$1132 \sim 1091 \cong 731$	$1174 \sim 1091 \cong 731$
$1049 \sim 887 \cong 887$	$1091 \sim 1091 \cong 731$	$1133 \sim 1094 \cong 1090$	$1175 \sim 1094 \cong 1090$
$1050 \sim 888 \cong 888$	$1092 \sim 1091 \cong 731$	$1134 \sim 1094 \cong 1090$	$1176 \sim 1094 \cong 1090$
$1051 \sim 885 \cong 885$	$109 \sim 1091 \cong 731$	$1135 \sim 775 \cong 775$	$1177 \sim 1091 \cong 731$
$1052 \sim 888 \cong 888$	090	$1136 \sim 777 \cong 777$	90
$1053 \sim 891 \cong 891$	$1095 \sim 1094 \cong 1090$	$1137 \sim 776 \cong 776$	$1179 \sim 1094 \cong 1090$
$1054 \sim 802 \cong 802$	$91 \cong 731$	$1138 \sim 777 \cong 77$	$180 \sim 1090 \cong 1090$
$1055 \sim 804 \cong 731$	0	$1139 \sim 783 \cong 775$	$1181 \sim 1091 \cong 731$
$1056 \sim 803 \cong 771$	$1098 \sim 1094 \cong 1090$	$1140 \sim 780 \cong 780$	$1182 \sim 1091 \cong 731$
$1057 \sim 804 \cong 731$	$1099 \sim 1090 \cong 1090$	$1141 \sim 776 \cong 776$	$1183 \sim 1091 \cong 731$
$1058 \sim 810 \cong 802$	$1100 \sim 1091 \cong 731$	$1142 \sim 780 \cong 780$	0
$1059 \sim 807 \cong 771$	$091 \cong 731$	$1143 \sim 779 \cong 779$	$1185 \sim 1094 \cong 1090$
1	$091 \cong 731$	$1144 \sim 955 \cong 937$	$1186 \sim 1091 \cong 731$
$1061 \sim 807 \cong 771$	$1103 \sim 1094 \cong 1090$	$1145 \sim 957 \cong 957$	$1187 \sim 1094 \cong 1090$
$1062 \sim 806 \cong 802$	$104 \sim 1094 \cong 1090$	$1146 \sim 956 \cong 956$	$1188 \sim 1094 \cong 1090$
$1063 \sim 964 \cong 739$	$105 \sim 1091 \cong 731$	$1147 \sim 957 \cong 957$	$1189 \sim 856 \cong 856$
\cong	$106 \sim 1094 \cong 1090$	$1148 \sim 963 \cong 963$	$1190 \sim 858 \cong 858$
\cong	0	$1149 \sim 960 \cong 960$	$1191 \sim 857 \cong 857$
$\sim 966 \cong$	$1108 \sim 883 \cong 883$	$1150 \sim 956 \cong$	8
$1067 \sim 972 \cong 739$	$1109 \sim 885 \cong 885$	$1151 \sim 960 \cong 96$	$1193 \sim 864 \cong 864$
$1068 \sim 969 \cong 969$	$1110 \sim 884 \cong 884$	$1152 \sim 959 \cong 959$	$1194 \sim 861 \cong 861$
$1069 \sim 965 \cong 965$	$1111 \sim 885 \cong 8$	$1153 \sim 874 \cong 87$	$1195 \sim 857 \cong 857$
$1070 \sim 969 \cong 969$	$1112 \sim 891 \cong$	$1154 \sim 876 \cong 876$	$1196 \sim 861 \cong 861$
10	$1113 \sim 888 \cong$	$1155 \sim 875 \cong 87$	$1197 \sim 860 \cong 860$
$1072 \sim 883 \cong 883$	$1114 \sim 884 \cong 884$	$1156 \sim 876 \cong 876$	$1198 \sim 1090 \cong 1090$
$1073 \sim 885 \cong 885$	$1115 \sim 888 \cong 888$	$1157 \sim 882 \cong 882$	$1199 \sim 1091 \cong 731$
$1074 \sim 884 \cong 884$	$1116 \sim 887 \cong 887$	$1158 \sim 879 \cong 879$	$1200 \sim 1091 \cong 731$
$1075 \sim 885 \cong 885$	$090 \cong 1090$	$1159 \sim 875 \cong 875$	$1201 \sim 1091 \cong 731$
\cong	$091 \cong 731$	$1160 \sim 879 \cong 879$	$1202 \sim 1094 \cong 1090$
$1077 \sim 888 \cong 888$	91 $\cong 731$	$1161 \sim 878 \cong 8$	$1203 \sim 1094 \cong 1090$
$1078 \sim 884 \cong 884$	$91 \cong 731$	$1162 \sim 937 \cong 93$	$1204 \sim 1091 \cong 731$
$1079 \sim 888 \cong 888$	0	$1163 \sim 939 \cong 93$	$1205 \sim 1094 \cong 1090$
$1080 \sim 887 \cong 887$	90	$1164 \sim 938 \cong 938$	$1206 \sim 1094 \cong 1090$
$1081 \sim 964 \cong 739$	31	$1165 \sim 939 \cong 939$	$1207 \sim 1090 \cong 1090$
\cong	90	$1166 \sim 945 \cong 941$	$1208 \sim 1091 \cong 731$
$1083 \sim 965 \cong 965$	0	$1167 \sim 942 \cong 942$	$1209 \sim 1091 \cong 731$
¢ ${ }^{\text {¢ }} 966$	$\cong 1090$	$1168 \sim 938 \cong 938$	$1210 \sim 1091 \cong 731$
$1085 \sim 972 \cong 739$	$27 \sim 1091 \cong 731$	$1169 \sim 942 \cong 942$	$1211 \sim 1094 \cong 1090$
$086 \sim 969 \cong 969$	$1128 \sim 1091 \cong 731$	$1170 \sim 941 \cong 941$	$1212 \sim 1094 \cong 1090$
87 ~ $965 \cong 9$	$29 \sim 1091 \cong 731$	$71 \sim 1090 \cong 10$	3

$1214 \sim 1094 \cong 1090$	820	77	$1340 \sim 1094 \cong 1090$
$1215 \sim 1094 \cong 1090$	$933 \cong 849$	$99 \sim 776$	$1 \sim 1094 \cong 1090$
39	$1258 \sim 930 \cong 821$	$1300 \sim 777 \cong 777$	90
$1217 \sim 741 \cong 741$	$1259 \sim 933 \cong 849$	$1301 \sim 783 \cong 775$	$1343 \sim 1091 \cong 731$
$1218 \sim 740 \cong 740$	$1260 \sim 936 \cong 820$	$1302 \sim 780 \cong 780$	31
$1219 \sim 741 \cong 741$	$1261 \sim 955 \cong 93$	$1303 \sim 776 \cong 776$	31
$1220 \sim 747 \cong 739$	$1262 \sim 956 \cong 956$	$1304 \sim 780 \cong 780$	90
$1221 \sim 744 \cong 744$	957	$1305 \sim 779 \cong 779$	90
$1222 \sim 740 \cong 740$	$1264 \sim 956 \cong 956$	$1306 \sim 937 \cong 93$	$348 \sim 1091 \cong 731$
$1223 \sim 744 \cong 744$	$1265 \sim 959 \cong$	1307	90
$1224 \sim 743 \cong 739$	$1266 \sim 960 \cong$	13	90
$1225 \sim 919 \cong 820$	$1267 \sim 957 \cong$	$1309 \sim 939 \cong 939$	$1351 \sim 874 \cong 874$
$1226 \sim 920 \cong 920$	$1268 \sim 960 \cong$	13	$1352 \sim 876 \cong 876$
$1227 \sim 920 \cong 920$	$1269 \sim 963 \cong$	13	$1353 \sim 875 \cong 875$
$1228 \sim 920 \cong 920$	$1270 \sim 820 \cong 820$	$1312 \sim 938 \cong 938$	$1354 \sim 876 \cong 876$
23	$\cong 821$	$1313 \sim 942 \cong 942$	$1355 \sim 882 \cong 882$
$1230 \sim 924 \cong 870$	$1272 \sim 821 \cong 821$	$1314 \sim 941 \cong 941$	$1356 \sim 879 \cong 879$
$1231 \sim 920 \cong 920$	12	1315	$1357 \sim 875 \cong 875$
\cong	$1274 \sim 824 \cong 820$	$1316 \sim 858 \cong$	$1358 \sim 879 \cong 879$
§	$1275 \sim 824 \cong 820$	1317	$1359 \sim 878 \cong 878$
\cong	$1276 \sim 821 \cong 821$	$1318 \sim 858 \cong 858$	9
$1235 \sim 840 \cong 840$	$1277 \sim 824 \cong 82$	$1319 \sim 864 \cong$	$1361 \sim 1091 \cong 731$
$1236 \sim 839 \cong 821$	$1278 \sim 824 \cong 820$	1320	$1362 \sim 1091 \cong 731$
$1237 \sim 840 \cong 840$	$1279 \sim 937 \cong 93$	$1321 \sim 857 \cong$	31
$1238 \sim 846 \cong 846$	$1280 \sim 938 \cong 938$	$\cong 86$	0
$1239 \sim 843 \cong 843$	$1281 \sim 939 \cong 939$	$1323 \sim 860 \cong 860$	$1365 \sim 1094 \cong 1090$
$1240 \sim 839 \cong 821$	$1282 \sim 938 \cong$	$1324 \sim 955$	$66 \sim 1091 \cong 731$
\cong	12	$1325 \sim 957$	$67 \sim 1094 \cong 1090$
$1242 \sim 842 \cong 838$	$1284 \sim 942 \cong 942$	$1326 \sim 956$	$1368 \sim 1094 \cong 1090$
20	$1285 \sim 939 \cong 939$	$1327 \sim 957$	$369 \sim 1090 \cong 1090$
$1244 \sim 821 \cong 821$	$1286 \sim 942 \cong$	$1328 \sim 963 \cong 963$	$370 \sim 1091 \cong 731$
$1245 \sim 821 \cong 821$	12	$1329 \sim 960$	$771 \sim 1091 \cong 731$
\cong	$1288 \sim 964 \cong 739$	$1330 \sim 956$	$1372 \sim 1091 \cong 731$
$1247 \sim 824 \cong 820$	$1289 \sim 965 \cong$	$1331 \sim 960 \cong$	90
\cong	$1290 \sim 966 \cong$	$59 \cong 959$	$1374 \sim 1094 \cong 1090$
\cong	$1291 \sim 965 \cong$	0	$1375 \sim 1091 \cong 731$
$824 \cong$	$1292 \sim 968 \cong$	1	$1376 \sim 1094 \cong 1090$
$824 \cong 82$	$1293 \sim 969 \cong 969$	$1335 \sim 1091 \cong 731$	$1377 \sim 1094 \cong 1090$
$52 \sim 928 \cong 8$	$1294 \sim 966 \cong 966$	$1336 \sim 1091 \cong 731$	$1378 \sim 766 \cong 730$
$53 \sim 929 \cong 929$	$1295 \sim 969 \cong 969$	$1337 \sim 1094 \cong 1090$	$1379 \sim 768 \cong 731$
$54 \sim 930 \cong 821$	$1296 \sim 972 \cong 739$	$1338 \sim 1094 \cong 109$	$1380 \sim 767 \cong 731$
$55 \sim 929 \cong 929$	$7 \sim 775 \cong 775$	$339 \sim 1091 \cong$	$381 \sim 768 \cong 731$

$774 \cong 7301$	$1424 \sim 1091 \cong 731$	$1466 \sim 891 \cong 891$	1508
1	$1425 \sim 1091 \cong 731$	$1467 \sim 1094 \cong 1090$	4
1	$1426 \sim 1091 \cong 731$	$1468 \sim 1091 \cong 731$	$1510 \sim 1091 \cong 731$
~ $771 \cong 7711$	$1427 \sim 1094 \cong 1090$	$1469 \sim 966 \cong 966$	$1511 \sim 884 \cong 884$
301	$1428 \sim 1094 \cong 1090$	$1470 \sim 1091 \cong 731$	$1512 \sim 1091 \cong 731$
$28 \cong 8201$	$1429 \sim 1091 \cong 731$	$1471 \sim 966 \cong 966$	
$88 \sim 930$	$1430 \sim 1094 \cong 1090$	$1472 \sim 804 \cong 731$	
$29 \cong 9291$	$1431 \sim 1094 \cong 1090$	$1473 \sim 885 \cong 885$	
$1390 \sim 930 \cong 8211$	$1432 \sim 847 \cong 847$	$1474 \sim 1091 \cong 731$	$1516 \sim 969 \cong 969$
1	$1433 \sim 849 \cong 849$	$1475 \sim 885 \cong 885$	$1517 \sim 807 \cong 771$
1	$1434 \sim 848 \cong 750$	1	$1518 \sim 888 \cong 888$
$3 \sim 929 \cong 9291$	$1435 \sim 849 \cong 849$	$1477 \sim 1094 \cong 1090$	
$\cong 8491$	$1436 \sim 855 \cong 847$	69	
1	$1437 \sim 852 \cong 852$	90	
~ $847 \cong 8471$	$1438 \sim 848 \cong 750$	$1480 \sim 969 \cong 969$	31
1	$1439 \sim 852 \cong 852$	$1481 \sim 807 \cong 771$	965
$\cong 7501$	$1440 \sim 851 \cong 847$	$1482 \sim 888 \cong 888$	$1524 \sim 1091 \cong 731$
~ $849 \cong 8491$	$1441 \sim 1090 \cong 1090$	$94 \cong 1090$	$1525 \sim 965$
$0 \sim 855 \cong 8471$	$1442 \sim 1091 \cong 731$	8	$1526 \sim 803$
$1 \sim 852 \cong 852$	$1443 \sim 1091 \cong 731$	$1485 \sim 1094 \cong 1090$	15
$2 \sim 848 \cong 7501$	$1444 \sim 1091 \cong 731$	$1486 \sim 1091 \cong 731$	$1528 \sim 1091 \cong 731$
3	$1445 \sim 1094 \cong 1090$	$1487 \sim 966 \cong 966$	$1529 \sim 884 \cong 884$
\cong	$1446 \sim 1094 \cong 1090$	$1488 \sim 1091 \cong 731$	$1530 \sim 1091 \cong 731$
$5 \sim 928 \cong 8201$	$1447 \sim 1091 \cong 731$	$1489 \sim 966 \cong 966$	
$06 \sim 930 \cong 8211$	$1448 \sim 1094 \cong 1090$	$1490 \sim 804 \cong 731$	
$7 \sim 929 \cong 9291$	$1449 \sim 1094 \cong 1090$	$1491 \sim 885 \cong 885$	
$88 \sim 930 \cong 8211$	$1450 \sim 1090 \cong 1090$	$1492 \sim 1091 \cong 731$	68
$9 \sim 936 \cong 8201$	$1451 \sim 1091 \cong 731$	$1493 \sim 885 \cong 885$	$1535 \sim 806 \cong 802$
$10 \sim 933 \cong 8491$	$1452 \sim 1091 \cong 731$	$1494 \sim 1091 \cong 731$	153
$11 \sim 929 \cong 9291$	$1453 \sim 1091 \cong 731$	0	$1537 \sim 1094 \cong 1090$
~ $933 \cong$		$1496 \sim 964 \cong 739$	$1538 \sim 887 \cong 887$
\cong		0	0
	1	$1498 \sim 964 \cong 739$	847
$1415 \sim 1091 \cong 7311$		$1499 \sim 802 \cong 802$	$1541 \sim 824 \cong 820$
1		$1500 \sim 883 \cong 883$	$1542 \sim 878 \cong 878$
1	$1459 \sim 1094 \cong 1090$	$1501 \sim 1090 \cong 1090$	$1543 \sim 842 \cong 83$
	$1460 \sim 972 \cong 739$	$1502 \sim 883 \cong 883$	$1544 \sim 756 \cong 74$
1	090	$1503 \sim 1090 \cong 1090$	$1545 \sim 869 \cong 86$
$1 \cong 731$	$1462 \sim 972 \cong 739$	$1504 \sim 1091 \cong 731$	$1546 \sim 860$
901	$1463 \sim 810 \cong 802$	$1505 \sim 965 \cong 965$	$1547 \sim 82$
990	$1464 \sim 891 \cong 891$	$1506 \sim 1091 \cong 731$	$1548 \sim 887 \cong 887$
$1423 \sim 1090 \cong 1090$	\cong	7 $\sim 965 \cong$	$549 \sim 848 \cong 750$

$1550 \sim 821 \cong 8$	1592	16	6
\cong	$1593 \sim 885 \cong 885$	$6 \cong$	
\cong	$1594 \sim 852 \cong 852$	$\cong 731$	$1678 \sim 960 \cong 960$
\cong	$1595 \sim 824 \cong 820$	8	$1679 \sim 780 \cong 780$
$1554 \sim 866 \cong 8$	$1596 \sim 879 \cong 879$	1	$1680 \sim 879 \cong 879$
\cong	$1597 \sim 843 \cong 843$		
$1556 \sim 821 \cong 8$	$1598 \sim 753 \cong 753$	2	$1682 \sim 861 \cong 861$
$1557 \sim 884 \cong 8$	$1599 \sim 870 \cong 870$	0	$1683 \sim 1094 \cong 1090$
$1558 \sim 852 \cong 8$	$1600 \sim 861 \cong 861$	0	$1684 \sim 1091 \cong 731$
$1559 \sim 824 \cong 8$	16	$1643 \sim 780 \cong 780$	$1685 \sim 938 \cong 938$
$1560 \sim 879 \cong 8$	160	9	$1686 \sim 1091 \cong 731$
$1561 \sim 843 \cong 8$	16		7
\cong	16	$1646 \sim 861 \cong 861$	$1688 \sim 776 \cong 776$
\cong	$1605 \sim 876 \cong 876$		$1689 \sim 875 \cong 875$
$1564 \sim 861 \cong 8$	$1606 \sim 840 \cong 840$	$1648 \sim 1091 \cong 731$	$1690 \sim 1091 \cong 731$
$1565 \sim 824 \cong 8$	$1607 \sim 749 \cong 749$	$49 \sim 939 \cong 939$	$1691 \sim 857 \cong 857$
$1566 \sim 888 \cong 8$	$1608 \sim 866 \cong 866$	$1650 \sim 1091 \cong 731$	$1692 \sim 1091 \cong 731$
$1567 \sim 848 \cong 7$	$1609 \sim 858 \cong 858$	$\cong 957$	
$1568 \sim 821 \cong 8$	$1610 \sim 821 \cong 821$	7	$1694 \sim 941 \cong 941$
$1569 \sim 875 \cong 8$	5	6	
$1570 \sim 839 \cong 8$	$1612 \sim 855 \cong 847$	1	$1696 \sim 959 \cong 959$
$1571 \sim 750 \cong 7$	$1613 \sim 824 \cong 820$	$1655 \sim 858 \cong 858$	$1697 \sim 779 \cong 779$
$1572 \sim 866 \cong 8$	$1614 \sim 882 \cong 882$	1	$1698 \sim 878 \cong 878$
$1573 \sim 857 \cong 8$	$1615 \sim 846 \cong 846$)	$1699 \sim 1094 \cong 1090$
$1574 \sim 821 \cong 8$	$1616 \sim 752 \cong 752$		$1700 \sim 860 \cong 860$
$1575 \sim 884 \cong 8$	$1617 \sim 869 \cong 869$)	$1701 \sim 1094 \cong 1090$
$1576 \sim 847 \cong 8$	$1618 \sim 864 \cong 864$		$1702 \sim 851 \cong 847$
$1577 \sim 820 \cong 8$	$1619 \sim 824 \cong 820$	$1661 \sim 775 \cong 775$	$1703 \sim 842 \cong 838$
$1578 \sim 874 \cong 8$	$1620 \sim 891 \cong 891$	$1662 \sim 874 \cong 874$	$1704 \sim 860 \cong 860$
\cong		0	$1705 \sim 824 \cong 820$
$1580 \sim 748 \cong 7$	1	$4 \sim 856 \cong 856$	1706
$1581 \sim 865 \cong 8$)	$1707 \sim 824 \cong 820$
$1582 \sim 856 \cong 8$		1	$08 \sim 878$
\cong	~ 783	$38 \cong$	09
\cong	$2 \cong 882$	$8 \sim 1091 \cong$	0
\cong	0	$1669 \sim 956 \cong$	$1711 \sim 848 \cong 750$
\cong	$1628 \sim 864 \cong 864$	$1670 \sim 776 \cong$	39
\cong		$1671 \sim 875 \cong$	57
\cong	$\sim 1091 \cong$	$2 \sim 1091 \cong$	$1714 \sim 821 \cong 821$
\cong	$\sim 939 \cong 939$	$1673 \sim 857 \cong 857$	171
$6 \cong$	$1632 \sim 1091 \cong 731$	$1674 \sim 1091 \cong 731$	1716
91~858 $\cong 8$	$1633 \sim 957 \cong 95$	$1675 \sim 1094 \cong 10$	$1717 \sim 875 \cong 87$

(\cong ¢ 866 \|	$1760 \sim 753 \cong 753$	$1802 \sim 744 \cong 744$	$1844 \sim 753$
$\cong 8841$	$24 \cong 820$	03 ~ 780 $\cong 780$	184
852	$1762 \sim 879 \cong 879$	$1804 \sim 744 \cong 744$	$1846 \sim 768 \cong 731$
8431	$1763 \sim 870 \cong 870$	730	184
1	$\cong 888$	753	
$1723 \sim 824 \cong 820$	$\cong 849$	80	
$1724 \sim 753 \cong 7531$	840	53	$1850 \sim 731 \cong 731$
$1725 \sim 824 \cong 8201$	858	71	50
$1726 \sim 879 \cong 8791$	\cong	731	$1852 \sim 777 \cong 777$
$\cong 8701$	$1769 \sim 749 \cong 749$	740	$1853 \sim 750$
1	$1770 \sim 821 \cong 821$	776	$1854 \sim 804 \cong 731$
1	$1771 \sim 876 \cong 876$	740	18
1	$1772 \sim 866 \cong$	731	$1856 \sim 747 \cong 739$
1	$1773 \sim 885 \cong 8851$	749	$1857 \sim 783 \cong 775$
1	847	776	18
$1733 \sim 750 \cong 7501$	846	749	1859
$1734 \sim 821 \cong 8211$	$1776 \sim 864 \cong 8641$	771	860
$1735 \sim 875 \cong 8751$	820	730	$1861 \sim 783 \cong 775$
1	$1778 \sim 752 \cong 752$	$39 \cong 739$	56
1	$1779 \sim 824 \cong 82$	775	10
$1738 \sim 847 \cong 8471$	\cong	$39 \cong 739$	32
$1739 \sim 838 \cong 8381$	$69 \cong 86$	$30 \cong 730$	$1865 \sim 923 \cong 923$
$1740 \sim 856 \cong 85617$	$\cong 89$	748	1
1	$\cong 73$	775	$1867 \sim 824 \cong 820$
1	$\cong 739$	748	$1868 \sim 747 \cong 739$
$1743 \sim 820 \cong 8201$	$1785 \sim 779 \cong 7791$	02	1
1	$1786 \sim 743 \cong 73$	28 ~ $768 \cong 731$	$1870 \sim 959 \cong 959$
1	$1787 \sim 734 \cong 7301$	29 ~ $741 \cong 741$	$1871 \sim 846 \cong 846$
$1746 \sim 883 \cong 88311$	752	777	$1872 \sim 968$
49	$779 \cong 779$	741	$1873 \sim 929$
$40 \cong 8401$	$1790 \sim 752 \cong 7521$	$31 \cong 731$	$1874 \sim 920$
$\cong 8581$	$1791 \sim 806 \cong 8021$	$1833 \sim 750 \cong 750$	938
1	$1792 \sim 767 \cong 7311$	$\cong 777$	$1876 \sim 821 \cong 821$
1	$\cong 7401$	750	$1877 \sim 741 \cong 741$
$1752 \sim 821 \cong 8211$	$76 \cong 7761$	$1836 \sim 804 \cong 731$	$1878 \sim 821 \cong 821$
$1753 \sim 876 \cong 876$	$1795 \sim 740 \cong 740$	$1837 \sim 771 \cong 771$	$1879 \sim 956 \cong 956$
$\cong 8661$	$1796 \sim 731 \cong 731$	744	1880
$\cong 885$	$1797 \sim 749 \cong 7491$	780	965
52	776	744	1882
¢ $\cong 8431$	$1799 \sim 749 \cong 7491$	$34 \cong 730$	1883
$1758 \sim 861 \cong 86118$	$1800 \sim 803 \cong 7711$	$1842 \sim 753 \cong 753$	$1884 \sim 942$
2 ~ $824 \cong 820 \mid 1$	$\left.1801 \sim 771 \cong 771\right\|_{1}$	$1843 \sim 780 \cong$	$885 \sim 824$

$4 \cong$	$1928 \sim 920 \cong 920$	$1970 \sim 879 \cong 879$	$2012 \sim 776$
\cong	$1929 \sim 939 \cong 939$	$1971 \sim 1094 \cong 1090$	$2013 \sim 857 \cong 857$
$1888 \sim 960 \cong 96$	$1930 \sim 821 \cong 821$	$1972 \sim 1091 \cong 731$	20
$1889 \sim 843 \cong 843$	$1931 \sim 740 \cong 740$	$1973 \sim 957 \cong 957$	5
$1890 \sim 969 \cong$	821	$1974 \sim 1091 \cong 731$	$2016 \sim 1091 \cong 731$
$1891 \sim 929 \cong 92$	1933 ~ 957 $\cong 957$	$1975 \sim 939 \cong 939$	
$1892 \sim 920 \cong$	$1934 \sim 839 \cong 821$	7	
$1893 \sim 938 \cong$	$1935 \sim 966$	$1977 \sim 858 \cong 858$	
$1894 \sim 821 \cong 8$	$1936 \sim 936 \cong 820$	$1978 \sim 1091 \cong 731$	$2020 \sim 941 \cong 941$
$1895 \sim 741 \cong 74$	19	$1979 \sim 876 \cong 876$	9 $\cong 779$
$1896 \sim 821 \cong 82$	$1938 \sim 945 \cong 941$	$1980 \sim 1091 \cong 731$	0
$1897 \sim 956 \cong 95$	0	$1981 \sim 1090 \cong 1090$	
$1898 \sim 840 \cong 84$	9	$1982 \sim 955 \cong 937$	
$1899 \sim 965 \cong$	0	$1983 \sim 1090 \cong 1090$	
$1900 \sim 928 \cong$	$1942 \sim 963 \cong 963$	$1984 \sim 937 \cong 937$	0
$1901 \sim 919 \cong$	$1943 \sim 842 \cong 838$	$1985 \sim 775 \cong 775$	$2027 \sim 824 \cong 820$
$1902 \sim 937 \cong$	9	$1986 \sim 856 \cong 856$	28
$1903 \sim 820 \cong$		$090 \cong 1090$	$2029 \sim 923 \cong 923$
$1904 \sim 739 \cong$	3	$1988 \sim 874 \cong 874$	203
\cong	0	$1989 \sim 1090 \cong 1090$	$2031 \sim 846 \cong 846$
$1906 \sim 955 \cong$	1	$1990 \sim 1091 \cong 731$	$2032 \sim 941 \cong 941$
$1907 \sim 838 \cong$	$83 \cong 775$	$1991 \sim 956 \cong 956$	$2033 \sim 824 \cong 820$
$1908 \sim 964 \cong$	4	$1992 \sim 1091 \cong 731$	$2034 \sim 968 \cong 968$
$1909 \sim 930 \cong 82$		$1993 \sim 938 \cong 938$	$2035 \sim 929 \cong 929$
$1910 \sim 920 \cong$	2	$1994 \sim 776 \cong$	2036
$1911 \sim 939 \cong$		$1995 \sim 857 \cong$	2037
$1912 \sim 821 \cong$	31	$1996 \sim 1091 \cong 731$	$2038 \sim 920$
	$1955 \sim 957 \cong 957$	$1997 \sim 875 \cong 875$	2039
$1914 \sim 821 \cong$	31	$1998 \sim 1091 \cong 731$	20
$1915 \sim 957 \cong$	$939 \cong 939$	0	$2041 \sim 93$
$1916 \sim 839 \cong$	$77 \cong 777$	$2000 \sim 960 \cong 960$	$2042 \sim 82$
$1917 \sim 966 \cong 9$	$58 \cong$		$2043 \sim 965 \cong 965$
$1918 \sim 933 \cong$	1	$2002 \sim 942 \cong 942$	20
$1919 \sim 924 \cong 8$	\cong	$2003 \sim 780 \cong$	$2045 \sim 824 \cong 820$
$1920 \sim 942 \cong$	1	$2004 \sim 861 \cong 861$	2046 ~
$1921 \sim 824 \cong$		$\cong 1090$	$2047 \sim 924 \cong 870$
$1922 \sim 744 \cong$	0	$2006 \sim 879 \cong 879$	204
$1923 \sim 824 \cong 82$	0	$\cong 1090$	2049
$1924 \sim 960 \cong$	2	$2008 \sim 1091 \cong 731$	2050
$3 \cong$	$1967 \sim 780 \cong 780$	$2009 \sim 956 \cong 956$	$2051 \sim 824 \cong 820$
$26 \sim 969 \cong$	$\sim 861 \cong 861$	$2010 \sim 1091 \cong 731$	$2052 \sim 969 \cong 969$
$27 \sim 930 \cong 8$	$1094 \cong 10$	$11 \sim 938 \cong 938$	$53 \sim 929 \cong$

$820 \cong 820$	$2432 \sim 730 \cong 730$	24	$6 \sim 730 \cong 730$
¢ $\cong 2391$	$2433 \sim 2271 \cong 2271$	2475	0
21	$2434 \sim 730 \cong 730$	$2476 \sim 2307 \cong 2307$	$2518 \sim 2237 \cong 2237$
$2393 \sim 2391 \cong 2391$	$2435 \sim 730 \cong 730$	$2477 \sim 2284 \cong 2284$	0
$94 \cong 820$	$2436 \sim 2274 \cong 2274$	$2478 \sim 731 \cong 731$	30
95	$2437 \sim 2271 \cong 2271$	$2479 \sim 2280 \cong 2280$	0
$2396 \sim 2396 \cong 2396$	$2438 \sim 2274 \cong 2274$	$2480 \sim 2271 \cong 2271$	$30 \cong 730$
21	$2439 \sim 2277 \cong 2277$	$2481 \sim 731 \cong 731$	$2523 \sim 2236 \cong 2236$
98	$2440 \sim 730 \cong 730$	4	0
9	$2441 \sim 730 \cong 730$	$2483 \sim 2293 \cong 2293$	$2525 \sim 730 \cong 730$
$2400 \sim 821 \cong 821$	$2442 \sim 2280 \cong 2280$	$2484 \sim 2322 \cong 2322$	$2526 \sim 2209 \cong 2209$
$2401 \sim 2401 \cong 2401$	$2443 \sim 730 \cong 730$	2485	$2527 \sim 2234 \cong 2234$
$2402 \sim 2402 \cong 2402$	$2444 \sim 730 \cong 730$	$2486 \sim 2283 \cong 2283$	
	$2445 \sim 2283 \cong 2283$	$2487 \sim 2293 \cong 2293$	$2529 \sim 2261 \cong 2261$
39	$2446 \sim 2284 \cong 2284$	$2488 \sim 2285 \cong 2285$	29
$2405 \sim 2371 \cong 2371$	$2447 \sim 2285 \cong 2285$	$2489 \sim 2274 \cong 2274$	220
2406	$2448 \sim 2286 \cong 2286$	$2490 \sim 2294 \cong 2294$	$2532 \sim 731 \cong 731$
69	$2449 \sim 2287 \cong 2287$	$2491 \sim 731 \cong 731$	2
$08 \sim 2372 \cong 2372$	$2450 \sim 2285 \cong 2285$	$2492 \sim 731 \cong 731$	$34 \sim 2193 \cong 2193$
75	$2451 \sim 731 \cong 731$	$2493 \sim 2295 \cong 2295$	1
0	$2452 \sim 2283 \cong 2283$	$2494 \sim 2307 \cong 2307$	$2536 \sim 2240 \cong 2240$
$11 \sim 821$	$2453 \sim 2274 \cong 2274$	$2495 \sim 2280 \cong 2280$	25
$12 \sim 2376$	$2454 \sim 731 \cong 731$	$2496 \sim 2320 \cong 2294$	25
$2413 \sim 2395 \cong 2395$	24	249	$39 \sim 730 \cong 730$
$2414 \sim 2398 \cong 2398$	24	$2498 \sim 2271 \cong 2271$	$2540 \sim 730 \cong 730$
	$2457 \sim 2295 \cong 2295$	$2499 \sim 2293 \cong 2293$	2234
$2416 \sim 2396 \cong 2396$	$2458 \sim 730 \cong 730$	$2500 \sim 731 \cong 731$	$2542 \sim 730 \cong 730$
$2417 \sim 2399 \cong 2399$	$2459 \sim 730 \cong 730$	$2501 \sim 731 \cong 731$	$43 \sim 730 \cong 730$
$02 \cong 2402$	$2460 \sim 2284 \cong 2284$	$2502 \sim 2322 \cong 2322$	$2544 \sim 2207 \cong 2207$
$19 \sim 821 \cong 821$	$2461 \sim 730 \cong 730$	$2503 \sim 2313 \cong 2277$	$2545 \sim 2236 \cong 2236$
$20 \sim 821 \cong 821$	$2462 \sim 730 \cong 730$	$2504 \sim 2286 \cong 2286$	9
7	$2463 \sim 2285 \cong 2285$	$2505 \sim 2322 \cong 2322$	$2547 \sim 2261 \cong 22$
$2422 \sim 2422 \cong 820$	$2464 \sim 2280 \cong 2280$	$2506 \sim 2286 \cong 2286$	$2548 \sim 730 \cong 730$
$2423 \sim 2423 \cong 2423$	24	250	$2549 \sim 730 \cong 730$
$2424 \sim 2424 \cong 966$	$2466 \sim 2286 \cong 2286$	$2508 \sim 2295 \cong 2295$	$2550 \sim 2233 \cong 2233$
23	$2467 \sim 730 \cong 730$	$2509 \sim 2322 \cong 2322$	$2551 \sim 730 \cong 730$
77	$2468 \sim 730 \cong 730$	$2510 \sim 2295 \cong 2295$	$2552 \sim 730 \cong 730$
$27 \sim 2427 \cong 2427$	$2469 \sim 2307 \cong 2307$	$2511 \sim 734 \cong 730$	$2553 \sim 2206 \cong 748$
$28 \sim 2424 \cong 966$	$2470 \sim 730 \cong 730$	$2512 \sim 730 \cong 730$	$2554 \sim 2233 \cong 2233$
~ $2427 \cong 2427$	$2471 \sim 730 \cong 730$	$2513 \sim 730 \cong 730$	$2555 \sim 2206$
$2430 \sim 824 \cong 820$	$2472 \sim 2287 \cong 2287$	$2514 \sim 2237 \cong 2237$	$2556 \sim 2260$
$2431 \sim 730 \cong 730$	$2473 \sim 2307 \cong 2307$	$15 \sim 730 \cong$	$2557 \sim 2226 \cong 820$

$2558 \sim 2203 \cong 2203$	$2600 \sim 2372 \cong 2372$	$2642 \sim 2352 \cong 740$	2
$2559 \sim 731 \cong 731$	$2601 \sim 2426 \cong 2277$	$2643 \sim 821 \cong 821$	26
$60 \sim 2199 \cong 2199$	$2602 \sim 820 \cong 820$	$2644 \sim 2401 \cong 2401$	$2686 \sim 820 \cong 820$
$2561 \sim 2190 \cong 750$	$2603 \sim 820 \cong 820$	$2645 \sim 2374 \cong 821$	$2687 \sim 820 \cong 820$
$62 \sim 731 \cong 731$	$2604 \sim 2398 \cong 2398$	$2646 \sim 2424 \cong 966$	$2688 \sim 2364 \cong 2364$
$39 \cong 2239$	$2605 \sim 820 \cong 820$	$2647 \sim 2391 \cong 2391$	$2689 \sim 2365 \cong 2365$
12	$2606 \sim 820 \cong 820$	26	$2690 \sim 2366 \cong 2366$
$2565 \sim 2262 \cong 750$	$2607 \sim 2371 \cong 2371$	$2649 \sim 2402 \cong 2402$	
$29 \cong 2229$	$2608 \sim 2396 \cong 2396$	6	39
$2567 \sim 2202 \cong 2202$	$2609 \sim 2369 \cong 2369$	$355 \cong 2355$	$2693 \sim 2369 \cong 2369$
$2568 \sim 2240 \cong 2240$	$2610 \sim 2423 \cong 2423$	$2652 \sim 2375 \cong 2375$	$2694 \sim 821 \cong 821$
$2569 \sim 2204 \cong 2204$	$2611 \sim 2391 \cong 2391$	$2653 \sim 821 \cong 821$	$2695 \sim 2371 \cong 2371$
$2570 \sim 2193 \cong 2193$	$2612 \sim 2366 \cong 2366$	$2654 \sim 821 \cong 821$	2
3	$2613 \sim 821 \cong 821$	2	1
$2572 \sim 731 \cong 731$	$2614 \sim 2364 \cong 2364$	$2656 \sim 2388 \cong 821$	21
$2573 \sim 731 \cong 731$	$2615 \sim 2355 \cong 2355$	$2657 \sim 2361 \cong 2361$	$2699 \sim 2375 \cong 2375$
$65 \cong 2265$	$2616 \sim 821 \cong 821$		$00 \sim 2376 \cong 739$
$2575 \sim 2226 \cong 820$	$2617 \sim 2402 \cong 2402$	$2659 \sim 2365 \cong 2365$	$2701 \sim 820 \cong 820$
$2576 \sim 2199 \cong 2199$	$2618 \sim 2375 \cong 2375$	$2660 \sim 2352 \cong 740$	$2702 \sim 820 \cong 820$
$2577 \sim 2239 \cong 2239$	$2619 \sim 2427 \cong 2427$	$2661 \sim 2374 \cong 821$	$2703 \sim 2365 \cong 2365$
$2578 \sim 2203 \cong 2203$	$2620 \sim 820 \cong 820$	$2662 \sim 821 \cong 821$	$2704 \sim 820 \cong 820$
$2579 \sim 2190 \cong 750$	$2621 \sim 820 \cong 820$	$2663 \sim 821 \cong 821$	$2705 \sim 820 \cong 820$
$2580 \sim 2212 \cong 2212$	$2622 \sim 2396 \cong 2396$	$2664 \sim 2424 \cong 966$	6
$2581 \sim 731 \cong 731$	$2623 \sim 820 \cong 820$	$2665 \sim 2394 \cong 820$	$2707 \sim 2361 \cong 2361$
$2582 \sim 731 \cong 731$	$2624 \sim 820 \cong 820$		4
$2583 \sim 2262 \cong 750$	$2625 \sim 2369 \cong 2369$		7
$2584 \sim 2232 \cong 730$	$2626 \sim 2398 \cong 2398$		$0 \sim 820 \cong 820$
$2585 \sim 2205 \cong 775$	$2627 \sim 2371 \cong 2371$	$2669 \sim 2358 \cong 820$	$2711 \sim 820 \cong 820$
$2586 \sim 2241 \cong 739$	$2628 \sim 2423 \cong 2423$	$2670 \sim 2376 \cong 739$	$2712 \sim 2388 \cong 821$
$2587 \sim 2205 \cong 775$	$2629 \sim 820 \cong 820$	$2671 \sim 2403 \cong 228$	$20 \cong 820$
$2588 \sim 2196 \cong 802$	$2630 \sim 820 \cong 820$	$2672 \sim 2376 \cong 739$	$2714 \sim 820 \cong 820$
$2589 \sim 2214 \cong 748$	$2631 \sim 2395 \cong 2395$	$2673 \sim 824 \cong 820$	2715 ~ $2391 \cong 2391$
$2590 \sim 2241 \cong 739$	$2632 \sim 820 \cong 820$	$2674 \sim 820 \cong 82$	$2716 \sim 2388 \cong 821$
$91 \sim 2214 \cong 748$	$2633 \sim 820 \cong 820$	$2675 \sim 820 \cong 820$	$2717 \sim 2391 \cong 2391$
$2592 \sim 734 \cong 730$	$2634 \sim 2368 \cong 739$	$2676 \sim 2352 \cong 740$	$2718 \sim 2394 \cong 820$
$2593 \sim 820 \cong 820$	$2635 \sim 2395 \cong 2395$	$2677 \sim 820 \cong 820$	$2719 \sim 2395 \cong 2395$
$2594 \sim 820 \cong 820$	$2636 \sim 2368 \cong 739$	$2678 \sim 820 \cong 820$	$2720 \sim 2396 \cong 2396$
$2595 \sim 2399 \cong 2399$	$2637 \sim 2422 \cong 820$	26	$2721 \sim 821 \cong 821$
$2596 \sim 820 \cong 820$	$2638 \sim 2388 \cong 821$	$2680 \sim 2352 \cong 740$	$2722 \sim 2398 \cong 2398$
$2597 \sim 820 \cong 820$	$2639 \sim 2365 \cong 2365$	$2681 \sim 2355 \cong 2355$	$2723 \sim 2399 \cong 2399$
$2598 \sim 2372 \cong 2372$	$2640 \sim 821 \cong 821$	$2358 \cong 820$	$2724 \sim 821 \cong 821$
$99 \sim 2399 \cong 2399$	$2641 \sim 2361 \cong 2361$	$\mid 2683 \sim 820 \cong 820$	$2725 \sim 2401 \cong 240$

$402 \cong 2402$	$2768 \sim 820 \cong 820$	$2810 \sim 2364 \cong 2364$	$2852 \sim 2852$
$2727 \sim 2403 \cong 2287$	$2769 \sim 2371 \cong 2371$	$2811 \sim 2402 \cong 2402$	$2853 \sim 2853 \cong 2853$
$368 \cong 739$	$2770 \sim 2396 \cong 2396$	$2812 \sim 2366 \cong 2366$	$2854 \sim 2854 \cong 847$
$2729 \sim 2371 \cong 2371$	$2771 \sim 2369 \cong 2369$	$2813 \sim 2355 \cong 2355$	$2855 \sim 2852 \cong 849$
$2730 \sim 2374 \cong 821$	$2772 \sim 2423 \cong 2423$	$2814 \sim 2375 \cong 2375$	31
$69 \cong 2369$	27	$2815 \sim 821 \cong 821$	50
2		$21 \cong 821$	41
$2733 \sim 2375 \cong 2375$	$2775 \sim 821 \cong 821$	$2817 \sim 2427 \cong 2427$	$2859 \sim 1091 \cong 731$
$2734 \sim 821 \cong 821$	$2776 \sim 2364 \cong 2364$	$2818 \sim 2388 \cong 821$	$2860 \sim 2860 \cong 2212$
$21 \cong 821$	$2777 \sim 2355 \cong 2355$	$2819 \sim 2361 \cong 2361$	$2861 \sim 2861 \cong 731$
$2736 \sim 2376 \cong 739$	$2778 \sim 821 \cong 821$	28	$2862 \sim 2862 \cong 847$
$2737 \sim 2395 \cong 2395$	$2779 \sim 2402 \cong 2402$	$2821 \sim 2365 \cong 2365$	$2863 \sim 1090 \cong 1090$
27	27	$2822 \sim 2352 \cong 740$	$2864 \sim 1090 \cong 1090$
27		$2823 \sim 2374 \cong 821$	$2865 \sim 2851 \cong 929$
$2740 \sim 2396 \cong 2396$	$2782 \sim 820 \cong 820$	$2824 \sim 821 \cong 821$	$2866 \sim 1090 \cong 1090$
$2741 \sim 2399 \cong 2399$	$820 \cong 820$	$821 \cong 821$	$2867 \sim 1090 \cong 1090$
$2742 \sim 2402 \cong 2402$	$2784 \sim 2396 \cong 2396$	$2826 \sim 2424 \cong 966$	$2868 \sim 2852 \cong 849$
$2743 \sim 821 \cong 821$	$2785 \sim 820 \cong 820$	$2827 \sim 2394 \cong 820$	$2869 \sim 2847 \cong 929$
$2744 \sim 821 \cong 821$	$2786 \sim 820 \cong 820$	$2828 \sim 2367 \cong 2367$	$2870 \sim 2850 \cong 2850$
$2745 \sim 2403 \cong 2287$	$2787 \sim 2369 \cong 2369$	$2829 \sim 2403 \cong 2287$	$2871 \sim 2853 \cong 2853$
$2746 \sim 2422 \cong 820$	278	$2830 \sim 2367 \cong 2367$	
$2747 \sim 2423 \cong 2423$	$2789 \sim 2371 \cong 2371$	$2831 \sim 2358 \cong 820$	
$2748 \sim 2424 \cong 966$	$2790 \sim 2423 \cong 2423$	$2832 \sim 2376 \cong 739$	0
$2749 \sim 2423 \cong 2423$	$2791 \sim 820 \cong 820$	$2833 \sim 2403 \cong 2287$	30
27	$2792 \sim 820 \cong 820$	$2834 \sim 2376 \cong 739$	
$2751 \sim 2427 \cong 2427$	$2793 \sim 2395 \cong 2395$	$2835 \sim 824 \cong 820$	$2877 \sim 2854 \cong 847$
$2752 \sim 2424 \cong 966$	$2794 \sim 820 \cong 820$	$2836 \sim 1090 \cong 1090$	$2878 \sim 2874 \cong 820$
$2753 \sim 2427 \cong 2427$	$2795 \sim 820 \cong 820$	$2837 \sim 1090 \cong 1090$	$2879 \sim 2854 \cong 847$
$2754 \sim 824 \cong 820$	$2796 \sim 2368 \cong 739$	$2838 \sim 2838 \cong 750$	$2880 \sim 2880 \cong 730$
$2755 \sim 820 \cong 820$	$2797 \sim 2395 \cong 2395$	$2839 \sim 1090 \cong 1090$	$2881 \sim 2874 \cong 820$
$2756 \sim 820 \cong 820$	$2798 \sim 2368 \cong 739$	$2840 \sim 1090 \cong 1090$	$2882 \sim 2851 \cong 929$
$2757 \sim 2399 \cong 2399$	$2799 \sim 2422 \cong 820$	$2841 \sim 2841 \cong 2841$	$2883 \sim 1091 \cong 731$
$2758 \sim 820 \cong 820$	$2800 \sim 2388 \cong 821$	$2842 \sim 2838 \cong 750$	$2884 \sim 2847 \cong 929$
$2759 \sim 820 \cong 820$	$2801 \sim 2365 \cong 2365$	$2843 \sim 2841 \cong 2841$	$2885 \sim 2838 \cong 750$
$2760 \sim 2372 \cong 2372$	$2802 \sim 821 \cong 821$	$2844 \sim 2844 \cong 730$	$2886 \sim 1091 \cong 731$
$2761 \sim 2399 \cong 2399$	$2803 \sim 2361 \cong 2361$	$2845 \sim 1090 \cong 1090$	$2887 \sim 2887 \cong 731$
$2762 \sim 2372 \cong 2372$	$2804 \sim 2352 \cong 740$	$2846 \sim 1090 \cong 1090$	$2888 \sim 2860 \cong 2212$
$2763 \sim 2426 \cong 2277$	$2805 \sim 821 \cong 821$	$2847 \sim 2847 \cong 929$	$2889 \sim 2889 \cong 750$
$2764 \sim 820 \cong 820$	$2806 \sim 2401 \cong 2401$	$2848 \sim 1090 \cong 1090$	$2890 \sim 2854 \cong 847$
$2765 \sim 820 \cong 820$	$2807 \sim 2374 \cong 821$	$2849 \sim 1090 \cong 1090$	$2891 \sim 2850 \cong 2850$
$2766 \sim 2398 \cong 2398$	$2808 \sim 2424 \cong 966$	$2850 \sim 2850 \cong 2850$	$2892 \sim 2860 \cong 2212$
$2767 \sim 820 \cong 820$	2809 ~ $2391 \cong 2391$	$2851 \sim 2851 \cong$	$2893 \sim 2852 \cong 849$

$1 \cong 2841$	$2936 \sim 878 \cong 878$	$2978 \sim 824 \cong 820$	3020
$61 \cong 731$	820	$2979 \sim 756 \cong 748$	$3021 \sim 824 \cong 820$
$6 \sim 1091 \cong 731$	$2938 \sim 860 \cong 860$	$80 \sim 932 \cong 820$	$3022 \sim 843 \cong 843$
1	29	1	$3023 \sim 870 \cong 870$
$2898 \sim 2862 \cong 847$	29	$23 \cong 923$	3
0	29	959	
9	$2942 \sim 869 \cong 869$	68	
	$2943 \sim 756 \cong 748$	$46 \cong 846$	
9	2	$2986 \sim 824 \cong 820$	0
0	$2945 \sim 1094 \cong 1090$	$24 \cong 820$	
2	2	739	$3030 \sim 879 \cong 879$
1	2	0	$3031 \sim 942 \cong 942$
$2906 \sim 1091 \cong 731$		$79 \cong 779$	
0	2	739	$3033 \sim 780 \cong 780$
0	29	$79 \cong 779$	
	29	2	
5	$2952 \sim 783 \cong 775$	752	49
		39	
	$2954 \sim 1094 \cong 1090$	$2996 \sim 752 \cong 752$	$3038 \sim 1094 \cong 1090$
7	$2955 \sim 936 \cong 820$	$2997 \sim 734 \cong 730$	$3039 \sim 852 \cong 852$
0	$2956 \sim 1094 \cong 1090$		$3040 \sim 933$
7			$3041 \sim 852$
	$2958 \sim 855 \cong 847$	9	3
	$2959 \sim 936 \cong 820$		3
	29		3
9	$2961 \sim 774 \cong 730$	88	$3045 \sim 824 \cong 820$
	$2962 \sim 932 \cong 820$	$3004 \sim 969 \cong 969$	
	$2963 \sim 959 \cong 959$	88	3
	820	771	30
9	$2965 \sim 941 \cong 941$		30
\cong	$2966 \sim 968 \cong 968$	0	$3050 \sim 84$
2	$2967 \sim 824 \cong 820$	2	30
	$2968 \sim 923 \cong$		30
	$2969 \sim 846 \cong 846$	0	30
1	$2970 \sim 747 \cong 739$	1	305
	$2971 \sim 851 \cong 847$	$\sim 960 \cong 960$	305
090	$2972 \sim 860 \cong 860$	$3014 \sim 879 \cong 879$	3056
$31 \sim 864 \cong 864$	$2973 \sim 842 \cong 838$	$3015 \sim 780 \cong 780$	$3057 \sim 870 \cong 870$
$2932 \sim 963 \cong 963$	$2974 \sim 878 \cong 878$	$3016 \sim 852 \cong 852$	$3058 \sim 824 \cong 820$
$33 \sim 882 \cong 882$	$2975 \sim 887 \cong 887$	$3017 \sim 879 \cong 879$	305
$2934 \sim 783 \cong 775$	$2976 \sim 869 \cong 869$	$3018 \sim 824 \cong 820$	$3060 \sim 75$
$335 \sim 851 \cong 8$	$2977 \sim 824 \cong 820$	$3019 \sim 861 \cong 861$	$3061 \sim 933$

$2 \cong 9$	31	$3104 \sim 866 \cong 866$	$965 \cong 965$	$3188 \sim 1094 \cong 1090$
$3063 \sim 924 \cong 870$	31	$3105 \sim 750 \cong 750$	40	$60 \cong 960$
$3064 \sim 960 \cong 96$	31	$3106 \sim 1091 \cong 731$	$3148 \sim 821 \cong 821$	$3190 \sim 1094 \cong 1090$
$3065 \sim 969 \cong 96$	6931	731	$3149 \sim 821 \cong 821$	90
$3066 \sim 843 \cong 843$	433108	957	$3150 \sim 741 \cong 741$	$3192 \sim 879 \cong 879$
$3067 \sim 824 \cong 82$	2031	$3109 \sim 1091 \cong 731$	$3151 \sim 767 \cong 731$	3193
$3068 \sim 824 \cong 82$	2031	731	$3152 \sim 776 \cong 776$	61
$3069 \sim 744 \cong 7$		$76 \cong 876$	$3153 \sim 740$	$95 \sim 780 \cong 780$
$3070 \sim 771 \cong 7$	31	$3112 \sim 939 \cong 939$	$3154 \sim 776 \cong 776$	$3196 \sim 1094 \cong 1090$
$3071 \sim 780 \cong 78$	8031	$\cong 858$	$3155 \sim 803 \cong 771$	$3197 \sim 1094 \cong 1090$
$3072 \sim 744 \cong 744$	4431	$77 \cong 777$	$3156 \sim 749 \cong 749$	9
$3073 \sim 780 \cong 780$	8031	731	$3157 \sim 740 \cong 740$)
$3074 \sim 807 \cong 771$	31	$3116 \sim 1091 \cong 731$	$3158 \sim 749 \cong 749$	$3200 \sim 1094 \cong 1090$
$3075 \sim 753 \cong 753$		$30 \cong 821$	$3159 \sim 731 \cong 731$	1
$3076 \sim 744 \cong 74$		731	$3160 \sim 1094 \cong 1090$	3202
$3077 \sim 753 \cong 75$		731	$3161 \sim 1094 \cong 1090$	$3203 \sim 852 \cong 852$
$3078 \sim 734 \cong 73$	3031	$49 \cong 849$	69	3204
$3079 \sim 1091 \cong 73$		$3121 \sim 930 \cong 821$	90	3205
$3080 \sim 1091 \cong 731$	31	$3122 \sim 849 \cong 849$	90	$3206 \sim 960$
$3081 \sim 966 \cong 96$	31	$3123 \sim 768 \cong 731$	$3165 \sim 888 \cong 888$	$207 \sim 824$
$3082 \sim 1091 \cong 73$		$29 \cong 929$	$3166 \sim 969 \cong 969$	08
$3083 \sim 1091 \cong 731$		$956 \cong 956$	3167	$3209 \sim 969$
$3084 \sim 885 \cong 885$		821	71	0
$3085 \sim 966 \cong 96$	31	$3127 \sim 938 \cong 938$	31	3211
$3086 \sim 885 \cong 88$	31	$3128 \sim 965 \cong 965$	31	3212
$3087 \sim 804 \cong$		$3129 \sim 821 \cong 821$	42	3213
$3088 \sim 1091 \cong 731$		$3130 \sim 920 \cong 920$	31	$3214 \sim 852 \cong 852$
$3089 \sim 1091 \cong 73$		$3131 \sim 840 \cong 840$	$3173 \sim 1094 \cong 1090$	$3215 \sim 861$
$3090 \sim 939 \cong 93$		$41 \cong 741$	$3174 \sim 861 \cong 861$	$3216 \sim 843 \cong 843$
$3091 \sim 1091 \cong 73$		$3133 \sim 848 \cong 750$	$3175 \sim 960 \cong 960$	$3217 \sim 879$
$91 \cong 731$	3131	$3134 \sim 857 \cong 857$	$3176 \sim 879 \cong 879$	$3218 \sim 888$
58	5831	$839 \cong 821$	$3177 \sim 780 \cong 780$	$19 \sim 870$
957	5731	$3136 \sim 875 \cong 875$	$3178 \sim 852 \cong$	3220
76	7631	$3137 \sim 884 \cong$	$3179 \sim 879 \cong$	3221
$3096 \sim 777 \cong 777$	31	$3138 \sim 866 \cong 866$	$3180 \sim 824 \cong$	$3222 \sim 753$
$3097 \sim 848 \cong 750$	5031	$\sim 821 \cong 821$	$3181 \sim 861 \cong$	3223
875	7531	$3140 \sim 821 \cong 821$	$3182 \sim 888 \cong 88$	$3224 \sim 942$
821	31	$3141 \sim 750 \cong 750$	$3183 \sim 824 \cong 820$	3225
$00 \sim 857$	5731	$3142 \sim 929 \cong 929$	$3184 \sim 843 \cong 843$	$3226 \sim 960$
884	31	$3143 \sim 938 \cong 938$	$3185 \sim 870 \cong$	$3227 \sim 969$
2 ~ $821 \cong$	31	$3144 \sim 920 \cong 920$	$3186 \sim 753 \cong 753$	$3228 \sim 843$
$03 \sim 839 \cong$	31	$3145 \sim 956 \cong 956$	$1094 \cong 10$	$3229 \sim 824 \cong 820$

20	90	5	$3356 \sim 857 \cong 857$
$3231 \sim 744 \cong 744$	$3273 \sim 878 \cong 878$	39	$3357 \sim 776 \cong 776$
$3232 \sim 771 \cong 771$	32	$3316 \sim 783 \cong 775$	$3358 \sim 1091 \cong 731$
3	3275	$17 \sim 810 \cong 802$	$3359 \sim 1091 \cong 731$
3	$3276 \sim 779 \cong 779$	$56 \cong 748$	$3360 \sim 929 \cong 929$
$80 \cong 78$	$3277 \sim 1094 \cong 1090$	$3319 \sim 747 \cong 739$	$3361 \sim 1091 \cong 731$
$3236 \sim 807 \cong 771$	$3278 \sim 1094 \cong 1090$	$3320 \sim 756 \cong 748$	$3362 \sim 1091 \cong 731$
$3237 \sim 753 \cong$	$3279 \sim 932 \cong 820$	$3321 \sim 734 \cong 730$	$3363 \sim 848$
$3238 \sim 744 \cong 744$	$3280 \sim 1094 \cong 1090$	$3322 \sim 1091 \cong 731$	$3364 \sim 929$
$3239 \sim 753 \cong 753$	$3281 \sim 1094 \cong 1090$	31	$365 \sim 848$
$3240 \sim 734 \cong 730$	32	$3324 \sim 965 \cong 965$	$3366 \sim 767 \cong 731$
$3241 \sim 1094 \cong 1090$	$3283 \sim 932$	31	$67 \sim 930$
	$3284 \sim 851 \cong 847$	$3326 \sim 1091 \cong 731$	$3368 \sim 957$
	$3285 \sim 770 \cong 730$	$3327 \sim 884 \cong 884$	$3369 \sim 821 \cong 821$
	$3286 \sim 936 \cong 820$	$3328 \sim 965 \cong 965$	$3370 \sim 93$
90	$3287 \sim 963 \cong 963$	$3329 \sim 884 \cong 88$	$3371 \sim 966 \cong 966$
\cong	$3288 \sim 824 \cong 820$	$3330 \sim 803 \cong 771$	3372
$47 \sim 968 \cong$	$3289 \sim 945 \cong 941$	$3331 \sim 1091 \cong 731$	$3373 \sim 920$
\cong	$3290 \sim 972 \cong 739$	$3332 \sim 1091 \cong 731$	$3374 \sim 839$
\cong	$3291 \sim 824 \cong 820$	$3333 \sim 938 \cong 938$	$3375 \sim 740$
	$3292 \sim 923 \cong 923$	731	$3376 \sim 849$
	$3293 \sim 842 \cong 838$		$3377 \sim 858$
$3252 \sim 941 \cong 941$	$3294 \sim 743 \cong 739$	$3336 \sim 857 \cong 857$	$3378 \sim 840$
	$3295 \sim 855 \cong 84$	$3337 \sim 956 \cong 956$	876
$3254 \sim 1094 \cong 1090$	$3296 \sim 864 \cong 864$	$38 \sim 875 \cong 875$	\sim
$\sim 860 \cong$	$3297 \sim 846 \cong 846$	$3339 \sim 776$	$381 \sim 86$
$56 \sim 959 \cong 9$	$3298 \sim 882 \cong 882$	40	$3382 \sim 821 \cong 821$
57 ~ $878 \cong$	$3299 \sim 891 \cong 891$	$3341 \sim 876 \cong 876$	$383 \sim 821$
$3258 \sim 779 \cong 779$	$3300 \sim 869 \cong 869$	$3342 \sim 821 \cong 821$	$3384 \sim 749$
59 ~ $855 \cong$	$24 \cong 820$	$3343 \sim 858 \cong 858$	$385 \sim 930$
60 ~ $882 \cong$	$24 \cong 820$	$3344 \sim 885 \cong 885$	$86 \sim 939$
\cong	$3303 \sim 752 \cong 752$	$3345 \sim 821 \cong 821$	$3387 \sim 920 \cong 920$
\cong	$3304 \sim 936 \cong 820$	$3346 \sim 840$	$3388 \sim 957 \cong$
$\sim 891 \cong$	$3305 \sim 945 \cong$	$66 \cong 866$	\sim
$4 \sim 824 \cong 8$	$3306 \sim 923 \cong 923$	$49 \cong 749$	$3390 \sim 839$
$3265 \sim 846 \cong 8$	$3307 \sim 963 \cong 963$	31	339
$3266 \sim 869 \cong 8$	$3308 \sim 972 \cong 739$	731	3392
67 ~ 752	$3309 \sim 842 \cong 838$	$56 \cong 956$	$3393 \sim 740 \cong 740$
$3268 \sim 1094 \cong 1090$	$3310 \sim 824 \cong 820$	$3352 \sim 1091 \cong 731$	$3394 \sim 76$
090	$3311 \sim 824 \cong 820$	$3353 \sim 1091 \cong 731$	3395
$3270 \sim 959 \cong 959$	$3312 \sim 743 \cong 739$	$3354 \sim 875 \cong 875$	339
$1094 \cong$	$3313 \sim 774 \cong 730$	$5 \sim 938$	$3397 \sim 777 \cong 777$

4	$3440 \sim 1091 \cong 731$	$3482 \sim 749 \cong 749$	09
750	$3441 \sim 930 \cong 821$	$3483 \sim 731 \cong 731$	$3525 \sim 848 \cong 750$
$3400 \sim 741 \cong 741$	31	$3484 \sim 1091 \cong 731$	$3526 \sim 929 \cong 929$
$3401 \sim 750 \cong 750$	31	$3485 \sim 1091 \cong 731$	$3527 \sim 848 \cong 750$
$3402 \sim 731 \cong 73$	$49 \cong 849$	$3486 \sim 965 \cong 965$	$3528 \sim 767 \cong 731$
$3403 \sim 1091 \cong 73$	$930 \cong 821$	$91 \cong 731$	$3529 \sim 930 \cong 821$
$3404 \sim 1091 \cong 73$	$3446 \sim 849 \cong 849$	$3488 \sim 1091 \cong 731$	$3530 \sim 957 \cong 957$
$3405 \sim 966 \cong 966$	$768 \cong 731$	$3489 \sim 884 \cong 884$	$3531 \sim 821 \cong 821$
$3406 \sim 1091 \cong 73$	$3448 \sim 929 \cong 929$	$3490 \sim 965 \cong 965$	$32 \sim 939 \cong 939$
$3407 \sim 1091 \cong 73$	$956 \cong$	$3491 \sim 884 \cong 884$	$3533 \sim 966 \cong 966$
$3408 \sim 885 \cong 88$	$3450 \sim 821 \cong$	$3492 \sim 803 \cong 771$	$3534 \sim 821 \cong 821$
09	$3451 \sim 938 \cong$	$3493 \sim 1091 \cong 731$	35
10	$3452 \sim 965$	$3494 \sim 1091 \cong 731$	$3536 \sim 839$
$3411 \sim 804 \cong 73$	$3453 \sim 821 \cong 821$	$3495 \sim 938 \cong 938$	$3537 \sim 740 \cong 740$
$3412 \sim 1091 \cong 73$	$3454 \sim 920 \cong 920$	$3496 \sim 1091 \cong 731$	$3538 \sim 849 \cong 849$
$3413 \sim 1091 \cong 73$	$3455 \sim 840 \cong 840$	$3497 \sim 1091 \cong 731$	$3539 \sim 858 \cong 858$
$3414 \sim 939 \cong 939$	$3456 \sim 741 \cong 741$	$98 \sim 857 \cong 857$	$3540 \sim 840$
$3415 \sim 1091 \cong 731$	$3457 \sim 848 \cong 750$	$3499 \sim 956 \cong 956$	$41 \sim 876$
$3416 \sim 1091 \cong 73$	$3458 \sim 857 \cong$	$3500 \sim 875 \cong 875$	$3542 \sim 885$
\cong	$3459 \sim 839 \cong$	$76 \cong 776$	$3543 \sim 866 \cong 866$
~ 957	$3460 \sim 875 \cong$	$3502 \sim 849 \cong 849$	$3544 \sim 821$
~ 876	$3461 \sim 884 \cong$	$3503 \sim 876 \cong 876$	$3545 \sim 821$
$3420 \sim 777 \cong 77$	$3462 \sim 866 \cong$	$3504 \sim 821 \cong 821$	49
$3421 \sim 848 \cong 750$	$3463 \sim 821 \cong 821$	$3505 \sim 858$	30
$3422 \sim 875 \cong 87$	$3464 \sim 821 \cong 821$	$3506 \sim 885 \cong 88$	39
$3423 \sim 821 \cong 82$	$3465 \sim 750 \cong 750$	$3507 \sim 821 \cong 821$	$3549 \sim 920 \cong 920$
\sim	$3466 \sim 929 \cong 929$	$3508 \sim 840 \cong 840$	$3550 \sim 957 \cong 957$
$3425 \sim 884 \cong 8$	$3467 \sim 938 \cong 938$	$3509 \sim 866 \cong 866$	$66 \cong 966$
$3426 \sim 821 \cong 82$	$3468 \sim 920 \cong 920$	$3510 \sim 749 \cong 749$	$3552 \sim 839$
$27 \sim 839 \cong$	$3469 \sim 956 \cong 956$	$91 \cong 731$	$3553 \sim 821 \cong 821$
$28 \sim 866 \cong$	$3470 \sim 965 \cong$	731	$3554 \sim 821$
\cong	$3471 \sim 840 \cong$	$56 \cong 956$	3555
$3430 \sim 1091 \cong 73$	$3472 \sim 821 \cong$	$3514 \sim 1091 \cong 731$	$3556 \sim 768 \cong 731$
$3431 \sim 1091 \cong 73$	$3473 \sim 821 \cong$	31	77
$3432 \sim 957 \cong 957$	$3474 \sim 741 \cong 741$	$3516 \sim 875 \cong 875$	$3558 \sim 741 \cong 741$
$3433 \sim 1091 \cong 731$	$3475 \sim 767 \cong 731$	$3517 \sim 938 \cong 938$	59 ~ $777 \cong 777$
$3434 \sim 1091 \cong 73$	$3476 \sim 776 \cong 776$	$3518 \sim 857 \cong 857$	$3560 \sim 804 \cong 731$
$35 \sim 876$	$3477 \sim 740 \cong 740$	$3519 \sim 776 \cong 776$	$3561 \sim 750 \cong 750$
$3436 \sim 939$	$3478 \sim 776$	$3520 \sim 1091 \cong 731$	$3562 \sim 741 \cong 741$
$3437 \sim 858 \cong 858$	$3479 \sim 803 \cong 771$	$3521 \sim 1091 \cong 731$	$3563 \sim 750 \cong 750$
$38 \sim 777 \cong$	$3480 \sim 749 \cong 749$	$3522 \sim 929 \cong 929$	$3564 \sim 731 \cong 731$
$39 \sim 1091 \cong 7$	$81 \sim 740 \cong$	$23 \sim 1091$	$3565 \sim 1090 \cong 1090$

$\cong 1090$	$3608 \sim 847 \cong 847$	$3650 \sim 2196 \cong 802$	
39	$3609 \sim 766 \cong 730$	$3651 \sim 2193 \cong 2193$	$3693 \sim 820 \cong 820$
3	$3610 \sim 928 \cong 820$	$3652 \sim 730 \cong 730$	99
36	937	$3653 \sim 2193 \cong 2193$	77
$3 \cong 883$	20	$3654 \sim 730 \cong 730$	72
¢ $\cong 739$	7	820	20
3		$3656 \sim 2352 \cong 740$	$3698 \sim 2372 \cong 2372$
3		$3657 \sim 820 \cong 820$	$3699 \sim 820 \cong 820$
3	$3616 \sim 919 \cong 820$	$3658 \sim 2352 \cong 740$	$00 \sim 730 \cong 730$
3	$3617 \sim 838 \cong 838$	$3659 \sim 2358 \cong 820$	71
3	39	$3660 \sim 2355 \cong 2355$	30
3	$3619 \sim 847 \cong 847$	$3661 \sim 820 \cong 820$	1
	5	$3662 \sim 2355 \cong 2355$	$3704 \sim 2277 \cong 2277$
3	8	$20 \cong 820$	74
$580 \sim 955 \cong 9373$		$730 \cong 730$	730
3	$3623 \sim 883 \cong 883$	2271	$3707 \sim 2274 \cong 2274$
3	$3624 \sim 865 \cong 820$	$3666 \sim 730 \cong 730$	$3708 \sim 730 \cong 730$
$83 \sim 847 \cong 8473$	$3625 \sim 820 \cong 820$	$3667 \sim 2271 \cong 2271$	$3709 \sim 820 \cong 820$
3	$3626 \sim 820 \cong 820$	$3668 \sim 2277 \cong 2277$	9
$\cong 8203$	$3627 \sim 748 \cong 748$	$3669 \sim 2274 \cong 2274$	$3711 \sim 820 \cong 820$
$\cong 856$	820	$3670 \sim 730 \cong 730$	3
3	37	$3671 \sim 2274 \cong 2274$	3
$\cong 820$	$3630 \sim 919 \cong 820$	$3672 \sim 730 \cong 730$	3
$\cong 838$	$3631 \sim 955 \cong 937$	$3673 \sim 820 \cong$	20
3	9	$3674 \sim 2352 \cong 740$	$3716 \sim 2372 \cong 2372$
3	$3633 \sim 838 \cong 838$	$3675 \sim 820 \cong 820$	$3717 \sim 820 \cong 820$
	$3634 \sim 820 \cong 820$	$3676 \sim 2352 \cong 740$	$3718 \sim 730 \cong 730$
	$3635 \sim 820 \cong 820$	$3677 \sim 2358 \cong 820$	$3719 \sim 2237 \cong 2237$
3	$3636 \sim 739 \cong 739$	$3678 \sim 2355 \cong 2355$	$3720 \sim 730 \cong 730$
	$3637 \sim 766 \cong 730$	$3679 \sim 820 \cong 820$	7
	775	$55 \cong 2355$	30
3	39	$3681 \sim 820 \cong 820$	$3723 \sim 2210 \cong 2210$
$\cong 937$	$3640 \sim 775 \cong 775$	0	$3724 \sim 730 \cong 730$
$599 \sim 856 \cong 856$	2	$3683 \sim 2838 \cong 750$	$3725 \sim 2210 \cong 2210$
3	8	090	$3726 \sim 730 \cong 730$
	$3643 \sim 739 \cong 739$	$3685 \sim 2838 \cong 750$	$3727 \sim 2206 \cong 748$
3	748	$3686 \sim 2844 \cong 730$	$3728 \sim 731 \cong 731$
3	$3645 \sim 730 \cong 730$	41	$3729 \sim 2207 \cong 2207$
$0 \cong 1090$	$3646 \sim 730 \cong 730$	$3688 \sim 1090 \cong 1090$	$3730 \sim 2212 \cong 2212$
$05 \sim 1090 \cong 1090$	$90 \cong 750$	$3689 \sim 2841 \cong 2841$	$3731 \sim 2214 \cong 748$
$06 \sim 847 \cong 8473$	$\cong 730$	$3690 \sim 1090 \cong 1090$	$3732 \sim 2213 \cong 2213$
~ $928 \cong 820$ 3	$9 \sim 2190$	91 $\sim 820 \cong 820$	$3733 \sim 2209 \cong 2209$

$731 \cong 731$	$3776 \sim 2427 \cong 2427$	$3818 \sim 2361 \cong 2361$	$3860 \sim 2371 \cong 2371$
$2210 \cong 2210$	$3777 \sim 2375 \cong 2375$	$3819 \sim 820 \cong 820$	$3861 \sim 820 \cong 820$
$36 \sim 2368 \cong 739$	$3778 \sim 2364 \cong 2364$	$3820 \sim 2365 \cong 2365$	30
$21 \cong 821$	$3779 \sim 821 \cong 821$	$3821 \sim 2367 \cong 2367$	$3863 \sim 2280 \cong 2280$
$2369 \cong 2369$	$3780 \sim 2355 \cong 2355$	$3822 \sim 2366 \cong 2366$	$3864 \sim 730 \cong 730$
$39 \sim 2374 \cong 821$	$3781 \sim 2287 \cong 2287$	$3823 \sim 820 \cong 820$	$3865 \sim 2284 \cong 2284$
9	$3782 \sim 731 \cong 731$	$3824 \sim 2364 \cong 2364$	$3866 \sim 2286 \cong 2286$
5	$3783 \sim 2285 \cong 2285$	$3825 \sim 820 \cong 820$	$3867 \sim 2285 \cong 2285$
1	$3784 \sim 2293 \cong 2293$	$730 \cong 730$	$3868 \sim 730 \cong 730$
1	$3785 \sim 2295 \cong 2295$	$2280 \cong 2280$	$3869 \sim 2283 \cong 2283$
$372 \cong 2372$	$3786 \sim 2294 \cong 2294$	$3828 \sim 730 \cong 730$	$3870 \sim 730 \cong 730$
$45 \sim 2287 \cong 2287$	$3787 \sim 2283 \cong 2283$	$3829 \sim 2284 \cong 2284$	$3871 \sim 820 \cong 820$
$31 \cong 731$	$3788 \sim 731 \cong 731$	$3830 \sim 2286 \cong 2286$	$3872 \sim 2398 \cong 2398$
$47 \sim 2285 \cong 2285$	$3789 \sim 2274 \cong 2274$	$3831 \sim 2285 \cong 2285$	$3873 \sim 820 \cong 820$
48 ~ $2293 \cong 2293$	$3790 \sim 2391 \cong 2391$	$3832 \sim 730 \cong 730$	$3874 \sim 2396 \cong 2396$
$95 \cong 2295$	$3791 \sim 821 \cong 821$	$3833 \sim 2283 \cong 2283$	$3875 \sim 2423 \cong 2423$
4	$3792 \sim 2366 \cong 2366$	$3834 \sim 730 \cong 730$	$3876 \sim 2369 \cong 2369$
$83 \cong 2283$	$3793 \sim 2402 \cong 2402$	$3835 \sim 820 \cong 820$	$3877 \sim 820 \cong 820$
1	$3794 \sim 2427 \cong 2427$	$3836 \sim 2361 \cong 2361$	$3878 \sim 2371 \cong 2371$
$274 \cong 2274$	$3795 \sim 2375 \cong 2375$	$3837 \sim 820 \cong 820$	$3879 \sim 820 \cong 820$
$3368 \cong 739$	$3796 \sim 2364 \cong 2364$	$3838 \sim 2365 \cong 2365$	$3880 \sim 730 \cong 730$
$55 \sim 821 \cong 821$	$3797 \sim 821 \cong 821$	$3839 \sim 2367 \cong 2367$	$3881 \sim 2236 \cong 2236$
$369 \cong 2369$	$3798 \sim 2355 \cong 2355$	$3840 \sim 2366 \cong 2366$	$3882 \sim 730 \cong 730$
21	$3799 \sim 2229 \cong 2229$	$3841 \sim 820 \cong 820$	$3883 \sim 2234 \cong 2234$
8 ~ $2376 \cong 739$	$3800 \sim 731 \cong 731$	$3842 \sim 2364 \cong 2364$	$3884 \sim 2261 \cong 2261$
$375 \cong 2375$	$3801 \sim 2204 \cong 2204$	$3843 \sim 820 \cong 820$	$3885 \sim 2207 \cong 2207$
$2371 \cong 2371$	$3802 \sim 2240 \cong 2240$	$3844 \sim 1090 \cong 1090$	$3886 \sim 730 \cong 730$
1	$3803 \sim 2265 \cong 2265$	$3845 \sim 2847 \cong 929$	$3887 \sim 2209 \cong 2209$
72	$3804 \sim 2213 \cong 2213$	$3846 \sim 1090 \cong 1090$	$3888 \sim 730 \cong 730$
7	$3805 \sim 2202 \cong 2202$	$3847 \sim 2851 \cong 929$	$3889 \sim 2206 \cong 748$
¢ $\cong 731$	$3806 \sim 731 \cong 731$	$3848 \sim 2853 \cong 2853$	$3890 \sim 2212 \cong 2212$
$852 \cong 849$	$3807 \sim 2193 \cong 2193$	$3849 \sim 2852 \cong 849$	$3891 \sim 2209 \cong 2209$
$60 \cong 2212$	$3808 \sim 730 \cong 730$	$3850 \sim 1090 \cong 1090$	$3892 \sim 731 \cong 731$
$62 \cong 847$	$3809 \sim 2199 \cong 2199$	$3851 \sim 2850 \cong 2850$	$3893 \sim 2214 \cong 748$
$861 \cong 731$	$3810 \sim 730 \cong 730$	$3852 \sim 1090 \cong 1090$	$3894 \sim 731 \cong 731$
850	$3811 \sim 2203 \cong 2203$	$3853 \sim 820 \cong 820$	$3895 \sim 2207 \cong 2207$
1	$3812 \sim 2205 \cong 775$	$3854 \sim 2398 \cong 2398$	$3896 \sim 2213 \cong 2213$
11	$3813 \sim 2204 \cong 2204$	$3855 \sim 820 \cong 820$	$3897 \sim 2210 \cong 2210$
91 $\cong 2391$	$3814 \sim 730 \cong 730$	$3856 \sim 2396 \cong 2396$	$3898 \sim 2368 \cong 739$
$\cong 821$	$3815 \sim 2202 \cong 2202$	$3857 \sim 2423 \cong 2423$	$3899 \sim 2374 \cong 821$
$\sim 2366 \cong 2366$	$3816 \sim 730 \cong 730$	$3858 \sim 2369 \cong 2369$	$3900 \sim 2371 \cong 2371$
~ $2402 \cong 2402$	$3817 \sim 820 \cong 820$	$3859 \sim 820 \cong 820$	$1 \sim 821$

$3902 \sim 2376 \cong 739|3944 \sim 2293 \cong 2293| 3$ $3903 \sim 821 \cong 8213945 \sim 2283 \cong 2283$ $3904 \sim 2369 \cong 23693946 \sim 731 \cong 731$ $3905 \sim 2375 \cong 23753947 \sim 2295 \cong 2295$ $3906 \sim 2372 \cong 2372$ 3948~731 $\cong 731$ $3907 \sim 2287 \cong 22873949 \sim 2285 \cong 2285$ $3908 \sim 2293 \cong 2293$ 3950~2294 $\cong 2294$ $3909 \sim 2283 \cong 22833951 \sim 2274 \cong 2274$ $3910 \sim 731 \cong 731 \quad 3952 \sim 2391 \cong 2391$ $3911 \sim 2295 \cong 2295 \quad 3953 \sim 2402 \cong 2402$ $3912 \sim 731 \cong 7313954 \sim 2364 \cong 2364$ $3913 \sim 2285 \cong 22853955 \sim 821 \cong 821$ $3914 \sim 2294 \cong 22943956 \sim 2427 \cong 2427$ $3915 \sim 2274 \cong 22743957 \sim 821 \cong 821$ $3916 \sim 2368 \cong 7393958 \sim 2366 \cong 2366$ $3917 \sim 2374 \cong 8213959 \sim 2375 \cong 2375$ $3918 \sim 2371 \cong 23713960 \sim 2355 \cong 2355$ $3919 \sim 821 \cong 821$ 3961~2229 $\cong 2229$ $3920 \sim 2376 \cong 7393962 \sim 2240 \cong 2240$ $3921 \sim 821 \cong 8213963 \sim 2202 \cong 2202$ $3922 \sim 2369 \cong 23693964 \sim 731 \cong 731$ $3923 \sim 2375 \cong 2375 \quad 3965 \sim 2265 \cong 2265$ $3924 \sim 2372 \cong 2372$ 3966~731 $\cong 731$ $3925 \sim 2854 \cong 847$ 3967~2204 $\cong 2204$ $3926 \sim 2860 \cong 22123968 \sim 2213 \cong 2213$ $3927 \sim 2850 \cong 28503969 \sim 2193 \cong 2193$ $3928 \sim 1091 \cong 7313970 \sim 2260 \cong 802$ $3929 \sim 2862 \cong 847$ $3930 \sim 1091 \cong 731$ $3931 \sim 2852 \cong 849$ $3932 \sim 2861 \cong 731$ $3933 \sim 2841 \cong 2841$ $3934 \sim 2391 \cong 2391$ $3935 \sim 2402 \cong 2402$ $3936 \sim 2364 \cong 2364$ $3937 \sim 821 \cong 821$ $3938 \sim 2427 \cong 2427$ $3939 \sim 821 \cong 821$ $3940 \sim 2366 \cong 2366$ $3941 \sim 2375 \cong 2375$ $3942 \sim 2355 \cong 23553984 \sim 2427 \cong 2427$ $3943 \sim 2287 \cong 2287$ 3985~2423 $\cong 2423$
$3986 \sim 2427 \cong 2427 \mid 4028 \sim 734 \cong 730$ $3987 \sim 2426 \cong 2277$ 4029~2295 $\cong 2295$ $3988 \sim 2313 \cong 2277$ 4030~2286 $\cong 2286$ $3989 \sim 2322 \cong 2322$ 4031~2295 $\cong 2295$ $3990 \sim 2286 \cong 22864032 \sim 2277 \cong 2277$ $3991 \sim 2322 \cong 23224033 \sim 2394 \cong 820$ $3992 \sim 734 \cong 7304034 \sim 2403 \cong 2287$ $3993 \sim 2295 \cong 2295$ 4035~2367 $\cong 2367$ $3994 \sim 2286 \cong 22864036 \sim 2403 \cong 2287$ $3995 \sim 2295 \cong 22954037 \sim 824 \cong 820$ $3996 \sim 2277 \cong 22774038 \sim 2376 \cong 739$ $3997 \sim 2422 \cong 8204039 \sim 2367 \cong 2367$ $3998 \sim 2424 \cong 9664040 \sim 2376 \cong 739$ $3999 \sim 2423 \cong 2423$ 4041~2358 $\cong 820$ $4000 \sim 2424 \cong 9664042 \sim 2232 \cong 730$ $4001 \sim 824 \cong 8204043 \sim 2241 \cong 739$ $4002 \sim 2427 \cong 2427 \quad 4044 \sim 2205 \cong 775$ $4003 \sim 2423 \cong 24234045 \sim 2241 \cong 739$ $4004 \sim 2427 \cong 24274046 \sim 734 \cong 730$ $4005 \sim 2426 \cong 22774047 \sim 2214 \cong 748$ $4006 \sim 2880 \cong 7304048 \sim 2205 \cong 775$ $4007 \sim 2889 \cong 7504049 \sim 2214 \cong 748$ $4008 \sim 2853 \cong 28534050 \sim 2196 \cong 802$ $4009 \sim 2889 \cong 750$ 4051~2233 $\cong 2233$ $4010 \sim 1094 \cong 10904052 \sim 2239 \cong 2239$ $4011 \sim 2862 \cong 847$ 4053~2236 $\cong 2236$ $4012 \sim 2853 \cong 2853$ 4054~731 $\cong 731$ $4013 \sim 2862 \cong 8474055 \sim 2241 \cong 739$ $4014 \sim 2844 \cong 7304056 \sim 731 \cong 731$ $4015 \sim 2394 \cong 8204057 \sim 2234 \cong 2234$ $4016 \sim 2403 \cong 2287$ 4058~2240 $\cong 2240$ $4017 \sim 2367 \cong 2367$ 4059~2237 $\cong 2237$ $4018 \sim 2403 \cong 22874060 \sim 2395 \cong 2395$ $4019 \sim 824 \cong 8204061 \sim 2401 \cong 2401$ $4020 \sim 2376 \cong 7394062 \sim 2398 \cong 2398$ $4021 \sim 2367 \cong 23674063 \sim 821 \cong 821$ $4022 \sim 2376 \cong 7394064 \sim 2403 \cong 2287$ $4023 \sim 2358 \cong 8204065 \sim 821 \cong 821$ $4024 \sim 2313 \cong 2277$ 4066~2396 $\cong 2396$ $4025 \sim 2322 \cong 23224067 \sim 2402 \cong 2402$ $4026 \sim 2286 \cong 22864068 \sim 2399 \cong 2399$ $4027 \sim 2322 \cong 2322 \mid 4069 \sim 2307 \cong 2307$

$\cong 2294$	$4112 \sim 2293 \cong 2293$	$4154 \sim 2286 \cong 2286$	$4196 \sim 2396 \cong 2396$
$4071 \sim 2280 \cong 2280$			0
$4072 \sim 731 \cong 731$		0	8
		28	3
$4074 \sim 731 \cong 731$		0	
	$4117 \sim 821 \cong 821$	20	0
$4076 \sim 2293 \cong 2293$	$4118 \sim 2424 \cong 966$	5	9
$7 \sim 2271 \cong 2271$	$4119 \sim 821 \cong 821$	0	$4203 \sim 820 \cong 820$
$4078 \sim 2395 \cong 2395$	5	1	$4204 \sim 730 \cong 730$
$4079 \sim 2401 \cong 2401$	4		$4205 \sim 2234 \cong 2234$
$4080 \sim 2398 \cong 2398$	$4122 \sim 2352 \cong 740$		0
1 ~ $821 \cong 821$	$4123 \sim 2226 \cong 820$	$4165 \sim 820 \cong 820$	6
$4082 \sim 2403 \cong 2287$	$4124 \sim 2239 \cong 2239$	6	1
$4083 \sim 821 \cong 821$	9		9
$4084 \sim 2396 \cong 2396$	4	0	$4210 \sim 730 \cong 730$
$4085 \sim 2402 \cong 2402$	0	9	7
$4086 \sim 2399 \cong 2399$	1	0	0
$4087 \sim 2874 \cong 820$	3	9	3
$4088 \sim 2887 \cong 731$	2	3	$4214 \sim 731 \cong 731$
47	$4131 \sim 2190 \cong 750$		$4215 \sim 2234 \cong 2234$
$4090 \sim 1091 \cong 731$	$4132 \sim 730 \cong 730$		39
$89 \cong$	$4133 \sim 2203 \cong 2203$	9	9
$4092 \sim 1091 \cong 731$	$4134 \sim 730 \cong 730$	$4176 \sim 1090 \cong 1090$	$4218 \sim 2240 \cong 2240$
$4093 \sim 2851 \cong 929$	9	$4177 \sim 820 \cong 820$	$4219 \sim 2236 \cong 2236$
$4 \sim 2860 \cong 2212$	$4136 \sim 2205 \cong 775$	$4178 \sim 2396 \cong 2396$	$4220 \sim 731 \cong 731$
$4095 \sim 2838 \cong 750$	$4137 \sim 2202 \cong 2202$)	7
$4096 \sim 2388 \cong 821$	$4138 \sim 730 \cong 730$		$4222 \sim 2395 \cong 2395$
	$4139 \sim 2204 \cong 2204$		$4223 \sim 821 \cong 821$
$98 \sim 2361 \cong 2361$	$4140 \sim 730 \cong 730$		6
$4099 \sim 821 \cong 821$	$4141 \sim 820 \cong 820$	-	$4225 \sim 2401 \cong 2401$
$24 \cong$	5	$4184 \sim 2369 \cong 2369$	$4226 \sim 2403 \cong 2287$
$4101 \sim 821 \cong 821$	0	0	$4227 \sim 2402 \cong 2402$
$4102 \sim 2365 \cong 2365$	4	00 ¢30	~ $2398 \cong 2398$
$4103 \sim 2374 \cong 821$	$4145 \sim 2367 \cong 2367$	4	$9 \sim 821 \cong 821$
\cong	$4146 \sim 2364 \cong$	$4188 \sim 730 \cong 730$	$4230 \sim 2399 \cong 2399$
$4105 \sim 2307 \cong 2307$	$4147 \sim 820 \cong$	$\cong 2280$	2307
$4106 \sim 2320 \cong 2294$	$4148 \sim 2366 \cong$	6	$4232 \sim 731 \cong 731$
$80 \cong$	$4149 \sim 820 \cong 820$	$\cong 2283$	$4233 \sim 2284 \cong 2284$
1	$4150 \sim 730 \cong 730$	$\sim 730 \cong 730$	$4234 \sim 2320 \cong 2294$
$22 \cong$	$4151 \sim 2284 \cong 2284$	$4193 \sim 2285 \cong 2285$	$4235 \sim 2322 \cong 2322$
$\sim 731 \cong 731$	$4152 \sim 730 \cong 730$	$4194 \sim 730 \cong 730$	$4236 \sim 2293 \cong 2293$
$1 \sim 2284 \cong 228$	$4153 \sim 2280 \cong 22$	$4195 \sim 820 \cong 820$	$4237 \sim 2280 \cong 2280$

~ $731 \cong 731$	$4280 \sim 2424 \cong 966$	$4322 \sim 2388$	4364
$4239 \sim 2271 \cong 2271$	$4281 \sim 2374 \cong 821$	$4323 \sim 820 \cong 820$	$4365 \sim 820 \cong 820$
5	$4282 \sim 2361 \cong 2361$	1	$4366 \sim 730 \cong 730$
$4241 \sim 821 \cong 821$	$4283 \sim 821 \cong 821$	0	
	$4284 \sim 2352 \cong 740$		
	0		
	$4286 \sim 731 \cong 731$	1	$4370 \sim 2260 \cong 802$
		0	$4371 \sim 2206 \cong 748$
8		0	0
$4247 \sim 821 \cong 821$	$4289 \sim 2262 \cong 750$	0	$4373 \sim 2206 \cong 748$
$4248 \sim 2399 \cong 2399$		0	43
$9 \sim 2874 \cong 820$		$4333 \sim 2874 \cong 820$	$4375 \sim 1094 \cong 1090$
$50 \sim 1091$	$4292 \sim 731 \cong 731$	$4334 \sim 2880 \cong 730$	$4376 \sim 824 \cong 820$
$51 \sim 2851 \cong 929$	\cong	43	43
$4252 \sim 2887 \cong 731$	$4294 \sim 730 \cong 730$	43	$4378 \sim 824 \cong 820$
$4253 \sim 2889 \cong 750$	$4295 \sim 2226 \cong 820$	$4337 \sim 2854 \cong 847$	$4379 \sim 734 \cong 730$
$4254 \sim 2860 \cong 2212$	$4296 \sim 730 \cong 730$	0	$4380 \sim 734 \cong 730$
$4255 \sim 2847 \cong 929$	$4297 \sim 2226 \cong 820$	0	$4381 \sim 824 \cong 820$
$4256 \sim 1091 \cong 731$	$4298 \sim 2232 \cong 730$	\simeq	$7382 \sim 734 \simeq$
		0	$4383 \sim 734 \cong 730$
$58 \sim 2388$	$4300 \sim 730 \cong 730$		0
$4259 \sim 821 \cong 821$		-	$4385 \sim 2424 \cong 966$
$4260 \sim 2365 \cong 2365$	$4302 \sim 730 \cong 730$	$68 \cong 739$	$4386 \sim 2403 \cong 2287$
$4261 \sim 2401 \cong 2401$	4	0	$4387 \sim 2424 \cong 966$
$24 \cong 966$	$4304 \sim 2388 \cong$	$4346 \sim 2368 \cong 739$	$4388 \sim 2262 \cong 750$
$4263 \sim 2374 \cong 821$	0	0	$4389 \sim 2322 \cong 2322$
$4264 \sim 2361 \cong 2361$	$4306 \sim 2388 \cong 821$	$4348 \sim 730 \cong 730$	$4390 \sim 2403 \cong 2287$
$4265 \sim 821 \cong 821$	$4307 \sim 2394 \cong 820$	$4349 \sim 2307 \cong 2307$	$4391 \sim 2322 \cong 2322$
		$4350 \sim 730 \cong 730$	$4392 \sim 2241 \cong 739$
$4267 \sim 2307 \cong 2307$)		7
$4268 \sim 731 \cong 731$			7
$4269 \sim 2284 \cong 2284$	$4311 \sim 820 \cong 820$	$4353 \sim 2287 \cong 2287$	9
$4270 \sim 2320 \cong 2294$	0	0	7
2		$4355 \sim 2287 \cong 2287$	$4397 \sim 2265 \cong 2265$
$3 \cong 2293$	0	00730	$4398 \sim 2295 \cong 2295$
$80 \cong 2280$	4	$4357 \sim 820 \cong 820$	9
$4 \sim 731 \cong$	7	$\cong 2395$	$4400 \sim 2295 \cong 2295$
\cong	7	$4359 \sim 820 \cong 820$	4
$6 \sim 2388 \cong$	0	$\cong 2395$	$4402 \sim 2889 \cong 750$
$7 \sim 821 \cong$	2287	$4361 \sim 2422 \cong 820$	$4403 \sim 2424 \cong 966$
$8 \sim 2365 \cong 2365$	$4320 \sim 730 \cong 730$	$4362 \sim 2368 \cong 739$	$4404 \sim 2403 \cong 2287$
~ $2401 \cong 2$	$4321 \sim 820 \cong 820$	$4363 \sim 820 \cong 820$	24

$4406 \sim 2262 \cong 750$	44	293	$4532 \sim 2210 \cong 2210$
22 2322	$4449 \sim 2358 \cong 820$	44	4
87	$4450 \sim 2426 \cong 2277$	$4492 \sim 2854 \cong 847$	55
22	$4451 \sim 2264 \cong 730$	$4493 \sim 2368 \cong 739$	453
$4410 \sim 2241 \cong 739$	44	$4494 \sim 2391 \cong 2391$	$4536 \sim 2193 \cong 2193$
$4411 \sim 2880 \cong 730$	$4453 \sim 2358 \cong 820$	$4495 \sim 2368 \cong 739$	50
$4412 \sim 2422 \cong 820$	$4454 \sim 2277 \cong 2277$	$4496 \sim 2206 \cong 748$	$4538 \sim 2403 \cong 2287$
$4413 \sim 2394 \cong 820$	$4455 \sim 2196 \cong 802$	7	66
$4414 \sim 2422 \cong 820$	$4456 \sim 2862 \cong 847$	$4498 \sim 2391$	87
$60 \cong 802$	$4457 \sim 2376 \cong 739$	449	39
$4416 \sim 2313 \cong 2277$	$4458 \sim 2427 \cong 2427$	$4500 \sim 2229 \cong 2229$	$4542 \sim 2322 \cong 2322$
$4417 \sim 2394 \cong 820$	4459	450	$4543 \sim 2424 \cong 966$
$4418 \sim 2313 \cong 2277$	446	450	$4544 \sim 2322 \cong 2322$
$4419 \sim 2232 \cong 730$	$4461 \sim 2295 \cong 2295$	$4503 \sim 2364 \cong 2364$	45
$4420 \sim 2853 \cong 2853$	$4462 \sim 2427 \cong 2427$	$4504 \sim 2371 \cong 2371$	45
23	$4463 \sim 2295$	$4505 \sim 2209 \cong 2209$	$4547 \sim 821 \cong 821$
$4422 \sim 2367 \cong 2367$	$4464 \sim 2265 \cong 2265$	$4506 \sim 2283 \cong 2283$	$4548 \sim 821 \cong 821$
$4423 \sim 2423 \cong 2423$	$4465 \sim 1091 \cong 731$	$4507 \sim 2364 \cong 2364$	$4549 \sim 821 \cong 821$
61	$4466 \sim 821 \cong 821$	$4508 \sim 2283 \cong 2283$	$4550 \sim 731 \cong 731$
$86 \cong 2286$	$4467 \sim 821 \cong 821$	$4509 \sim 2202 \cong 2202$	$4551 \sim 731 \cong 731$
$4426 \sim 2367 \cong 2367$	$4468 \sim 821 \cong 821$	$4510 \sim 2861 \cong 731$	45
$4427 \sim 2286 \cong 2286$	$4469 \sim 731 \cong 731$	$4511 \sim 2375$	$4553 \sim 731 \cong 731$
$4428 \sim 2205 \cong 775$	$4470 \sim 731 \cong 731$	$4512 \sim 2375$	1
$4429 \sim 2862 \cong 847$	44	45	$5 \sim 1091$
$4430 \sim 2427 \cong 2427$	$4472 \sim 731 \cong$	45	$4556 \sim 821$
$4431 \sim 2376 \cong 739$	$4473 \sim 731$	$4515 \sim 2294 \cong 2294$	$4557 \sim 821 \cong 821$
	$4474 \sim 1091 \cong$	$4516 \sim 2375 \cong 237$	$4558 \sim 821 \cong 821$
55	$4475 \sim 821 \cong 821$	$4517 \sim 2294 \cong 2294$	$4559 \sim 731 \cong 731$
95	$4476 \sim 821 \cong 821$	$4518 \sim 2213 \cong 2213$	$4560 \sim 731 \cong 731$
9	$4477 \sim 821 \cong 821$	$4519 \sim 2852 \cong 849$	$4561 \sim 821$
$295 \cong 2295$	$4478 \sim 731 \cong 731$	$4520 \sim 2369 \cong 2369$	$4562 \sim 731$
$4437 \sim 2214 \cong 748$	$4479 \sim 731$	452	$4563 \sim 731$
$4438 \sim 2853 \cong 2853$	$4480 \sim 821$	452	2887
$4439 \sim 2423 \cong 2423$	$4481 \sim 731$	452	$4565 \sim 2401$
	$4482 \sim 731 \cong 731$	452	$4566 \sim 2401 \cong 2401$
	$4483 \sim 2860 \cong 2212$	4525	$4567 \sim 2401 \cong 2401$
$4442 \sim 2261 \cong 2261$	4484	$4526 \sim 2285$	$4568 \sim 2239 \cong 2239$
86	4485	$4527 \sim 2204 \cong 2204$	$4569 \sim 2320 \cong 2294$
7	$4486 \sim 2374 \cong 821$	$4528 \sim 2841 \cong 2841$	$4570 \sim 2401 \cong 2401$
$4445 \sim 2286 \cong 2286$	$4487 \sim 2212 \cong 2212$	$4529 \sim 2372 \cong 2372$	$4571 \sim 2320 \cong 2294$
$4446 \sim 2205 \cong 775$	$4488 \sim 2293 \cong 2293$	$4530 \sim 2355 \cong 2355$	$4572 \sim 2239 \cong 2239$
$47 \sim 2844 \cong 730$	$4489 \sim 2402 \cong 2402$	$4531 \sim 2372 \cong 237$	$573 \sim 2874 \cong 820$

0	$4784 \sim 2205 \cong 775$	$4826 \sim 820 \cong 820$	
30	$4785 \sim 2286 \cong 2286$	$4827 \sim 820 \cong 820$	$4869 \sim 2262 \cong 750$
$\cong 1090$	$4786 \sim 2423 \cong 2423$	$4828 \sim 820 \cong 820$	$4870 \sim 2887 \cong 731$
$0 \cong 820$	$4787 \sim 2286 \cong 2286$	$4829 \sim 730 \cong 730$	$4871 \sim 2401 \cong 2401$
$6 \sim 820 \cong$	$4788 \sim 2261 \cong 2261$	$4830 \sim 730 \cong 730$	$4872 \sim 2401 \cong 2401$
$4747 \sim 820$	$4789 \sim 2851 \cong 929$	$4831 \sim 820 \cong 820$	$4873 \sim 2401 \cong 2401$
47	$4790 \sim 2365 \cong 2365$	$4832 \sim 730 \cong 730$	$4874 \sim 2239 \cong 2239$
$4749 \sim 730 \cong 730$	6	0	$4875 \sim 2320 \cong 2294$
47	$4792 \sim 2365 \cong 2365$	0	$4876 \sim 2401 \cong 2401$
$4751 \sim 730$	$4793 \sim 2203 \cong 2203$	$4835 \sim 2364 \cong 2364$	$4877 \sim 2320 \cong 2294$
$4752 \sim 730$	$4794 \sim 2284 \cong 2284$	$4836 \sim 2371 \cong 2371$	$4878 \sim 2239 \cong 2239$
$4753 \sim 2841 \cong 2841$	$4795 \sim 2396 \cong 2396$	$4837 \sim 2364 \cong 2364$	$4879 \sim 2860 \cong 2212$
47	$4796 \sim 2284 \cong 2284$	2	$4880 \sim 2402 \cong 2402$
47	$4797 \sim 2234 \cong 2234$	$4839 \sim 2283 \cong 2283$	$4881 \sim 2374 \cong 821$
$4756 \sim 2355 \cong 2355$	$4798 \sim 2852 \cong 849$		$4882 \sim 2402 \cong 2402$
	$4799 \sim 2366 \cong 2366$		$4883 \sim 2240 \cong 2240$
47	$4800 \sim 2369 \cong 2369$	$4842 \sim 2209 \cong 2209$	$4884 \sim 2293 \cong 2293$
$4759 \sim 2372 \cong 2372$	$4801 \sim 2366 \cong 2366$	90	$4885 \sim 2374 \cong 821$
4	$4802 \sim 2204 \cong 2204$	$4844 \sim 820 \cong 820$	$4886 \sim 2293 \cong 2293$
$4761 \sim 2210 \cong 2210$	$4803 \sim 2285 \cong 2285$	$4845 \sim 820 \cong 820$	$4887 \sim 2212 \cong 2212$
0	$4804 \sim 2369 \cong 2369$	$4846 \sim 820 \cong 820$	$4888 \sim 1091 \cong 731$
$4763 \sim 820 \cong 820$	$4805 \sim 2285 \cong 2285$	$4847 \sim 730 \cong 730$	$4889 \sim 821 \cong 821$
$4764 \sim 820 \cong 820$	$4806 \sim 2207 \cong 2207$	$4848 \sim 730 \cong 730$	$4890 \sim 821 \cong 821$
$4765 \sim 820 \cong 820$	$4807 \sim 2847 \cong 929$	$4849 \sim 820 \cong 820$	$4891 \sim 821 \cong 821$
$4766 \sim 730 \cong 730$	48	$4850 \sim 730 \cong 730$	$4892 \sim 731 \cong 731$
$4767 \sim 730 \cong 730$	4809	$4851 \sim 730 \cong 730$	$4893 \sim 731 \cong 731$
$4768 \sim 820 \cong 820$	$4810 \sim 2361 \cong 2361$	$4852 \sim 1090 \cong 1090$	$4894 \sim 821 \cong 821$
$4769 \sim 730 \cong 730$	$4811 \sim 2199 \cong 2199$	$4853 \sim 820 \cong 820$	$4895 \sim 731 \cong 731$
$4770 \sim 730 \cong 730$	$4812 \sim 2280 \cong 2280$	$4854 \sim 820 \cong 820$	$4896 \sim 731 \cong 731$
$4771 \sim 1090 \cong 1090$	$4813 \sim 2398 \cong 2398$	$4855 \sim 820 \cong 820$	$4897 \sim 2874 \cong 820$
$4772 \sim 820 \cong 820$	$4814 \sim 2280 \cong 2280$	$4856 \sim 730 \cong 730$	$4898 \sim 2395 \cong 2395$
$4773 \sim 820 \cong 820$	$4815 \sim 2236 \cong 2236$	$4857 \sim 730 \cong 730$	$4899 \sim 2388 \cong 821$
$4774 \sim 820 \cong 820$	$4816 \sim 1090 \cong 1090$	$4858 \sim 820 \cong 820$	$4900 \sim 2395 \cong 2395$
$4775 \sim 730 \cong 730$	$4817 \sim 820 \cong 820$	$4859 \sim 730 \cong 730$	$4901 \sim 2233 \cong 2233$
$4776 \sim 730 \cong 730$	$4818 \sim 820 \cong 820$	$4860 \sim 730 \cong 730$	$4902 \sim 2307 \cong 2307$
$4777 \sim 820 \cong 820$	$4819 \sim 820 \cong 820$	$4861 \sim 2889 \cong 750$	$4903 \sim 2388 \cong 821$
$4778 \sim 730 \cong 730$	$4820 \sim 730 \cong 730$	$4862 \sim 2403 \cong 2287$	$4904 \sim 2307 \cong 2307$
$4779 \sim 730 \cong 730$	$4821 \sim 730 \cong 730$	$4863 \sim 2424 \cong 966$	$4905 \sim 2226 \cong 820$
$4780 \sim 2853 \cong 2853$	$4822 \sim 820 \cong 820$	$4864 \sim 2403 \cong 2287$	$4906 \sim 2851 \cong 929$
$4781 \sim 2367 \cong 2367$	$4823 \sim 730 \cong 730$	$4865 \sim 2241 \cong 739$	$4907 \sim 2396 \cong 2396$
$4782 \sim 2423 \cong 2423$	$4824 \sim 730 \cong 730$	$4866 \sim 2322 \cong 2322$	$4908 \sim 2365 \cong 2365$
$83 \sim 2367 \cong$	$4825 \sim 1090 \cong 1090$	$4867 \sim 2424 \cong$	$4909 \sim 2396 \cong 2396$

34	$4952 \sim 2361 \cong 2361$	0	$5036 \sim 2226 \cong 820$
4	$4953 \sim 2398 \cong 2398$	$4995 \sim 730 \cong 730$	7
$4912 \sim 2365 \cong 2365$	$4954 \sim 2361 \cong 2361$	$4996 \sim 2852 \cong 849$	5
$4913 \sim 2284 \cong 2284$	$4955 \sim 2199 \cong 2199$	$4997 \sim 2366 \cong 2366$	7
$4914 \sim 2203 \cong 2203$	$4956 \sim 2280 \cong 2280$	9	3
1	$4957 \sim 2398 \cong 2398$	66	7
$4916 \sim 821 \cong 821$		4	1
$4917 \sim 821 \cong 821$	$4959 \sim 2236 \cong 2236$	85	39
21	$4960 \sim 2850 \cong 2850$	369	
9	$4961 \sim 2364 \cong 2364$	50	29
$20 \sim 731$	$4962 \sim 2371 \cong 2371$	$5004 \sim 2207 \cong 2207$	7
$4921 \sim 821 \cong 821$	49	0	$5047 \sim 2368 \cong 739$
$4922 \sim 731$	49	$5006 \sim 820 \cong 820$	7
$4923 \sim 731 \cong 731$		$5007 \sim 820 \cong 820$	48
$4924 \sim 2847 \cong 929$	$4966 \sim 2371 \cong 2371$	$5008 \sim 820 \cong 820$	$5050 \sim 2874 \cong 820$
$4925 \sim 2398 \cong 2398$	$4967 \sim 2283 \cong 2283$	$5009 \sim 730 \cong 730$	21
1	$4968 \sim 2209 \cong 2209$	$5010 \sim 730 \cong 730$	395
8	$4969 \sim 2851 \cong 929$	$5011 \sim 820 \cong 820$	21
$4928 \sim 2236 \cong 2236$	$4970 \sim 2365 \cong 2365$	$5012 \sim 730$	82
0	$4971 \sim 2396 \cong 2396$	$5013 \sim 730 \cong 730$	$5055 \sim 2307 \cong 2307$
1	49	$5014 \sim 1090 \cong 1090$	$5056 \sim 2395 \cong 2395$
0		$5015 \sim 820 \cong 820$	$5057 \sim 2307 \cong 2307$
9		$5016 \sim 820 \cong 820$	$5058 \sim 2233 \cong 2233$
$4933 \sim 2838 \cong 750$		$5017 \sim 820 \cong$	
$4934 \sim 2399 \cong 2399$	49	$5018 \sim 730 \cong$	$5060 \sim 820 \cong 820$
-	$4977 \sim 2234 \cong 2234$	$5019 \sim 730 \cong$	820
-	$4978 \sim 1090 \cong 1090$	$5020 \sim 820 \cong 820$	$5062 \sim 820$
7	$79 \sim 820 \cong 820$	$5021 \sim 730 \cong$	$5063 \sim 730$
$4938 \sim 2271 \cong 2271$	$4980 \sim 820 \cong 820$	$5022 \sim 730$	$5064 \sim 730$
	$4981 \sim 820 \cong 820$	$5023 \sim 2880 \cong 730$	$5065 \sim 820$
1	$4982 \sim 730 \cong 730$	$5024 \sim 2394 \cong 820$	$5066 \sim 730$
$0 \cong 750$	$4983 \sim 730 \cong 730$	$5025 \sim 2422 \cong 820$	5
$4942 \sim 2853 \cong 2853$	$4984 \sim 820 \cong$	$5026 \sim 2394 \cong 820$	$5068 \sim 1090 \cong 1090$
$4943 \sim 2367 \cong 2367$	4985	$5027 \sim 2232 \cong 730$	$5069 \sim 820 \cong 820$
	$4986 \sim 730 \cong 730$	$5028 \sim 2313 \cong 2277$	$5070 \sim 820 \cong 820$
7	90	$5029 \sim 2422 \cong 820$	$5071 \sim 820 \cong 820$
$4946 \sim 2205 \cong 775$	$4988 \sim 820 \cong 820$	$5030 \sim 2313 \cong 2277$	$5072 \sim 730$
$4947 \sim 2286 \cong 2286$	$4989 \sim 820 \cong 820$	$5031 \sim 2260 \cong 802$	$5073 \sim 730$
$4948 \sim 2423 \cong 2423$	$4990 \sim 820 \cong 820$	$5032 \sim 2874 \cong 820$	$5074 \sim 820$
49 ~ $2286 \cong 2286$	$4991 \sim 730 \cong 730$	$5033 \sim 2388 \cong 82$	$5075 \sim 730$
$4950 \sim 2261 \cong 2261$	$4992 \sim 730 \cong 730$	$3395 \cong 2395$	$5076 \sim 730 \cong 730$
$51 \sim 2847 \cong 929$	$4993 \sim 820 \cong 820$	$35 \sim 2388$	$7 \sim 2854$

$5078 \sim 2391 \cong 2391$	$5085 \sim 2206 \cong 748$	$5092 \sim 820 \cong 820$	$5099 \sim 730 \cong 730$
$5079 \sim 2368 \cong 739$	$5086 \sim 1090 \cong 1090$	$5093 \sim 730 \cong 730$	$5100 \sim 730 \cong 730$
$5080 \sim 2391 \cong 2391$	$5087 \sim 820 \cong 820$	$5094 \sim 730 \cong 730$	$5101 \sim 820 \cong 820$
$5081 \sim 2229 \cong 2229$	$5088 \sim 820 \cong 820$	$5095 \sim 1090 \cong 1090$	$5102 \sim 730 \cong 730$
$5082 \sim 2287 \cong 2287$	$5089 \sim 820 \cong 820$	$5096 \sim 820 \cong 820$	$5103 \sim 730 \cong 730$
$5083 \sim 2368 \cong 739$	$5090 \sim 730 \cong 730$	$5097 \sim 820 \cong 820$	
$5084 \sim 2287 \cong 2287$	$5091 \sim 730 \cong 730{ }_{5}$	$\|5098 \sim 820 \cong 820\|$	
5104 through 5832	90 $\simeq 1090$.		

8. Group information

We use the following notation:

- Rels - a list of some relators in the group. In most cases these are the first few relators in the length-lexicographic order, but in some cases (more precisely, for the automata numbered by $744,753,776,840$, 843, 858, 885, 888, 956, 965, 2209, 2210, 2213, 2234, 2261, 2274, $2293,2355,2364,2396,2402,2423)$ there could be some shorter relators. In most cases the given list does not give a presentation of the group (exception are the finite and abelian groups, and the automata numbered by $820,846,870,2212,2240,2294)$.
- SF - these numbers represent the size of the factors $G / \operatorname{Stab}_{G}(n)$, for $n \geq 0$.
- Gr - these numbers represent the first few values of the growth function $\gamma_{G}(n)$, for $n \geq 0$, with respect to the generating system a, $b, c\left(\gamma_{G}(n)\right.$ counts the number of elements of length at most n in G).

Automaton number 1

$a=(a, a) \quad$ Group: Trivial Group
$b=(a, a) \quad$ Contracting: yes
$c=(a, a) \quad$ Self-replicating: yes
Rels: a, b, c
SF: $2^{0}, 2^{0}, 2^{0}, 2^{0}, 2^{0}, 2^{0}, 2^{0}, 2^{0}, 2^{0}$
Gr: $1,1,1,1,1,1,1,1,1,1,1$

Automaton number 730
$a=\sigma(a, a) \quad$ Group: Klein Group
$b=(a, a) \quad$ Contracting: yes
$c=(a, a) \quad$ Self-replicating: no
Rels: $b^{-1} c, a^{2}, b^{2}, a b a b$
SF: $2^{0}, 2^{1}, 2^{2}, 2^{2}, 2^{2}, 2^{2}, 2^{2}, 2^{2}, 2^{2}$
Gr: $1,3,4,4,4,4,4,4,4,4,4$

Automaton number 731
$a=\sigma(b, a) \quad$ Group: \mathbb{Z}
$b=(a, a) \quad$ Contracting: yes
$c=(a, a) \quad$ Self-replicating: yes
Rels: $b^{-1} c, b a^{2}$
SF: $2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}$
Gr: $1,5,9,13,17,21,25,29,33,37,41$

Automaton number 739
$a=\sigma(a, a) \quad$ Group: $C_{2} \ltimes\left(\mathbb{Z} \imath C_{2}\right)$
$b=(b, a) \quad$ Contracting: yes
$c=(a, a) \quad$ Self-replicating: no
Rels: $a^{2}, b^{2}, c^{2},(a c)^{2},(a c b a b)^{2}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{8}, 2^{10}, 2^{12}, 2^{14}, 2^{16}$
Gr: $1,4,9,17,30,47,68,93,122,155,192$

Automaton number 740
$a=\sigma(b, a) \quad$ Group:
$b=(b, a) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: no
Rels: $\left(a^{-1} b\right)^{2},\left(b^{-1} c\right)^{2}, a^{-1} c^{-1} a c^{-1} b^{2}$, $[a, b]^{2}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{9}, 2^{11}, 2^{14}, 2^{16}, 2^{18}$
Gr: $1,7,33,135,495,1725$

Automaton number 741

$a=\sigma(c, a) \quad$ Group:
$b=(b, a) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $c a^{2}, b^{-1} a^{-3} b^{-1} a b a b a$, $b^{-1} a^{-6} b^{-1} a^{-2} b a^{-2} b a^{-2}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: 1,7,29,115,441,1643

Automaton number 744
$a=\sigma(c, b) \quad$ Group:
$b=(b, a) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels:
$\left[a^{2} c a^{-1} b c^{-1} b^{-1} a^{-1}, a c a^{-1} b c^{-1} b^{-1}\right]$,
$a b c b^{-1} a c^{-1} a^{-2} b c b^{-1} a b^{-1} a c a^{-1} b c^{-1} a^{-1} b c^{-1} b^{-1}$,
$a b c b^{-1} a b^{-1} a^{-2} b c b^{-1} a c^{-1} a b a^{-1} b c^{-1} b^{-1} c a^{-1} b c^{-1} b^{-}$
$a b c b^{-1} a b^{-1} a^{-2} b c b^{-1} a b^{-1} a$.
$b a^{-1} b c^{-1} a^{-1} b c^{-1} b^{-1}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,7,37,187,937,4687$

Automaton number 748
$a=\sigma(a, a) \quad$ Group: $D_{4} \times C_{2}$
$b=(c, a) \quad$ Contracting: yes
$c=(a, a) \quad$ Self-replicating: no
Rels: $a^{2}, b^{2}, c^{2}, a c a c, b c b c, a b a b a b a b$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{4}, 2^{4}, 2^{4}, 2^{4}, 2^{4}, 2^{4}$
Gr: $1,4,8,12,15,16,16,16,16,16,16$

Automaton number 749
$a=\sigma(b, a) \quad$ Group:
$b=(c, a) \quad$ Contracting: n / a
$c=(a, a) \quad$ Self-replicating: yes
Rels: $a^{-1} c^{-1} b a b^{-1} a^{-1} c b^{-1} a b$,
$a^{-1} c^{-1} b a c^{-1} a^{-1} c b^{-1} a c$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,7,37,187,937,4667$

Automaton number 750
$a=\sigma(c, a) \quad$ Group: $C_{2} \imath \mathbb{Z}$
$b=(c, a) \quad$ Contracting: yes
$c=(a, a) \quad$ Self-replicating: no
Rels: $c a^{2},\left(a^{-1} b\right)^{2},[b, c]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{7}, 2^{9}, 2^{11}, 2^{13}, 2^{15}$
Gr: $1,7,23,49,87,137,199,273,359$

Automaton number 752
$a=\sigma(b, b) \quad$ Group: virtually \mathbb{Z}^{3}
$b=(c, a) \quad$ Contracting: yes
$c=(a, a) \quad$ Self-replicating: no
Rels: $a^{2}, b^{2}, c^{2},(a c b a b)^{2},(a c a c b)^{2}$, $(a b c)^{2}(a c b)^{2}$, acbcbabacbcbab, abcbacbabcbacb, acbcacbacbcacb, acacbcbacacbcb, abc (bca $)^{2} c b c b a c b$, $a(c b)^{3} a b a(c b)^{3} a b, a b c b c b a c b a b c b c b a c b$, acbcbcacbacbcbcacb
SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{7}, 2^{8}, 2^{10}, 2^{11}, 2^{13}$
Gr: $1,4,10,22,46,84,140,217,319,448$

Automaton number 753
$a=\sigma(c, b) \quad$ Group:
$b=(c, a) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $a b a^{-1} b^{-1} a b^{-1} c a^{-1} b a^{-1} b^{-1} a b^{-1} c a c^{-1} b$.
$a^{-1} b a b^{-1} a^{-1} c^{-1} b a^{-1} b a b^{-1}$,
$a b a^{-1} b^{-1} a b^{-1} c a^{-1} c^{-1} b a^{-1} c^{-1} b a b^{-1} c a$.
$c^{-1} b a^{-1} b a b^{-1} a^{-1} c^{-1} b a^{-1} b^{-1} c a b^{-1} c$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,7,37,187,937,4687$

Automaton number 771
$a=\sigma(c, b) \quad$ Group: \mathbb{Z}^{2}
$b=(b, b) \quad$ Contracting: yes
$c=(a, a) \quad$ Self-replicating: yes
Rels: $b, a^{-1} c^{-1} a c$
SF: $2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}$
Gr: $1,5,13,25,41,61,85,113,145,181,221$
Limit space: 2-dimensional torus T_{2}

Automaton number 775
$a=\sigma(a, a) \quad$ Group: $C_{2} \ltimes I M G\left(\left(\frac{z-1}{z+1}\right)^{2}\right)$
$b=(c, b) \quad$ Contracting: yes
$c=(a, a) \quad$ Self-replicating: yes
Rels: a^{2}, b^{2}, c^{2}, acac, acbcbabcbcabcbabcb SF: $2^{0}, 2^{1}, 2^{2}, 2^{4}, 2^{6}, 2^{9}, 2^{15}, 2^{26}, 2^{48}$
Gr: $1,4,9,17,30,51,85,140,229,367,579$
Limit space:

Automaton number 776
$a=\sigma(b, a) \quad$ Group:
$b=(c, b) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $a b a^{-1} b^{-1} a^{2} c^{-1} a b^{-1} a^{-1} b c b^{-1} a c^{-1} a^{-1} b a^{-1}$. $b^{-1} a^{2} c^{-1} a b^{-1} a^{-1} b c b^{-1} a c^{-1} a c a^{-1} b c^{-1} b^{-1} a b$.
$a^{-1} c a^{-2} b a b^{-1} a^{-1} c a^{-1} b c^{-1} b^{-1} a b a^{-1} c a^{-2} b a b^{-1}$,
$a b a^{-1} b^{-1} a^{2} c^{-1} a b^{-1} a^{-1} b c b^{-1} a c^{-1} a^{-1} c b a^{-1}$.

$b^{-1} a^{2} c^{-1} a b^{-1} a^{-1} b c^{-1} b^{-1} a b a^{-1} c a^{-2}$.
$b a b^{-1} a c a^{-1} b c^{-1} b^{-1} a b a^{-1} c a^{-2} b a b^{-1}$.
$a^{-1} b a^{-1} b^{-1} a^{2} c^{-1} a b^{-1} a^{-1} b c b^{-1}$.
$a b a^{-1} c a^{-2} b a b^{-1} c^{-1}$
SF: $2^{0}, 2^{1}, 2^{2}, 2^{4}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}$
Gr: $1,7,37,187,937,4687$

Automaton number 777
$a=\sigma(c, a) \quad$ Group:
$b=(c, b) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $c a^{2}, b^{-1} a^{5} b^{-1} a^{-1} b a^{-3} b a^{-1}$
SF: $2^{0}, 2^{1}, 2^{2}, 2^{4}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}$
Gr: $1,7,29,115,441,1695$

Automaton number 779
$a=\sigma(b, b) \quad$ Group:
$b=(c, b) \quad$ Contracting: yes
$c=(a, a) \quad$ Self-replicating: yes
Rels: a^{2}, b^{2}, c^{2}, acabcabcbabacabcabcbab, acbcbacacabcbcabcbabcb
SF: $2^{0}, 2^{1}, 2^{2}, 2^{4}, 2^{6}, 2^{9}, 2^{15}, 2^{26}, 2^{48}$
Gr: $1,4,10,22,46,94,190,382,766,1534,3070,6120$

Automaton number 780

$a=\sigma(c, b) \quad$ Group:
$b=(c, b) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} b\right)^{2},\left[b a^{-1}, c\right]$
SF: $2^{0}, 2^{1}, 2^{2}, 2^{4}, 2^{6}, 2^{9}, 2^{15}, 2^{27}, 2^{49}$
Gr: $1,7,35,159,705,3107$

Automaton number 802
$a=\sigma(a, a) \quad$ Group: $C_{2} \times C_{2} \times C_{2}$
$b=(c, c) \quad$ Contracting: yes
$c=(a, a) \quad$ Self-replicating: no
Rels: $a^{2}, b^{2}, c^{2},[a, b],[a, c],[b, c]$ SF: $2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{3}, 2^{3}, 2^{3}, 2^{3}, 2^{3}$
Gr: $1,4,7,8,8,8,8,8,8,8,8$

Automaton number 820
$a=\sigma(a, a) \quad$ Group: D_{∞}
$b=(b, a) \quad$ Contracting: yes
$c=(b, a) \quad$ Self-replicating: yes
Rels: $b^{-1} c, a^{2}, b^{2}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}$
Gr: $1,3,5,7,9,11,13,15,17,19,21$

Automaton number 821
$a=\sigma(b, a) \quad$ Group: Lamplighter group $\mathbb{Z} \imath C_{2}$
$b=(b, a) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $b^{-1} c,\left(a^{-1} b\right)^{2},[a, b]^{2}$,
$a^{-3} b a b a^{-2} b^{-1} a^{2} b$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{6}, 2^{8}, 2^{9}, 2^{10}, 2^{11}$
Gr: $1,5,15,39,92,208,452,964,2016$

Automaton number 838
$a=\sigma(a, a) \quad$ Group: $C_{2} \ltimes\left\langle s, t \mid s^{2}=t^{2}\right\rangle$
$b=(a, b) \quad$ Contracting: yes
$c=(b, a) \quad$ Self-replicating: no
Rels: a^{2}, b^{2}, c^{2}, $a b c a c b$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{7}, 2^{9}, 2^{11}, 2^{13}, 2^{15}$
Gr: $1,4,10,19,31,46,64,85,109,136$

Automaton number 840
$a=\sigma(c, a) \quad$ Group:
$b=(a, b) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $a b a c^{-1} a^{-2} b a c^{-1} a c a^{-1} b^{-1} c a^{-1} b^{-1}$, $a b a c^{-1} a^{-2} c a c^{-1} b^{-1} c a c a^{-1} b^{-1} c^{-1} b c a^{-1} c^{-1}$, $a c a c^{-1} b^{-1} c a^{-2} b a c^{-1} a c^{-1} b c a^{-2} b^{-1}$, $a c a c^{-1} b^{-1} c a^{-2} c a c^{-1} b^{-1} c a c^{-1} b c a^{-1} c^{-2} b c a^{-1} c^{-1}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{7}, 2^{10}, 2^{15}, 2^{25}, 2^{41}$
Gr: $1,7,37,187,937,4687$

Automaton number 843
$a=\sigma(c, b) \quad$ Group:
$b=(a, b) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $a c a b^{-1} a^{-2} c a b^{-1} a b a^{-1} c^{-1} b a^{-1} c^{-1}$, $a c a b^{-1} a^{-2} c b^{-1} a b^{-1} c a b a^{-1} c^{-2} b a^{-1} b c^{-1}$,
$a c b^{-1} a b^{-1} c a^{-2} c a b^{-1} a c^{-1} b a^{-1} b c^{-1} b a^{-1} c^{-1}$,
$a c b^{-1} a b^{-1} c a^{-2} c b^{-1} a b^{-1} c a c^{-1} b a^{-1} b c^{-2} b a^{-1} b c^{-1}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{8}, 2^{14}, 2^{24}, 2^{43}, 2^{81}$
Gr: $1,7,37,187,937,4687$

Automaton number 846

$a=\sigma(c, c) \quad$ Group: $C_{2} * C_{2} * C_{2}$
$b=(a, b) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: no
Rels: a^{2}, b^{2}, c^{2}
SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{7}, 2^{10}, 2^{13}, 2^{16}, 2^{19}$
Gr: $1,4,10,22,46,94,190,382,766,1534$

Automaton number 847
$a=\sigma(a, a) \quad$ Group: D_{4}
$b=(b, b) \quad$ Contracting: yes
$c=(b, a) \quad$ Self-replicating: no
Rels: b, a^{2}, c^{2}, acacacac
SF: $2^{0}, 2^{1}, 2^{3}, 2^{3}, 2^{3}, 2^{3}, 2^{3}, 2^{3}, 2^{3}$
Gr: $1,3,5,7,8,8,8,8,8,8,8$

Automaton number 849
$a=\sigma(c, a) \quad$ Group:
$b=(b, b) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $b,\left[a c^{-1} a^{-1}, c\right]$,
$\left[a^{2}, c^{-1}\right] \cdot\left[c, a^{-2}\right],\left[a^{-1}, c^{-2}\right] \cdot\left[a^{-1}, c^{2}\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,5,17,53,153,421,1125,2945,7589$

Automaton number 852
$a=\sigma(c, b) \quad$ Group: $\operatorname{IMG}\left(z^{2}-1\right)$
$b=(b, b) \quad$ Contracting: yes
$c=(b, a) \quad$ Self-replicating: yes
Rels: $b,\left[a c^{-1} a^{-1}, c\right]$,
$\left[c, a^{2}\right] \cdot\left[c, a^{-2}\right],\left[a^{-1}, c^{-2}\right] \cdot\left[a^{-1}, c^{2}\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,5,17,53,153,421,1125,2945,7545$

Limit space:

Automaton number 856

$a=\sigma(a, a) \quad$ Group: $C_{2} \ltimes G_{2850}$
$b=(c, b) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: a^{2}, b^{2}, c^{2}, acbcacbcabcacacacb
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,4,10,22,46,94,190,382,766$, 1525,3025,5998,11890,23532

Automaton number 857
$a=\sigma(b, a) \quad$ Group:
$b=(c, b) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} c\right)^{2},\left(a^{-1} b\right)^{4},\left(a^{-1} b^{-1} a c\right)^{2}$, $\left(b^{-1} c\right)^{4}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: $1,7,35,165,758,3460$

Automaton number 858
$a=\sigma(c, a) \quad$ Group:
$b=(c, b) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $a b c a^{-1} c^{-1} a b^{-1} a^{2} c^{-1} b^{-1} a^{-1} b c a^{-1} c^{-1} a$. $b^{-1} a^{2} c^{-1} b^{-1} a b c a^{-2} b a^{-1} c a c^{-1} b^{-1} a^{-1}$. $b c a^{-2} b a^{-1} c a c^{-1} b^{-1}$,
$a b c a^{-1} c^{-1} a b^{-1} a^{2} c^{-1} b^{-1} a^{-1} c b a^{-1} b^{-1} a b^{-1} a$.

$b c a^{-2} b a^{-1} c a c^{-1} b^{-1} a^{-1} b a^{-1} b a b^{-1} c^{-1}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{90}, 2^{176}$
Gr: $1,7,37,187,937,4687$

Automaton number 860
$a=\sigma(b, b) \quad$ Group:
$b=(c, b) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: a^{2}, b^{2}, c^{2}, acbacacabcabab
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,4,10,22,46,94,190,375,731,1422,2762,5350$

Automaton number 861
$a=\sigma(c, b) \quad$ Group:
$b=(c, b) \quad$ Contracting: n / a
$c=(b, a) \quad$ Self-replicating: yes Rels: $\left(a^{-1} b\right)^{2},\left(b^{-1} c\right)^{2},[a, b]^{2},[b, c]^{2}$ SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: 1,7,33,143,599,2485

Automaton number 864
$a=\sigma(c, c) \quad$ Group:
$b=(c, b) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $a^{2}, b^{2}, c^{2}, a b c a b c b a b c b a c b a b a b$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,4,10,22,46,94,190,382,766,1525$,
3025,5998,11890

Automaton number 866
$a=\sigma(b, a) \quad$ Group:
$b=(a, c) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $\left(c a^{-1}\right)^{2}, b a^{-2} c a b^{-1} a b^{-1} c^{-1} a b a^{-1}$,
$c a b^{-1} c b^{-1} a^{-1} c b c^{-1} b a^{-2}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{9}, 2^{15}, 2^{26}, 2^{48}, 2^{92}$
Gr: $1,7,35,165,769,3575$

Automaton number 869
$a=\sigma(b, b) \quad$ Group:
$b=(a, c) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: a^{2}, b^{2}, c^{2}, acbcacbcabcacacacb
SF: $2^{0}, 2^{1}, 2^{3}, 2^{4}, 2^{6}, 2^{9}, 2^{15}, 2^{26}, 2^{48}$
Gr: $1,4,10,22,46,94,190,382,766,1525$

Automaton number 870
$a=\sigma(c, b) \quad$ Group: $B S(1,3)$
$b=(a, c) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $a^{-1} c a^{-1} b,\left(b^{-1} a\right)^{b^{-1}}\left(b^{-1} a\right)^{-3}$ SF: $2^{0}, 2^{1}, 2^{3}, 2^{4}, 2^{6}, 2^{8}, 2^{10}, 2^{12}, 2^{14}$
Gr: $1,7,33,127,433,1415$

Automaton number 874
$a=\sigma(a, a) \quad$ Group: $C_{2} \ltimes G_{2852}$
$b=(b, c) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $a^{2}, b^{2}, c^{2}, a b c a b c a c b a c b$, abcbcabcacbcbacb
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,4,10,22,46,94,184,352,664,1244,2320,4288$

Automaton number 875
$a=\sigma(b, a) \quad$ Group:
$b=(b, c) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} c\right)^{2},\left(b^{-1} c\right)^{2},\left(a^{-1} b\right)^{4}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: 1,7,33,143,607,2563

Automaton number 876

$a=\sigma(c, a) \quad$ Group:
$b=(b, c) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $a^{-2} b c b^{-2} a^{2} c^{-1} b, a^{-2} c b^{-1} a^{2} c^{-2} b c$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,7,37,187,937,4667$

Automaton number 878
$a=\sigma(b, b) \quad$ Group: $C_{2} \ltimes I M G\left(1-\frac{1}{z^{2}}\right)$
$b=(b, c) \quad$ Contracting: yes
$c=(b, a) \quad$ Self-replicating: yes
Rels: a^{2}, b^{2}, c^{2}, abcabcacbacb, abcbcabcacbcbacb
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,4,10,22,46,94,184,352,664,1244,2296,4198,7612$

Limit space:

Automaton number 879
$a=\sigma(c, b) \quad$ Group:
$b=(b, c) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} b\right)^{2}, a^{-1} c a^{-1} c b^{-1} a c^{-1} a c^{-1} b$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: $1,7,35,165,769,3567$

Automaton number 882
$a=\sigma(c, c) \quad$ Group:
$b=(b, c) \quad$ Contracting: n / a
$c=(b, a) \quad$ Self-replicating: yes
Rels: $a^{2}, b^{2}, c^{2}, a b c a b c a c b a c b$, abcbcabcacbcbacb
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: 1,4,10,22,46,94,184,352,664,1244

Automaton number 883
$a=\sigma(a, a) \quad$ Group: $C_{2} \ltimes G_{2841}$
$b=(c, c) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $a^{2}, b^{2}, c^{2}, a c b c b a c b c a c b c a b c b c a b a b$, acbacbcacabacbacbcacab
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{9}, 2^{14}, 2^{24}, 2^{43}, 2^{80}$
Gr: $1,4,10,22,46,94,190,382,766,1534,3070,6120$

Automaton number 884

$a=\sigma(b, a) \quad$ Group:
$b=(c, c) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} c\right)^{2},\left(b^{-1} c\right)^{2},\left[b, a c^{-1}\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{9}, 2^{15}, 2^{27}, 2^{49}, 2^{93}$
Gr: 1,7,33,135,529,2051

Automaton number 885
$a=\sigma(c, a) \quad$ Group:
$b=(c, c) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $a c b a^{-1} b^{-1} a c^{-1} a^{-1} c b a^{-1} b^{-1} a c^{-1} a c a^{-1}$.
$b a b^{-1} c^{-1} a^{-1} c a^{-1} b a b^{-1} c^{-1}$,
$a c b a^{-1} b^{-1} a c^{-1} a^{-1} c a^{-1} c^{-1} b^{-1} a^{3} c^{-1} a c a^{-1} b$.
$a b^{-1} c^{-1} a^{-1} c a^{-3} b c a c^{-1}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: 1,7,37,187,937,4687

Automaton number 887
$a=\sigma(b, b) \quad$ Group:
$b=(c, c) \quad$ Contracting: n / a
$c=(b, a) \quad$ Self-replicating: yes
Rels: a^{2}, b^{2}, c^{2}, babacbcbacbcacbcabcbca, bacacbcabcabacacbcabca
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{9}, 2^{14}, 2^{24}, 2^{43}, 2^{80}$
Gr: 1,4,10,22,46,94,190,382,766,1534,3070,6120

Automaton number 888

$a=\sigma(c, b) \quad$ Group:
$b=(c, c) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $a c a^{-1} b a^{-2} c a^{-1} b a b^{-1} a c^{-1} b^{-1} a c^{-1}$, $a c a^{-1} b a^{-3} b a b^{-1} a^{2} b^{-1} a c^{-1} a^{-1} b a^{-1} b^{-1} a$,
$b a b^{-1} a^{-1} c a^{-1} b^{2} a^{-1} b^{-1} a b^{-1} a c^{-1}$,
$b a b^{-1} a^{-2} b a b^{-1} a b a^{-2} b^{-1} a$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,7,37,187,937,4687$

Automaton number 891

$a=\sigma(c, c) \quad$ Group: $C_{2} \ltimes$ Lampighter
$b=(c, c) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $a^{2}, b^{2}, c^{2}, a b a b,(a c b)^{4}$, $[a c a c a, b c a c b],[a c a c a, b c b c b]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{7}, 2^{9}, 2^{10}, 2^{11}, 2^{12}$
Gr: $1,4,9,17,30,51,82,128,198,304$

Automaton number 920
$a=\sigma(b, a) \quad$ Group:
$b=(a, b) \quad$ Contracting: n / a
$c=(c, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} b\right)^{2},[a, b]^{2},\left(a^{-1} c^{-1} a b\right)^{2}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{9}, 2^{15}, 2^{26}, 2^{48}, 2^{92}$
Gr: $1,7,35,165,757,3447$

Automaton number 923
$a=\sigma(b, b) \quad$ Group:
$b=(a, b) \quad$ Contracting: yes
$c=(c, a) \quad$ Self-replicating: yes
Rels: a^{2}, b^{2}, c^{2}, abcabcbabcbacbabab
SF: $2^{0}, 2^{1}, 2^{3}, 2^{4}, 2^{6}, 2^{9}, 2^{15}, 2^{26}, 2^{48}$
Gr: 1,4,10,22,46,94,190,382,766,
1525,3025,5998,11890

Automaton number 929
$a=\sigma(b, a) \quad$ Group:
$b=(b, b) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $b, a^{-3} c a c^{-1} a c^{-1} a c$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,5,17,53,161,475,1387$

Automaton number 937
$a=\sigma(a, a) \quad$ Group: $C_{2} \ltimes G_{929}$
$b=(c, b) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: a^{2}, b^{2}, c^{2}, abcabcacbacb, abcbcabcacbcbacb
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: 1,4,10,22,46,94,184,352,664,1244

Automaton number 938
$a=\sigma(b, a) \quad$ Group:
$b=(c, b) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $a^{-2} b c b^{-2} a^{2} c^{-1} b, a^{-2} c b^{-1} a^{2} c^{-2} b c$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,7,37,187,937,4667$

Automaton number 939
$a=\sigma(c, a) \quad$ Group:
$b=(c, b) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} c\right)^{2},\left(a^{-2} c b\right)^{2},[a, c]^{2}$, $\left[c a^{-1}, b a^{-1} b\right], a^{-1} b^{-1} a b c^{-1} a^{-1} b c a^{-1} b$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: $1,7,35,165,757,3427$

Automaton number 941
$a=\sigma(b, b) \quad$ Group: $C_{2} \ltimes \operatorname{IMG}\left(z^{2}-1\right)$
$b=(c, b) \quad$ Contracting: yes
$c=(c, a) \quad$ Self-replicating: yes
Rels: $a^{2}, b^{2}, c^{2}, a b c a b c a c b a c b$, abcbcabcacbcbacb
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,4,10,22,46,94,184,352,664,1244$

Limit space:

Automaton number 942
$a=\sigma(c, b) \quad$ Group: Contains Lamplighter group
$b=(c, b) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} b\right)^{2},\left(b^{-1} c\right)^{2},[a, b]^{2},[b, c]^{2}$,

$$
\left(a^{-1} c\right)^{4}
$$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: $1,7,33,143,597,2465$

Automaton number 956
$a=\sigma(b, a) \quad$ Group:
$b=(b, c) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $a c b a^{-1} b^{-1} a b^{-1} a^{-1} c b a^{-1} b^{-1} a b^{-1} a b a^{-1}$.
$b a b^{-1} c^{-1} a^{-1} b a^{-1} b a b^{-1} c^{-1}$,
$a c b a^{-1} b^{-1} a b^{-1} a^{-1} b^{-1} c a^{-1} c a b a^{-1} b a b^{-1} c^{-1}$.
$a^{-2} b c^{-1} b a b a^{-1} b a b^{-1} c^{-1} a^{-1} b^{-1} c b^{-1} a^{2} c b$.

$a^{-1} b^{-1} a b^{-1} a^{-1} c^{-1} a c^{-1} b$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{90}, 2^{176}$
Gr: $1,7,37,187,937,4687$

Automaton number 957
$a=\sigma(c, a) \quad$ Group:
$b=(b, c) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} c\right)^{2},\left(b^{-1} c\right)^{2},[a, c]^{2}$,
$[b, c]^{2},\left(a^{-1} c\right)^{4}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: $1,7,33,143,599,2485$

Automaton number 959
$a=\sigma(b, b) \quad$ Group:
$b=(b, c) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $a^{2}, b^{2}, c^{2}, a b c a b c b a b c b a c b a b a b$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,4,10,22,46,94,190,382,766,1525$

Automaton number 960
$a=\sigma(c, b) \quad$ Group:
$b=(b, c) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} b\right)^{2},\left(a^{-2} b c\right)^{2},\left(a^{-1} c\right)^{4}$, $\left(b^{-1} c\right)^{4}$ SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: $1,7,35,165,758,3460$

Automaton number 963
$a=\sigma(c, c) \quad$ Group:
$b=(b, c) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: a^{2}, b^{2}, c^{2}, acbacacabcabab SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,4,10,22,46,94,190,375,731$,
1422,2762,5350,10322

Automaton number 965
$a=\sigma(b, a) \quad$ Group:
$b=(c, c) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $a c b^{-1} a^{-1} c b^{-1} a b c^{-1} a^{-1} b c^{-1}$, $a c b^{-1} a^{-1} c a c^{-1} b^{-1} c b c^{-2} b c a^{-1} c^{-1}$,
$a c a c^{-1} b^{-1} c a^{-2} c b^{-1} a^{2} c^{-1} b c a^{-1} c^{-1} a^{-1} b c^{-1}$,
$a c a c^{-1} b^{-1} c a^{-2} c a c^{-1} b^{-1} c a c^{-1} b c a^{-1} c^{-2} b c a^{-1} c^{-1}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: 1,7,37,187,937,4687

Automaton number 966
$a=\sigma(c, a) \quad$ Group:
$b=(c, c) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: no
Rels: $\left(a^{-1} c\right)^{2},\left(b^{-1} c\right)^{2},\left[c a^{-1}, b\right]$,
$[a, b]^{2},\left(a^{-2} b^{2}\right)^{2},\left(a^{-1} b\right)^{4},\left[\left[c^{-1}, a^{-1}\right], c b^{-1}\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{9}, 2^{11}, 2^{14}, 2^{16}, 2^{18}$
Gr: $1,7,33,135,495,1725$

Automaton number 968

$a=\sigma(b, b) \quad$ Group: Virtually \mathbb{Z}^{5}
$b=(c, c) \quad$ Contracting: yes
$c=(c, a) \quad$ Self-replicating: no
Rels: $a^{2}, b^{2}, c^{2},(a b c)^{2}(a c b)^{2}$,
$(c b c b a b a)^{2},(c a c b c b a)^{2}$,
$(c a b a c b a b a)^{2},\left((a c)^{4} b\right)^{2}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{9}, 2^{13}, 2^{17}, 2^{21}, 2^{25}$

Gr: $1,4,10,22,46,94,184,338,600,1022$

Automaton number 969
$a=\sigma(c, b) \quad$ Group:
$b=(c, c) \quad$ Contracting: n / a
$c=(c, a) \quad$ Self-replicating: yes
Rels: $a^{-1} c^{-1} b a b^{-1} a^{-1} c b^{-1} a b$, $a^{-1} c^{-1} b a c^{-1} a^{-1} c b^{-1} a c$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,7,37,187,937,4667$

Automaton number 1090
$a=\sigma(a, a) \quad$ Group: C_{2}
$b=(b, b) \quad$ Contracting: yes
$c=(b, b) \quad$ Self-replicating: no
Rels: b, c, a^{2}
SF: $2^{0}, 2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{1}$
Gr: $1,2,2,2,2,2,2,2,2,2,2$

Automaton number 2193
$a=\sigma(c, b) \quad$ Group: Contains Lamplighter group
$b=\sigma(a, a) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $[b, c], b^{2} c^{2}, a^{4}, b^{4}$, $\left(a^{2} b\right)^{2},(a b c)^{2},\left(a^{2} c\right)^{2}$ SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{7}, 2^{9}, 2^{10}, 2^{11}, 2^{12}$
Gr: $1,7,27,65,120,204,328$,

512,792,1216

Automaton number 2199
$a=\sigma(c, a) \quad$ Group:
$b=\sigma(b, a) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $c a^{2},\left[a^{-1} b, a b^{-1}\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,7,29,115,417,1505$

Automaton number 2202
$a=\sigma(c, b) \quad$ Group:
$b=\sigma(b, a) \quad$ Contracting: no
$c=(a, a)$ Self-replicating: yes
Rels: $c a b^{2} a$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,7,37,177,833,3909$

Automaton number 2203
$a=\sigma(a, c) \quad$ Group:
$b=\sigma(b, a) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $c a^{2},\left[c^{-2} a b, b c^{-2} a\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,7,29,115,441,1695$

Automaton number 2204
$a=\sigma(b, c) \quad$ Group:
$b=\sigma(b, a) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $b c b a^{2},\left[b^{-1} a, b a^{-1}\right]$,
$a^{-1} b a^{2} b a^{-2} b^{-2} a b a^{2} b^{-1} a^{-2}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,7,37,177,825,3781$

Automaton number 2207
$a=\sigma(b, a) \quad$ Group:
$b=\sigma(c, a) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $\left[b^{-1} a, b a^{-1}\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,7,37,187,929,4599$

Automaton number 2209
$a=\sigma(a, b) \quad$ Group:
$b=\sigma(c, a) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $a c a^{-2} c^{-1} a c a c^{-1} a^{-2} c a c^{-1}$,
$a c a^{-2} b^{-1} a^{-1} c a c a c^{-1} a^{-2} c^{-1} a b a c^{-1}$,
$a c a^{-1} b^{-1} a^{-1} c^{2} a^{-1} c^{-1} a c^{-1} a b a c^{-1} a^{-2} c a c^{-1}$,
$a c a^{-1} b^{-1} a^{-1} c^{2} a^{-1} b^{-1} a^{-1} c a c^{-1}$.

$a b a c^{-1} a^{-2} c^{-1} a b a c^{-1}$,
$b c a^{-1} c^{-1} a b^{-1} c a^{-1} c^{-1} a b a^{-1} c a$.
$c^{-1} b^{-1} a^{-1} c a c^{-1}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,7,37,187,937,4687$

Automaton number 2210
$a=\sigma(b, b) \quad$ Group:
$b=\sigma(c, a) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $a c b c^{-1} b^{-1} a^{-1} c b c^{-1} b^{-1} a b c b^{-1} c^{-1} a^{-1} b c b^{-1} c^{-1}$, $b c b c^{-1} b^{-2} c b c^{-1} b c b^{-2} c^{-1}$,
$b c b c^{-1} b^{-2} c a^{-1} b^{-1} c a b c b^{-1} c^{-1} a^{-1} c^{-1} b a c^{-1}$,
$b c a^{-1} b^{-1} c a b^{-2} c b c^{-1} b a^{-1} c^{-1} b a b^{-1} c^{-1}$,

$b c a^{-1} b^{-1} c a b^{-2} c a^{-1} b^{-1} c a b a^{-1} c^{-1}$.
$b a c^{-1} a^{-1} c^{-1} b a c^{-1}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{8}, 2^{13}, 2^{23}, 2^{42}, 2^{79}$
Gr: 1,7,37,187,937,4687

Automaton number 2212
$a=\sigma(a, c) \quad$ Group: Klein bottle group
$b=\sigma(c, a) \quad$ Contracting: yes
$c=(a, a) \quad$ Self-replicating: no
Rels: $c a^{2}, c b^{2}$
SF: $2^{0}, 2^{1}, 2^{2}, 2^{4}, 2^{6}, 2^{8}, 2^{10}, 2^{12}, 2^{14}$
Gr: $1,7,19,37,61,91,127,169,217,271,331$

Automaton number 2213
$a=\sigma(b, c) \quad$ Group:
$b=\sigma(c, a) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $b c b c^{-1} b^{-2} c b c^{-1} b c b^{-2} c^{-1}$,
$a c b c^{-1} b^{-1} a^{-1} c b c^{-1} b^{-1} a b c b^{-1} c^{-1}$.
$a^{-1} b c b^{-1} c^{-1}$,
$a c b c^{-1} b^{-1} a^{-1} b a^{-1} c^{-1} b^{2} c^{-1} a b c b^{-1} c^{-1} a^{-1}$.

$c b^{-2} c a b^{-1}$,
$a b a^{-1} c^{-1} b^{2} c^{-1} a^{-1} c b c^{-1} b^{-1}$.
$a c b^{-2} c a b^{-1} a^{-1} b c b^{-1} c^{-1}$,
SF: $2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{5}, 2^{8}, 2^{14}, 2^{25}, 2^{47}$
Gr: $1,7,37,187,937,4687$

Automaton number 2229
$a=\sigma(c, b) \quad$ Group: $C_{4} \ltimes \mathbb{Z}^{2}$
$b=\sigma(b, b) \quad$ Contracting: yes
$c=(a, a) \quad$ Self-replicating: no
Rels: $b^{2},(a b)^{2},(b c)^{2}, a^{4}, c^{4}$,
$[a, c]^{2},\left(a^{-1} c\right)^{4},(a c)^{4}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{9}, 2^{11}, 2^{13}, 2^{15}, 2^{17}$
Gr: $1,6,20,54,128,270,510,886,1452$

Automaton number 2233
$a=\sigma(a, a) \quad$ Group:
$b=\sigma(c, b) \quad$ Contracting: yes
$c=(a, a) \quad$ Self-replicating: yes
Rels: $a^{2}, c^{2}, a b a b, a c a c, c b^{2} a c b c b c a b^{2} c a b c b a$ SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{9}, 2^{15}, 2^{26}, 2^{48}, 2^{91}$
Gr: 1,5,14,32,68,140,284,565,1106

Automaton number 2234
$a=\sigma(b, a) \quad$ Group:
$b=\sigma(c, b) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $a c^{-1} a^{2} c^{-1} a b^{-1} a^{-1} c^{-1} a^{2} c^{-1} a b^{-1} a b$.
$a^{-1} c a^{-2} c a^{-1} b a^{-1} c a^{-2} c$,
$a c^{-1} a^{2} c^{-1} a b^{-1} a^{-1} c b a c^{-1} a b^{-1} a^{-1} c^{-1} a b a^{-1}$.
$c a^{-1} b^{-1} a b a^{-1} c a^{-2} c a^{-1} b a c^{-1} a b^{-1} a^{-1} c a$.

$b a^{-1} c a^{-1} b^{-1} c^{-1}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: 1,7,37,187,937,4687

Automaton number 2236
$a=\sigma(a, b) \quad$ Group:
$b=\sigma(c, b) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $\left[b^{-1} a, b a^{-1}\right], a^{-1} c^{-1} a c b^{-1} a c^{-1} a^{-1} c b$, $a^{-1} c a c^{-1} b^{-1} a c a^{-1} c^{-1} b$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,7,37,187,929,4579$

Automaton number 2237
$a=\sigma(b, b) \quad$ Group:
$b=\sigma(c, b) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: no
Rels: $\left[b^{-1} a, b a^{-1}\right],\left[c^{-1} a, c a^{-1}\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{9}, 2^{15}, 2^{26}, 2^{45}, 2^{81}$
Gr: $1,7,37,187,921,4511$

Automaton number 2239
$a=\sigma(a, c) \quad$ Group:
$b=\sigma(c, b) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $c a^{2},\left[c a^{-2} c b a^{-1}, a^{-1} c a^{-2} c b\right]$
SF: $2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{5}, 2^{8}, 2^{14}, 2^{25}, 2^{47}$
Gr: $1,7,29,115,441,1695$

Automaton number 2240
$a=\sigma(b, c) \quad$ Group: F_{3}
$b=\sigma(c, b) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: no
Rels:
SF: $2^{0}, 2^{1}, 2^{2}, 2^{4}, 2^{7}, 2^{10}, 2^{14}, 2^{21}, 2^{34}$
Gr: $1,7,37,187,937,4687$

Automaton number 2261
$a=\sigma(b, a) \quad$ Group:
$b=\sigma(c, c) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: yes
Rels: $a c a c^{-1} a^{-2} c a c^{-1} a c a^{-2} c^{-1}$,
$a c a c^{-1} a^{-2} c b a^{-1} c^{-1} a c a^{-1} c b^{-1} a c a^{-1} c^{-1}$.
$b c^{-1} a c^{-1} a^{-1} c a b^{-1} c^{-1}$,
$b c a c^{-1} a^{-1} b^{-1} c a c^{-1} a^{-1} b a c a^{-1} c^{-1} b^{-1} a c a^{-1} c^{-1}$

SF: $2^{0}, 2^{1}, 2^{2}, 2^{4}, 2^{6}, 2^{9}, 2^{15}, 2^{26}, 2^{48}$
Gr: $1,7,37,187,937,4687$

Automaton number 2265
$a=\sigma(c, b) \quad$ Group:
$b=\sigma(c, c) \quad$ Contracting: no
$c=(a, a) \quad$ Self-replicating: no
Rels: $\left[b^{-1} a, b a^{-1}\right], a^{-1} c a^{-1} c b^{-1} a c^{-1} a c^{-1} b$,
$a^{-1} c b^{-1} c b^{-1} a c^{-1} b c^{-1} b$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{9}, 2^{14}, 2^{22}, 2^{36}, 2^{63}$
Gr: $1,7,37,187,929,4579,22521$

Automaton number 2271
$a=\sigma(c, a) \quad$ Group:
$b=\sigma(a, a) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $\left[b^{-1} a, b a^{-1}\right], a^{-1} c^{2} a^{-1} b^{-1} a^{2} c^{-2} b$,
$a^{-1} c^{2} b^{-2} a b c^{-2} b$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,7,37,187,929,4583$

Automaton number 2274
$a=\sigma(c, b) \quad$ Group:
$b=\sigma(a, a) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $a c^{3} b^{-1} c^{-2} b^{3} c^{-3} a^{-1} c^{3} b^{-1} c^{-2} b^{3} c^{-3} a c^{3} b^{-3}$. $c^{2} b c^{-3} a^{-1} c^{3} b^{-3} c^{2} b c^{-3}$,
$a c^{3} b^{-1} c^{-2} b^{3} c^{-3} a^{-1} c^{2} a b^{-2} c^{-1} b^{3} c^{-3} a c^{3} b^{-3}$.
$c^{2} b c^{-3} a^{-1} c^{3} b^{-3} c b^{2} a^{-1} c^{-2}$,

$b c^{3} b^{-1} c^{-2} b^{3} c^{-3} b^{-1} c^{3} b^{-1} c^{-2} b^{3} c^{-3}$.
$b c^{3} b^{-3} c^{2} b c^{-3} b^{-1} c^{3} b^{-3} c^{2} b c^{-3}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: 1,7,37,187,937,4687

Automaton number 2277
$a=\sigma(c, c) \quad$ Group: $C_{2} \ltimes(\mathbb{Z} \times \mathbb{Z})$
$b=\sigma(a, a) \quad$ Contracting: yes
$c=(b, a) \quad$ Self-replicating: yes
Rels: $a^{2}, b^{2}, c^{2},(a c b)^{2}$
SF: $2^{0}, 2^{1}, 2^{2}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}$
Gr: $1,4,10,19,31,46,64,85,109,136,166$
Limit space: 2-dimensional sphere S_{2}

Automaton number 2280
$a=\sigma(c, a) \quad$ Group:
$b=\sigma(b, a) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} b\right)^{2},\left(b^{-1} c\right)^{2},[a, b]^{2},[b, c]^{2}$,
$\left(a^{-1} c\right)^{4}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: $1,7,33,143,597,2465$

Automaton number 2283
$a=\sigma(c, b) \quad$ Group:
$b=\sigma(b, a) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} b\right)^{2},\left(b^{-1} c\right)^{2},[b, c]^{2}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: $1,7,33,143,604,2534$

Automaton number 2284
$a=\sigma(a, c) \quad$ Group:
$b=\sigma(b, a) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $\left(b^{-1} c\right)^{2},\left(a^{-1} b\right)^{4},\left(b c^{-2} a\right)^{2}$,
$\left(a^{-1} c\right)^{4}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: $1,7,35,165,758,3460$

Automaton number 2285
$a=\sigma(b, c) \quad$ Group:
$b=\sigma(b, a) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $\left(b^{-1} c\right)^{2},\left[b^{-1} a, b a^{-1}\right],\left[\left(c^{-1} a\right)^{2}, c^{-1} b\right]$,
$\left[\left(c a^{-1}\right)^{2}, c b^{-1}\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: $1,7,35,165,761,3479$

Automaton number 2286
$a=\sigma(c, c) \quad$ Group:
$b=\sigma(b, a) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $\left(b^{-1} c\right)^{2},\left[a, b c^{-1}\right]$
SF: $2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{5}, 2^{9}, 2^{15}, 2^{27}, 2^{49}$
Gr: $1,7,35,159,705,3107$

Automaton number 2287
$a=\sigma(a, a) \quad$ Group: $\operatorname{IMG}\left(\frac{z^{2}+2}{1-z^{2}}\right)$
$b=\sigma(c, a) \quad$ Contracting: yes
$c=(b, a) \quad$ Self-replicating: yes
Rels: $a^{2},\left[a, b^{2}\right],\left(b^{-1} a c\right)^{2},\left[b a, c^{2}\right]$,
[$\left.c^{2}, a c a\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: 1,6,26,100,362,1246

Limit space:

Automaton number 2293
$a=\sigma(a, c) \quad$ Group:
$b=\sigma(c, a) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels:
$c b^{-1} a^{-1} c a^{-1} c b^{-1} a^{-1} c a c^{-1} a b c^{-1} a^{-1} c^{-1} a b c^{-1} a$,
$c b^{-1} a^{-1} c^{2} a^{-1} c^{2} b^{-1} a^{-1} c^{2} b^{-1} a^{-1} c a^{-2} c^{-1} a$.
$b^{2} c^{-2} a b^{-1} a^{-1} c a^{2} c^{-1} a b c^{-2} a b c^{-2} a c^{-1}$,
$b a^{-1} c b^{-1} a^{-1} c a b^{-1} a^{-1} c b^{-1} a^{-1} c$.
$a b a^{-1} c^{-1} a b c^{-1} a b^{-1} a^{-1} c^{-1} a b c^{-1} a$
$a b a^{-1} c^{-1} a b c^{-1} a b^{-1} a^{-1} c^{-1} a b c^{-1} a$
SF: $2^{0}, 2^{1}, 2^{2}, 2^{4}, 2^{8}, 2^{13}, 2^{23}, 2^{41}, 2^{76}$
Gr: $1,7,37,187,937,4687$

Automaton number 2294
$a=\sigma(b, c) \quad$ Group: $B S(1,-3)$
$b=\sigma(c, a) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $b^{-1} c a^{-1} c,\left(c a^{-1}\right)^{a}\left(c a^{-1}\right)^{3}$
SF: $2^{0}, 2^{1}, 2^{2}, 2^{4}, 2^{6}, 2^{8}, 2^{10}, 2^{12}, 2^{14}$
Gr: $1,7,33,127,433,1415$

Automaton number 2295
$a=\sigma(c, c) \quad$ Group:
$b=\sigma(c, a) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $\left[b^{-1} a, b a^{-1}\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,7,37,187,929,4599$

Automaton number 2307
$a=\sigma(c, a) \quad$ Group:
$b=\sigma(b, b) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $b^{2}, a^{-2} c^{-1} b c a^{2} c^{-1} b c, a^{-1} c^{-1} b c^{-2} b c a c^{2}$,
$a^{-1} c b c^{-2} b c^{-1} a c^{2}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,6,26,106,426,1681$

Automaton number 2322
$a=\sigma(c, c) \quad$ Group:
$b=\sigma(c, b) \quad$ Contracting: no
$c=(b, a) \quad$ Self-replicating: yes
Rels: $\left[b^{-1} a, b a^{-1}\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,7,37,187,929,4599$

Automaton number 2355
$a=\sigma(c, b) \quad$ Group:
$b=\sigma(a, a) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels:
$b c a^{-2} c^{-1} b c a c^{-1} b^{-2} c a c^{-1}$,
$a c a^{-1} c^{-1} b a^{-1} c a^{-1} c^{-1} b a b^{-1} c a c^{-1} a^{-1} b^{-1} c a c^{-1}$,
$a b a c^{-1} b c^{-1} b^{-1} a^{-1} c a^{-1} c^{-1} b a b$.

$c b^{-1} c a^{-1} b^{-1} a^{-1} b^{-1} c a c^{-1}$,
$a c a^{-1} c^{-1} b a^{-1} b a c^{-1} b c^{-1} b^{-1} a$.
$b^{-1} c a c^{-1} a^{-1} b c b^{-1} c a^{-1} b^{-1}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,7,37,187,937,4687$

Automaton number 2361

$a=\sigma(c, a)$
Group:
$b=\sigma(b, a) \quad$ Contracting: n / a
$c=(c, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} c\right)^{2},\left[b^{-1} a, b a^{-1}\right],[a, c]^{2}$, $\left(b^{-1} a^{-1} c^{2}\right)^{2},\left[a c^{-1}, b c^{-1} b a^{-1}\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: $1,7,35,165,749,3343$

Automaton number 2364
$a=\sigma(c, b) \quad$ Group:
$b=\sigma(b, a) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels:
$a c a^{-1} c b^{-1} a^{-1} c a^{-1} c b^{-1} a b c^{-1} a c^{-1} a^{-1} b c^{-1} a c^{-1}$,
$b c a^{-1} c b^{-2} c a^{-2} c a^{-1} b^{3} c^{-1} a c^{-1} b^{-2} a c^{-1} a^{2} c^{-1}$,
$b c a^{-2} c a^{-1} c a^{-2} c a^{-1} b a c^{-1} a^{2} c^{-1} b^{-2} a c^{-1} a^{2} c^{-1}$,

$b c a^{-2} c a^{-1} c a^{-1} c b^{-1} a c^{-1} a^{2} c^{-2} a c^{-1}$,
$b c a^{-1} c b^{-2} c a^{-1} c b c^{-1} a c^{-2} a c^{-1}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{24}, 2^{46}, 2^{90}, 2^{176}$
Gr: 1,7,37,187,937,4687

Automaton number 2365
$a=\sigma(a, c) \quad$ Group:
$b=\sigma(b, a) \quad$ Contracting: n / a
$c=(c, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} b\right)^{2},\left(a^{-1} c\right)^{2},[a, c]^{2}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: $1,7,33,143,604,2534$

Automaton number 2366
$a=\sigma(b, c) \quad$ Group:
$b=\sigma(b, a) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $\left[b^{-1} a, b a^{-1}\right], a^{-1} c^{-1} a c b^{-1} a c^{-1} a^{-1} c b$, $a^{-1} c b c^{-1} b^{-1} a c b^{-1} c^{-1} b$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,7,37,187,929,4579$

Automaton number 2367
$a=\sigma(c, c) \quad$ Group:
$b=\sigma(b, a) \quad$ Contracting: yes
$c=(c, a) \quad$ Self-replicating: yes
Rels: $a^{2}, c^{2}, b^{-2} c a c b^{2} c a c$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{8}, 2^{14}, 2^{25}, 2^{47}, 2^{90}$
Gr: $1,5,17,53,161,480,1422$

Automaton number 2369
$a=\sigma(b, a) \quad$ Group:
$b=\sigma(c, a) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} b\right)^{2},\left(b^{-1} c\right)^{2},[a, b]^{2},\left(a^{-1} c\right)^{4}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: 1,7,33,143,602,2514

Automaton number 2371
$a=\sigma(a, b) \quad$ Group:
$b=\sigma(c, a) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $\left(b^{-1} c\right)^{2},\left(a^{-1} b\right)^{4},\left(b^{-1} c^{-1} a c\right)^{2}$,
$\left(a^{-1} c\right)^{4}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{25}, 2^{47}, 2^{90}, 2^{176}$
Gr: $1,7,35,165,758,3460$

Automaton number 2372
$a=\sigma(b, b) \quad$ Group:
$b=\sigma(c, a) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} b\right)^{2},\left(b^{-1} c\right)^{2},\left[c, a b^{-1}\right]$, $\left[c b^{-1}, a\right],\left[c^{-1}, b^{-1}\right] \cdot\left[a^{-1}, b^{-1}\right]$,
$\left[a, c^{-1}\right] \cdot\left[b, a^{-1}\right],\left[b^{-1}, a^{-1}\right] \cdot\left[c^{-1}, a^{-1}\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{7}, 2^{9}, 2^{11}, 2^{13}, 2^{15}$

Gr: $1,7,33,127,433,1415$

Automaton number 2375
$a=\sigma(b, c) \quad$ Group:
$b=\sigma(c, a) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $\left(b^{-1} c\right)^{2}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{9}, 2^{15}, 2^{26}, 2^{48}, 2^{92}$
Gr: $1,7,35,165,769,3575$

Automaton number 2391
$a=\sigma(c, b) \quad$ Group:
$b=\sigma(b, b) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $b^{2},\left[a^{2}, b\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,6,26,103,399,1538$

Automaton number 2395
$a=\sigma(a, a) \quad$ Group:
$b=\sigma(c, b) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $a^{2}, c^{2},(a c b)^{2},\left[b^{2}, c a c\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,5,17,50,140,377,995,2605$

Automaton number 2396
$a=\sigma(b, a) \quad$ Group: A. Boltenkov group
$b=\sigma(c, b) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $a c b^{-1} c a^{-2} c b^{-1} c a c^{-1} b c^{-2} b c^{-1}$,
$a c b^{-1} c a^{-2} c b^{-1} a^{2} c^{-1} b^{-1} a^{2} c^{-1} b c^{-1} a^{-1} b c a^{-2} b c^{-1}$, $a c b^{-1} a^{2} c^{-1} b^{-1} a^{-1} c b^{-1} c b c a^{-2} b c^{-2} b c^{-1}$,
$b c b^{-1} c a^{-1} b^{-1} c b^{-1} a^{2} c^{-1} a c^{-1} b a^{-2} b c^{-1}$

SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{24}, 2^{46}, 2^{90}, 2^{176}$
Gr: $1,7,37,187,937,4687$

Automaton number 2398
$a=\sigma(a, b) \quad$ Group: F.Dahmani Group
$b=\sigma(c, b) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $c b a, b^{-1} a^{-1} b^{2} a^{-1} b^{-1} a^{2}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,7,31,127,483,1823$

Automaton number 2399
$a=\sigma(b, b) \quad$ Group:
$b=\sigma(c, b) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $\left[b^{-1} a, b a^{-1}\right]$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,7,37,187,929,4599$

Automaton number 2401
$a=\sigma(a, c) \quad$ Group:
$b=\sigma(c, b) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $\left(a^{-1} c\right)^{2},[a, c]^{2},\left(c^{-2} b a\right)^{2}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{9}, 2^{15}, 2^{26}, 2^{48}, 2^{92}$
Gr: $1,7,35,165,757,3447$

Automaton number 2402
$a=\sigma(b, c) \quad$ Group:
$b=\sigma(c, b) \quad$ Contracting: n / a $c=(c, a) \quad$ Self-replicating: yes Rels: $a c^{2} b^{-1} a^{-2} c^{2} b^{-1} a b c^{-2} b c^{-2}$, $a c^{2} b^{-1} a^{-2} c b^{-2} c^{-1} a^{4} b c^{-2} a^{-3} c b^{2} c^{-1}$, $a c b^{-2} c^{-1} a c^{2} b^{-1} a^{-2} c b^{2} c^{-1} b c^{-2}$, $a c b^{-2} c^{-1} a c b^{-2} c^{-1} a c b^{2} c^{-1} a^{-3} c b^{2} c^{-1}$ SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{7}, 2^{10}, 2^{15}, 2^{25}, 2^{41}$
Gr: 1,7,37,187,937,4687

Automaton number 2423
$a=\sigma(b, a) \quad$ Group:
$b=\sigma(c, c) \quad$ Contracting: no
$c=(c, a) \quad$ Self-replicating: yes
Rels: $a c^{-1} b c a^{-2} c^{-1} b c a c^{-1} b^{-2} c$,
$a c^{-1} b c a^{-1} c^{-1} b a c^{-1} b^{-1} a^{2} c^{-1} b^{-1} c a^{-1} b$.
$c a^{-1} b^{-1} c a^{-1}$,
$b c^{-1} b c a^{-1} b^{-1} a c^{-1} b a c^{-1} a c^{-1} b^{-1} c^{2} a^{-1}$.

$b^{-1} c a^{-1}$,
$b a c^{-1} b a c^{-1} b^{-2} c^{-1} b c a^{-1} b^{2} c a^{-1}$.
$b^{-1} c a^{-1} b^{-1} a c^{-1} b^{-1} c$,
$b a c^{-1} b a c^{-1} b^{-2} a c^{-1} b a c^{-1} b c a^{-1}$.
$b^{-1} c a^{-1} c a^{-1} b^{-1} c a^{-1}$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{8}, 2^{14}, 2^{25}, 2^{47}, 2^{90}$
Gr: 1,7,37,187,937,4687

Automaton number 2427
$a=\sigma(c, b) \quad$ Group:
$b=\sigma(c, c) \quad$ Contracting: n / a
$c=(c, a) \quad$ Self-replicating: yes
Rels: $\left[b^{-1} a, b a^{-1}\right], a^{-1} c^{2} a^{-1} b^{-1} a^{2} c^{-2} b$ SF: $2^{0}, 2^{1}, 2^{3}, 2^{7}, 2^{13}, 2^{24}, 2^{46}, 2^{89}, 2^{175}$
Gr: $1,7,37,187,929,4583$

Automaton number 2841
$a=\sigma(c, b) \quad$ Group:
$b=\sigma(a, a) \quad$ Contracting: no
$c=(c, c) \quad$ Self-replicating: yes
Rels: $c, a^{-1} b^{-1} a^{-2} b a^{-1} b^{-1} a b a^{2} b^{-1} a b$, $a^{-1} b^{-1} a^{-2} b^{-1} a^{-1} b a b a b^{-2} a b a b$,
$a^{-1} b a^{-1} b^{-2} a^{-1} b a^{-1} b a b^{-1} a^{2} b^{-1} a b$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{5}, 2^{8}, 2^{13}, 2^{23}, 2^{42}, 2^{79}$

Gr: $1,5,17,53,161,485$,
1457,4359,12991

Automaton number 2850
$a=\sigma(c, b) \quad$ Group:
$b=\sigma(b, a) \quad$ Contracting: no
$c=(c, c) \quad$ Self-replicating: yes
Rels: $c, a^{-4} b a b^{-1} a^{2} b^{-1} a b$
SF: $2^{0}, 2^{1}, 2^{3}, 2^{6}, 2^{12}, 2^{23}, 2^{45}, 2^{88}, 2^{174}$
Gr: $1,5,17,53,161,485,1445$

Automaton number 2853
$a=\sigma(c, c) \quad$ Group: $\operatorname{IMG}\left(\left(\frac{z-1}{z+1}\right)^{2}\right)$
$b=\sigma(b, a) \quad$ Contracting: yes
$c=(c, c) \quad$ Self-replicating: yes
Rels: $c, a^{2}, a b^{-1} a b^{-2} a b^{-1} a b a b^{2} a b$ SF: $2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{5}, 2^{8}, 2^{14}, 2^{25}, 2^{47}$
Gr: 1,4,10,22,46,94,190,375,731, 1422,2752,5246,9908

Limit space:

9. Proofs

This section contains proofs of many of the claims contained in the tables in Section 7 and Section 8 and some additional information.

We sometimes encounter one of the following four binary tree automorphisms

$$
a=\sigma(1, a), \quad b=\sigma(b, 1), \quad c=\sigma\left(c^{-1}, 1\right), \quad d=\sigma\left(1, d^{-1}\right)
$$

The first one is the binary adding machine, the second is its inverse, and all are conjugate to the adding machine and therefore act level transitively on the binary tree and have infinite order.

We freely use the known classification of groups generated by 2-state automata over a 2-letter alphabet.

Theorem 7 ([GNS00]). Up to isomorphism, there are six (2,2)automaton groups: the trivial group, the cyclic group of order 2 (we denote it by C_{2}), Klein group $C_{2} \times C_{2}$ of order 4 , the infinite cyclic group \mathbb{Z}, the infinite dihedral group D_{∞} and the Lamplighter group $\mathbb{Z} \prec C_{2}$.

In particular the sixteen 2-state automata for which both states are inactive generate the trivial group, and the sixteen 2-state automata in which both states are active generate C_{2} (since both states in that case describe the mirror automorphism $\mu=\sigma(\mu, \mu)$ of order 2.

The automata given by either of the wreath recursions

$$
\begin{array}{ll}
a=\sigma(a, a), & b=(a, a), \\
a=\sigma(b, b), & b=(a, a),
\end{array}
$$

generate the Klein group $C_{2} \times C_{2}$.
The automata given by the wreath recursions

$$
\begin{array}{ll}
a=\sigma(a, a), & b=(a, b), \\
a=\sigma(a, a), & b=(b, a), \\
a=\sigma(b, b), & b=(a, b), \\
a=\sigma(b, b), & b=(b, a),
\end{array}
$$

generate the infinite dihedral group D_{∞}.
The automata given by the wreath recursions

$$
\begin{aligned}
a & =\sigma(a, a), & b & =(b, b), \\
a & =\sigma(b, b), & b & =(b, b),
\end{aligned}
$$

generate the cyclic group C_{2}.

The automata given by the wreath recursions

$$
\begin{array}{ll}
a=\sigma(a, b), & b=(a, a), \\
a=\sigma(b, a), & b=(a, a), \\
a=\sigma(a, b), & b=(b, b), \\
a=\sigma(b, a), & b=(b, a),
\end{array}
$$

generate the infinite cyclic group \mathbb{Z}. Moreover, in the first two cases we have $b=a^{-2}$, in the fourth case $b=1$ and a is the adding machine, and in the third case $b=1$ and a is the inverse of the adding machine.

The automata given by the wreath recursions

$$
\begin{array}{ll}
a=\sigma(a, b), & b=(a, b), \\
a=\sigma(a, b), & b=(b, a), \\
a=\sigma(b, a), & b=(a, b), \\
a=\sigma(b, a), & b=(b, a),
\end{array}
$$

generate the Lamplighter group $\mathbb{Z} \imath C_{2}=\mathbb{Z} \ltimes\left(\oplus_{\mathbb{Z}} C_{2}\right)$.
The results on the next few pages concern the existence of elements of infinite order and the level transitivity of the action. They are used in some of the proofs that follow.

Lemma 1 ([$\left.\left.\mathrm{BGK}^{+} \mathrm{a}\right]\right)$. Let G be a group generated by an automaton \mathcal{A} over a 2-letter alphabet. Assume that the set of states S of \mathcal{A} splits into two nonempty parts P and Q such that
(i) one of the parts consists of the active states (those with nontrivial vertex permutation) and the other consists of the inactive states;
(ii) for each state from P, both arrows go to states in the same part (either both to P or both to Q);
(iii) for each state from Q, one arrow goes to a state in P and the other to a state in Q.

Then any element of the group that can be written as a product of odd number of active generators or their inverses and odd number of inactive generators and their inverses, in any order, has infinite order. In particular, the group G is not a torsion group.

Proof. Denote by D the set of elements in G that can be represented as a product of odd number of active generators or their inverses and odd number of inactive generators and their inverses, in any order.

We note that if $g \in D$ then both sections of g^{2} are in D. Indeed, for such an element, $g=\sigma\left(g_{0}, g_{1}\right)$ and $g^{2}=\left(g_{1} g_{0}, g_{0} g_{1}\right)$. Both sections of g^{2} are products (in some order) of the first level sections of the generators (and/or their inverses) used to express g as an element in D. By assumption, among these generators, there are odd number of active and odd number of inactive ones. The generators from P, by condition (ii), produce even number of active and even number of inactive sections on level 1 , while the generators from Q, by condition (iii), produce odd number of active sections and odd number of inactive sections. Thus both sections of g are in D.

By way of contradiction, assume that h is an element of D of finite order 2^{n}, for some $n \geq 0$. If $n>0$ the sections of h^{2} are elements in D of order 2^{n-1}. Thus, continuing in this fashion, we reach an element in D that is trivial. This is contradiction since all elements in D act nontrivially on level 1 .

There is a simple criterion that determines whether a given element of a self-similar group generated by a finite automaton over the 2-letter alphabet $X=\{0,1\}$ acts level transitively on the tree. The criterion is based on the image of the given element in the abelianization of $\operatorname{Aut}\left(X^{*}\right)$, which is isomorphic to the infinite Cartesian product $\prod_{i=0}^{\infty} C_{2}$. The canonical isomorphism sends $g \in G$ to $\left(a_{i} \bmod 2\right)_{i=0}^{\infty}$, where a_{i} is the number of active sections of g at level i. We also make use of the ring structure on $\prod_{i=0}^{\infty} C_{2}$ obtained by identifying $\left(b_{i}\right)_{i=0}^{\infty}$ with $\sum_{i=0}^{\infty} b_{i} t^{i}$ in the ring of formal power series $C_{2}[[t]]$. It is known that a binary tree automorphism g acts level transitively on X^{*} if and only if $\bar{g}=(1,1,1, \ldots)$, where \bar{g} be the image of g in the abelianization $\prod_{i=0}^{\infty} C_{2}$ of $\operatorname{Aut}\left(X^{*}\right)$.

Lemma 2 (Element transitivity, $\left[\mathrm{BGK}^{+} \mathrm{a}\right]$). Let G be a group generated by an automaton \mathcal{A} over a 2-letter alphabet. There exists an algorithm that decides if g acts level transitively on X^{*}.

Proof. Let $g=\sigma^{i}\left(g_{0}, g_{1}\right)$, where $i \in\{0,1\}$. Then

$$
\bar{g}=i+t \cdot\left(\overline{g_{0}}+\overline{g_{1}}\right) .
$$

Similar equations hold for all sections of g. Since G is generated by a finite automaton, g has only finitely many different sections, say k. Therefore we obtain a linear system of k equations over the k variables $\left\{g_{v}, v \in X^{*}\right\}$. The solution of this system expresses \bar{g} as a rational function $P(t) / Q(t)$, where P an Q are polynomials of degree not higher than k. The element g acts level transitively if and only if $\bar{g}=\frac{1}{1-t}$.

We often need to show that a given group of tree automorphisms is level transitive. Here is a very convenient necessary and sufficient condition for this in the case of a binary tree.

Lemma 3 (Group transitivity, [$\left.\mathrm{BGK}^{+} \mathrm{a}\right]$). A self-similar group of binary tree automorphisms is level transitive if and only if it is infinite.

Proof. Let G be a self-similar group acting on a binary tree.
If G acts level transitively then G must be infinite (since the size of the levels is not bounded).

Assume now that the group G is infinite.
We first prove that all level stabilizers $\operatorname{Stab}_{G}(n)$ are different. Note that, since all level stabilizers have finite index in G and G is infinite, all level stabilizers are infinite. In particular, each contains a nontrivial element.

Let $n>0$ and $g \in \operatorname{Stab}_{G}(n-1)$ be an arbitrary nontrivial element. Let $v=x_{1} \ldots x_{k}$ be a word of shortest length such that $g(v) \neq v$. Since $g \in \operatorname{Stab}_{G}(n-1)$, we must have $k \geq n$. The section $h=g_{x_{1} x_{2} \ldots x_{k-n}}$ is an element of G by the self-similarity of G. The minimality of the word v implies that $g \in \operatorname{Stab}_{G}(k-1)$, and therefore $h \in \operatorname{Stab}_{G}(n-1)$. On the other hand h acts nontrivially on $x_{k-n+1} \ldots x_{k}$ and we conclude that $h \in \operatorname{Stab}_{G}(n-1) \backslash \operatorname{Stab}_{G}(n)$. Thus all level stabilizers are different.

We now prove level transitivity by induction on the level.
The existence of elements in $\operatorname{Stab}_{G}(0) \backslash \operatorname{Stab}_{G}(1)$ shows that G acts transitively on level 1.

Assume that G acts transitively on level n. Select an arbitrary element $h \in \operatorname{Stab}_{G}(n) \backslash \operatorname{Stab}_{G}(n+1)$ and let $w=\in X^{n}$ be a word of length n such that $h(w 1)=w 0$.

Let u be an arbitrary word of length n and let x be a letter in $X=$ $\{0,1\}$. We will prove that $u x$ is mapped to $w 0$ by some element of G, proving the transitivity of the action at level $n+1$. By the inductive assumption there exists $f \in G$ such that $f(u)=w$. If $f(u x)=w 0$ we are done. Otherwise, $h f(u x)=h(w 1)=w 0$ and we are done again.

Consider the infinitely iterated permutational wreath product $\imath_{i \geq 1} C_{d}$, consisting of the automorphisms of the d-ary tree for which the activity at every vertex is a power of some fixed cycle of length d. The last proof works, mutatis mutandis, for the self-similar subgroups of $\imath_{i \geq 1} C_{d}$ and may be easily adapted in other situations.

The following lemma is used often when we want to prove that some automaton group is not free.

Lemma 4. If a self-similar group contains two nontrivial elements of the form $(1, u),(v, 1)$, then the group is not free.

Proof. Suppose $a=(1, u), b=(v, 1)$ are two nontrivial elements of a self-similar group G and G is free. Obviously $[a, b]=1$, hence a and b are powers of some element $x \in G: a=x^{m}, b=x^{n}$. Then $a^{n}=b^{m}$, so $a^{n}=\left(1, u^{n}\right)=b^{m}=\left(v^{m}, 1\right)$. This implies that $u^{n}=v^{m}=1$, which is a contradiction, since u and v are nontrivial elements of a free group.

In most case when the corresponding group is finite we do not offer a full proof. In all such cases the proof can be easily done by direct calculations. As an example, a detailed proof is given in the case of the automaton [748].

We now proceeds to individual analysis of the properties of the automaton groups in our classification.

1. Trivial group.
2. Klein Group $C_{2} \times C_{2}$. Wreath recursion: $a=\sigma(a, a), b=(a, a)$, $c=(a, a)$.

The claim follows from the relations $b=c, a^{2}=b^{2}=a b a b=1$.
$731 \cong \mathbb{Z}$. Wreath recursion: $a=\sigma(b, a), b=(a, a), c=(a, a)$.
We have $c=b$ and $b=a^{-2}$. The states a and b form a 2-state automaton generating \mathbb{Z} (see Theorem 7).
$\mathbf{7 3 4} \cong G_{730}$. Klein Group $C_{2} \times C_{2}$. Wreath recursion: $a=\sigma(b, b)$, $b=(a, a), c=(a, a)$.

The claim follows from the relations $b=c, a^{2}=b^{2}=a b a b=1$.
$\mathbf{7 3 9} \cong C_{2} \ltimes\left(C_{2} \backslash \mathbb{Z}\right)$. Wreath recursion: $a=\sigma(a, a), b=(b, a), c=(a, a)$.
All generators have order 2. The elements $u=a c b a=(1, b a)$ and $v=b c=(b a, 1)$ generate \mathbb{Z}^{2}. This is clear since $b a=\sigma(1, b a)$ is the adding machine and therefore has infinite order. Further, we have $a c=\sigma$ and $\langle u, v\rangle$ is normal in $H=\langle u, v, \sigma\rangle$, since $u^{\sigma}=v$ and $v^{\sigma}=u$. Thus $H \cong C_{2} \ltimes(\mathbb{Z} \times \mathbb{Z})=C_{2} \imath \mathbb{Z}$.

We have $G_{739}=\langle H, a\rangle$ and H is normal in G_{739}, since it has index 2. Moreover, $u^{a}=v^{-1}, v^{a}=u^{-1}$ and $\sigma^{a}=\sigma$. Thus $G_{739}=C_{2} \ltimes\left(C_{2} \imath \mathbb{Z}\right)$, where the action of C_{2} on H is specified above.
740. Wreath recursion: $a=\sigma(b, a), b=(b, a), c=(a, a)$.

The states a, b form a 2-state automaton generating the Lamplighter group (see Theorem 7). Thus G_{740} has exponential growth and is neither torsion nor contracting.

Since $c=(a, a)$ we obtain that G_{740} can be embedded into the wreath product $C_{2} 乙\left(\mathbb{Z} \imath \mathbb{C}_{2}\right)$. Thus G_{740} is solvable.
741. Wreath recursion: $a=\sigma(c, a), b=(b, a), c=(a, a)$.

The states a and c form a 2 -state automaton generating the infinite cyclic group \mathbb{Z} in which $c=a^{-2}$ (see Theorem 7).

Since $b=(b, a)$, we see that b has infinite order and that G_{741} is not contracting).

We have $c=a^{-} 2$ and $b^{-1} a^{-3} b^{-1} a b a b a=1$. Since a and b do not commute the group is not free.
$743 \cong G_{739} \cong C_{2} \ltimes\left(C_{2}\right.$ 亿 $\left.\mathbb{Z}\right)$. Wreath recursion: $a=\sigma(b, b), b=(b, a)$, $c=(a, a)$.

All generators have order 2. The elements $u=a c b a=(1, b a)$ and $v=b c=(b a, 1)$ generate \mathbb{Z}^{2} because $b a=\sigma(a b, 1)$ is conjugate to the adding machine and has infinite order. Further, we have $b a b c=\sigma$ and $\langle u, v\rangle$ is normal in $H=\langle u, v, \sigma\rangle$ because $u^{\sigma}=v$ and $v^{\sigma}=u$. In other words, $H \cong C_{2} \ltimes(\mathbb{Z} \times \mathbb{Z})=C_{2} \backslash \mathbb{Z}$.

Furthermore, $G_{743}=\langle H, a\rangle$ and H is normal in G_{743} because $u^{a}=$ $v^{-1}, v^{a}=u^{-1}$ and $\sigma^{a}=\sigma$. Thus $G_{743}=C_{2} \ltimes\left(C_{2}(\mathbb{Z})\right.$, where the action of C_{2} on H is specified above and coincides with the one in G_{739}. Therefore $G_{743} \cong G_{739}$.
744. Wreath recursion: $a=\sigma(c, b), b=(b, a), c=(a, a)$.

Since $\left(a^{-1} c\right)^{2}=\left(c^{-1} a b^{-1} a, b^{-1} a c^{-1} a\right)$ and $c^{-1} a b^{-1} a=$ $\left(\left(c^{-1} a b^{-1} a\right)^{-1}, a^{-1} c\right)$, the element $\left(a^{-1} c\right)^{2}$ fixes the vertex 01 and its section at this vertex is equal to $a^{-1} c$. Hence, $a^{-1} c$ has infinite order.

The element $c^{-1} a b^{-1} a$ also has infinite order, fixes the vertex 00 and its section at this vertex is equal to $c^{-1} a b^{-1} a$. Therefore G_{744} is not contracting.

We have $b^{-1} c^{-1} b a^{-1} c a=\left(1, a^{-1} c^{-1} a c\right), \quad a b^{-1} c^{-1} b a^{-1} c=$ $\left(c a^{-1} c^{-1} a, 1\right)$, hence by Lemma 4 the group is not free.
$747 \cong G_{739} \cong C_{2} \ltimes\left(C_{2} \backslash \mathbb{Z}\right)$. Wreath recursion: $a=\sigma(c, c), b=(b, a)$, $c=(a, a)$.

All generators have order 2 and a commutes with c. Conjugating this group by the automorphism $\gamma=(\gamma, c \gamma)$ yields an isomorphic group generated by automaton $a^{\prime}=\sigma, b^{\prime}=\left(b^{\prime}, a^{\prime}\right)$ and $c^{\prime}=\left(a^{\prime}, a^{\prime}\right)$. On the other hand we obtain the same automaton after conjugating G_{739} by $\mu=(\mu, a \mu)$ (here a denotes the generator of G_{739}).
$748 \cong D_{4} \times C_{2}$. Wreath recursion: $a=\sigma(a, a), b=(c, a), c=(a, a)$.
Since a is nontrivial and b and c have a as a section, none of the generators is trivial. All generators have order 2. Indeed, we have $a^{2}=$ $\left(a^{2}, a^{2}\right), b^{2}=\left(c^{2}, a^{2}\right), c^{2}=\left(a^{2}, a^{2}\right)$, showing that a^{2}, b^{2} and c^{2} generate a self-similar group in which no element is active. Therefore $a^{2}=b^{2}=$ $c^{2}=1$. Since $a c=\sigma$ we have that $(a c)^{2}=1$. Therefore a and c commute. Since $(b c)^{2}=\left((c a)^{2}, 1\right)=1$, we see that b and c also commute. Further, the relations $(a b)^{2}=(a c, 1)=(\sigma, 1) \neq 1$ and $(a b)^{4}=1$ show that a and b generate the dihedral group D_{4}. It remains to be shown that $c \notin\langle a, b\rangle$. Clearly c could only be equal to one of the four elements $1, b, a b a$, and $a b a b$ in D_{4} that stabilize level 1. However, c is nontrivial, differs from b at 0 (the section $\left.b\right|_{0}=c$ is not active, while $\left.c\right|_{0}=a$ is active), differs from $a b a$ at 1 (the section $\left.(a b a)\right|_{1}=a c a$ is not active, while $\left.c\right|_{1}=a$ is
active), and differs from $a b a b$ at 1 (the section of $a b a b$ at 1 is trivial). This completes the proof.
749. Wreath recursion: $a=\sigma(b, a), b=(c, a), c=(a, a)$.

The element $\left(a^{-1} c\right)^{4}$ stabilizes the vertex 000 and its section at this vertex is equal to $a^{-1} c$. Hence, $a^{-1} c$ has infinite order.

We have $a c^{-1}=\sigma\left(b a^{-1}, 1\right), b a^{-1}=\sigma\left(1, c b^{-1}\right), c b^{-1}=\left(a c^{-1}, 1\right)$, Thus the subgroup generated by these elements is isomorphic to $\operatorname{IMG}\left(1-\frac{1}{z^{2}}\right)$ (see [BN06]).

We have $c^{-1} b=\left(a^{-1} c, 1\right), a c^{-1} b a^{-1}=\left(1, c a^{-1}\right)$. Thus, by Lemma 4 the group is not free.
$748 \cong G_{848} \cong C_{2} \imath \mathbb{Z}$. Wreath recursion: $a=\sigma(c, a), b=(c, a), c=(a, a)$.
It is proven below that $G_{848} \cong G_{2190}$ and for G_{2190} we have $a=$ $\sigma(c, a), b=\sigma(a, a), c=(a, a)$. Therefore $G_{2190}=\langle a, b, c\rangle=\left\langle a, c, c^{-1} b=\right.$ $\sigma\rangle=\langle a=(c, a) \sigma, c=(a, a), a \sigma=(c, a)\rangle=G_{750}$.
752. Wreath recursion: $a=\sigma(b, b), b=(c, a), c=(a, a)$.

The group G_{752} is a contracting group with nucleus consisting of 41 elements. It is a virtually abelian group, containing \mathbb{Z}^{3} as a subgroup of index 4.

All generators have order 2 .
Let $x=c a, y=b a b c$, and $K=\langle x, y\rangle$. Since $x y=\left((c b a b)^{c a}, a b c b\right)=$ $\left(\left(y^{-1}\right)^{x}, a b c b\right)$ and $y x=(c b a b, a b c b)=\left(y^{-1}, a b c b\right)$ the elements x and y commute. Conjugating by $\gamma=(\gamma, b c \gamma)$ yields the self-similar copy K^{\prime} of K generated by $x^{\prime}=\sigma\left(\left(y^{\prime}\right)^{-1},\left(x^{\prime}\right)^{-1}\right)$ and $y^{\prime}=\sigma\left(\left(y^{\prime}\right)^{-1} x^{\prime}, 1\right)$, where $x^{\prime}=x^{\gamma}$ and $y^{\prime}=y^{\gamma}$. Since $\left(x^{\prime}\right)^{2}=\left(\left(x^{\prime}\right)^{-1}\left(y^{\prime}\right)^{-1},\left(y^{\prime}\right)^{-1}\left(x^{\prime}\right)^{-1}\right)$ and $\left(y^{\prime}\right)^{2}=\left(\left(y^{\prime}\right)^{-1} x^{\prime},\left(y^{\prime}\right)^{-1} x^{\prime}\right)$, the virtual endomorphism of K^{\prime} is given by

$$
A=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

The eigenvalues $\lambda=-\frac{1}{2} \pm \frac{1}{2} i$ of this matrix are not algebraic integers, and therefore, by the results in [NS04], the group $K^{\prime} \cong K$ is free abelian of rank 2 .

Let $H=\langle b a, c b\rangle$. The index of $\operatorname{Stab}_{H}(1)$ in G is 4 , since the index of $\mathrm{Stab}_{H}(1)$ in H is 2 and the index of H in G is 2 (the generators have order $2)$. We have $\operatorname{Stab}_{H}(1)=\left\langle c b, c b^{b a},(b a)^{2}\right\rangle$. If we conjugate the generators of $\left.\operatorname{Stab}_{H}\right)(1)$ by $g=(1, b)$, we obtain

$$
\begin{aligned}
& g_{1}=(c b)^{g}=\left(x^{-1}, 1\right), \\
& g_{2}=\left((c b)^{b a}\right)^{g}=(1, \quad x) \\
& g_{3}=\left((b a)^{2}\right)^{g}=\left(y^{-1}, y\right)
\end{aligned}
$$

Therefore, g_{1}, g_{2}, and g_{3} commute. If $g_{1}^{n_{1}} g_{2}^{n_{2}} g_{3}^{n_{3}}=1$, then we must have $x^{-n_{1}} y^{-n_{3}}=x^{n_{2}} y^{n_{3}}=1$. Since K is free abelian, this implies $n_{1}=n_{2}=n_{3}=0$. Thus, $\operatorname{Stab}_{H}(1)$ is a free abelian group of rank 3 .
753. Wreath recursion: $a=\sigma(c, b), b=(c, a), c=(a, a)$.

Since $a b^{-1}=\sigma\left(1, b a^{-1}\right)$, this element is conjugate to the adding machine.

For a word w in $w \in\left\{a^{ \pm 1}, b^{ \pm 1}, c^{ \pm 1}\right\}^{*}$, let $|w|_{a},|w|_{b}$ and $|w|_{c}$ denote the sum of the exponents of a, b and c in w. Let w represents the element $g \in G$. If $|w|_{a}$ and $|w|_{b}$ are odd, then g acts transitively on the first level, and $g^{2}{ }_{0}$ is represented by a word w_{0}, which is the product (in some order) of all first level sections of all generators appearing in w. Hence, $\left|w_{0}\right|_{a}=|w|_{b}+2|w|_{c}$ and $\left|w_{0}\right|_{b}=|w|_{a}$ are odd again. Therefore, similarly to Lemma 1 , any such element has infinite order.

In particular $c^{2} b a$ has infinite order. Since $a^{4}=\left(c a c a, a^{4}, a c a c, a^{4}\right)$ and $c a c a=\left(b a c a, c^{2} b a, b a c^{2}, c a b a\right)$, the element a^{4} has infinite order (and so does a). Since a^{4} fixes the vertex 01 and its section at that vertex is equal to a^{4}, the group G_{753} is not contracting.

We have $c b^{-1}=\left(a c^{-1}, 1\right), a c b^{-1} a^{-1}=\left(1, b a c^{-1} b^{-1}\right)$, hence by Lemma 4 the group is not free.
$756 \cong G_{748} \cong D_{4} \times C_{2}$. Wreath recursion: $a=\sigma(c, c), b=(c, a)$, $c=(a, a)$.

All generators have order 2. The generator c commutes with both a and b. Since $(a b)^{2}=(c a, c a)$ the order of $c a$ is 4 and the group is isomorphic to $D_{4} \times C_{2}$
$766 \cong G_{730}$. Klein Group $C_{2} \times C_{2}$. Wreath recursion: $a=\sigma(a, a)$, $b=(b, b), c=(a, a)$.

The state b is trivial. The states a and c form a 2-state automaton generating $C_{2} \times C_{2}$ (see Theorem 7).
$767 \cong G_{731} \cong \mathbb{Z}$. Wreath recursion: $a=\sigma(1, a), b=(b, b), c=(a, a)=$ a^{2} 。

The state b is trivial. The automorphism a is the binary adding machine.
$768 \cong G_{731} \cong \mathbb{Z}$. Wreath recursion: $a=\sigma(c, a), b=(b, b), c=(a, a)$.
The states a and c form a 2-state automaton generating \mathbb{Z} (see Theorem 7) in which $c=a^{-2}$.
$770 \cong G_{730}$. Klein Group $C_{2} \times C_{2}$. Wreath recursion: $a=\sigma(b, b)$, $b=(b, b), c=(a, a)$.

The state b is trivial. The states a and c form a 2-state automaton generating $C_{2} \times C_{2}$ (see Theorem 7).
$\mathbf{7 7 1} \cong \mathbb{Z}^{2}$. Wreath recursion: $a=\sigma(c, b), b=(b, b), c=(a, a)$.
The group G_{771} is finitely generated, abelian, and self-replicating. Therefore, it is free [NS04]. Since $b=1$ the rank is 1 or 2 . We prove
that the rank is 2 , by showing that $c^{n} \neq a^{m}$, unless $n=m=0$. By way of contradiction, let $c^{n}=a^{m}$ for some integer n and m and choose such integers with minimal $|n|+|m|$. Since c^{n} stabilizes level $1, m$ must be even and we have $\left(a^{n}, a^{n}\right)=c^{n}=a^{m}=\left(c^{m / 2}, c^{m / 2}\right)$, implying $a^{n}=c^{m / 2}$. By the minimality assumption, m must be 0 , which then implies that n must be 0 as well.
$\mathbf{7 7 4} \cong G_{730}$. Klein Group $C_{2} \times C_{2}$. Wreath recursion: $a=\sigma(c, c)$, $b=(b, b), c=(a, a)$.

The state b is trivial. The states a and c form a 2 -state automaton generating $C_{2} \times C_{2}$ (see Theorem 7).
$775 \cong C_{2} \ltimes I M G\left(\left(\frac{z-1}{z+1}\right)^{2}\right)$. Wreath recursion: $a=\sigma(a, a), b=(c, b)$, $c=(a, a)$.

All generators have order 2. Further, $a c=c a=\sigma(1,1)$ and $b a=\sigma(b a, c a)$. Hence, for the subgroup $H=\langle b a, c a\rangle \cong G_{2853} \cong$ $\operatorname{IMG}\left(\left(\frac{z-1}{z+1}\right)^{2}\right)$.

Since the generators have order $2, H$ is normal subgroup of index 2 in G_{775}. Moreover $(b a)^{a}=(b a)^{-1}$ and $(c a)^{a}=c a$. Therefore $G \cong C_{2} \ltimes H$, where C_{2} is generated by a and the action of a on H is given above.

Conjugating the generators by $g=\sigma(g, g)$ we obtain the wreath recursion

$$
a^{\prime}=\sigma\left(a^{\prime}, a^{\prime}\right), \quad b^{\prime}=\left(b^{\prime}, c^{\prime}\right), \quad c^{\prime}=\left(a^{\prime}, a^{\prime}\right)
$$

where $a^{\prime}=a^{g}, b^{\prime}=b^{g}$ and $c^{\prime}=c^{g}$. This is the wreath recursion defining G_{793}. Denote G_{793} by G and its generators by a, b, and c (we continue working only with G_{793}). Thus

$$
a=\sigma(a, a), \quad b=(b, c), \quad c=(a, a)
$$

The generators have order 2. Moreover $a c=c a$ and $\langle a, c\rangle=C_{2} \times C_{2}$ is the Klein group. Denote $A=\langle a, c\rangle$.

The element $x=b a$ has infinite order, since x^{2} fixes 00 , and has itself as a section at 00 . Note that

$$
x=b a=(b, c) \sigma(a, a)=\sigma(c a, b a)=\sigma(\sigma, x)
$$

and, therefore, $x^{2}=(x \sigma, \sigma x)=(x, \sigma, \sigma, x)$.
Proposition 1. The subgroup $H=\langle x, y\rangle$ of G, where $x=$ ba and $y=$ cabc is torsion free.

Proof. The first level decompositions of $x^{ \pm 1}$ and $y^{ \pm 1}$ and the second level
decompositions of x and y are given by

$$
\begin{aligned}
& x=\sigma(\sigma, x) \\
& y=c a b c=\sigma a a b a \sigma=\sigma b a \sigma=x^{\sigma}=\sigma(x, \sigma) \\
& x^{-1}=\sigma\left(x^{-1}, \sigma\right) \\
& y^{-1}=\sigma\left(\sigma, x^{-1}\right) \\
& x=\sigma(\sigma(1,1), \sigma(\sigma, x))=\mu(1,1, \sigma, x) \\
& y=x^{\sigma}=\mu(\sigma, x, 1,1)
\end{aligned}
$$

where $\mu=\sigma(\sigma, \sigma)$ permutes the first two levels of the tree as $00 \leftrightarrow$ $11,10 \leftrightarrow 01$. We encode this as the permutation $\mu=(03)(12)$.

For a word w over $\left\{x^{ \pm 1}, \sigma\right\}$, denote by $\#_{x}(w)$ and $\#_{\sigma}(w)$ the total number of appearances of x and x^{-1} and the number of appearances of σ in w, respectively.

Note that x and x^{-1} act as the permutation $(03)(12)$ on the second level, and σ acts as the permutation $(02)(13)$. These permutations have order 2 , commute, and their product is $(01)(23)$, which is not trivial. Thus, a tree automorphisms represented by a word w over $\left\{x^{ \pm 1}, \sigma\right\}$ cannot be trivial unless both $\#_{x}(w)$ and $\#_{\sigma}(w)$ are even.

Let g be an element of H that can be written as $g=z_{1} z_{2} \ldots z_{n}$, for some $z_{i} \in\left\{x^{ \pm 1}, y^{ \pm 1}\right\}, i=1, \ldots, n$.

If n is odd, the element g cannot have order 2 . By way of contradiction assume otherwise. For z in $\left\{x^{ \pm 1}, y^{ \pm 1}\right\}$ denote $z^{\prime}=\sigma z$. Thus, for instance $x^{\prime}=(\sigma, x)$ and $y^{\prime}=(x, \sigma)$. Note that

$$
g^{2}=\left(z_{1} z_{2} \ldots z_{n}\right)^{2}=\left(z_{1}^{\prime}\right)^{\sigma} z_{2}^{\prime}\left(z_{3}^{\prime}\right)^{\sigma} z_{4}^{\prime} \ldots\left(z_{n}^{\prime}\right)^{\sigma} z_{1}^{\prime}\left(z_{2}^{\prime}\right)^{\sigma} \ldots z_{n}^{\prime}=\left(w_{0}, w_{1}\right)
$$

where the words w_{i} over $\left\{x^{ \pm 1}, \sigma\right\}$ are such that

$$
\begin{equation*}
\#{ }_{x}\left(w_{i}\right)=\#_{\sigma}\left(w_{i}\right)=n \tag{8}
\end{equation*}
$$

for $i=1,2$. The last claim holds because exactly one of z_{i}^{\prime} and $\left(z_{i}^{\prime}\right)^{\sigma}$ contributes $x^{ \pm 1}$ to w_{0} and σ to w_{1}, respectively, while the other contributes the same letters to w_{1} and w_{0}, respectively. Since n is odd, (8) shows that neither w_{0} nor w_{1} can be 1 and therefore g^{2} cannot be 1 .

Assume that H contains an element of finite order. In particular, this implies that H must contain an element of order 2 . Let $g=z_{1} z_{2} \ldots z_{n}$ be such an element of the shortest possible length, where $z_{i} \in\left\{x^{ \pm 1}, y^{ \pm 1}\right\}$, $i=1, \ldots, n$.

Note that n must be even. Therefore,

$$
g=z_{1} z_{2} \ldots z_{n}=\left(z_{1}^{\prime}\right)^{\sigma} z_{2}^{\prime} \ldots\left(z_{n-1}^{\prime}\right)^{\sigma} z_{n}^{\prime}=\left(w_{0}, w_{1}\right)
$$

where w_{0} and w_{1} are words over $\left\{x^{ \pm 1}, \sigma\right\}$. Moreover, as elements in H, the orders of w_{0} and w_{1} divide 2 and the order of at least one of them is 2. We claim that

$$
\begin{equation*}
\#{ }_{x}\left(w_{0}\right) \equiv \#_{\sigma}\left(w_{0}\right) \equiv \#_{x}\left(w_{1}\right) \equiv \#_{\sigma}\left(w_{0}\right) \quad \bmod 2 \tag{9}
\end{equation*}
$$

The congruence $\#_{x}\left(w_{i}\right) \equiv \#_{\sigma}\left(w_{i}\right) \bmod 2$ holds because $\#_{x}\left(w_{i}\right)+$ $\#_{\sigma}\left(w_{i}\right)=n$ is even. For the other congruences, observe that whenever z_{i}^{\prime} or $\left(z_{i}^{\prime}\right)^{\sigma}$ contributes $x^{ \pm 1}$ or σ to w_{0}, respectively, it contributes σ or $x^{ \pm 1}$ to w_{1}, respectively. Therefore $\#_{x}\left(w_{0}\right)=\#_{\sigma}\left(w_{1}\right)$ and $\#_{\sigma}\left(w_{0}\right)=\#_{x}\left(w_{1}\right)$.

If the numbers in (9) are even, then w_{0} and w_{1} represent elements in H and can be rewritten as words over $\left\{x^{ \pm 1}, y^{ \pm 1}\right\}$ of lengths at most $\#_{x}\left(w_{0}\right)=n-\#_{\sigma}\left(w_{0}\right)$ and $\#_{x}\left(w_{1}\right)=n-\#_{\sigma}\left(w_{1}\right)$, respectively. If both of these lengths are shorter than n then none of them can represent an element of order 2 in H. Otherwise, one of the words w_{i} is a power of x and the other is trivial. Sice x has infinite order this shows that g cannot have order 2.

If the numbers in (9) are odd, then, for $i=1,2, w_{i}$ can be rewritten as σu_{i}, where u_{i} are words of odd length over $\left\{x^{ \pm 1}, y^{ \pm 1}\right\}$. Let $w_{0}=$ $\sigma t_{1} \ldots t_{m}$, where m is odd, and t_{j} are letters in $\left\{x^{ \pm 1}, y^{ \pm 1}\right\}, j=1, \ldots, m$. We have

$$
w_{0}=t_{1}^{\prime}\left(t_{2}^{\prime}\right)^{\sigma} \ldots\left(t_{m-1}^{\prime}\right)^{\sigma} t_{m}^{\prime}=\left(w_{00}, w_{01}\right),
$$

where w_{00} and w_{01} are words of odd length m over $\left\{x^{ \pm 1}, \sigma\right\}$. Moreover, exactly one of the words w_{00} and w_{01} has even number of σ 's and this word can be rewritten as a word over $\left\{x^{ \pm 1}, y^{ \pm 1}\right\}$ of odd length. However, an element in H represented by such a word cannot have order dividing 2. This completes the proof.

Since

$$
\begin{array}{ll}
x^{a}=a b a a=a b=x^{-1}, & \\
y^{a}=a c a b c a=c b a c=y^{-1}, \\
x^{b}=b b a b=a b=x^{-1}, & y^{b}=b c a b c b=b a c b a c a b=x y^{-1} x^{-1}, \\
x^{c}=c b a c=y^{-1}, & y^{c}=c c a b c c=a b=x^{-1},
\end{array}
$$

we see that H is the normal closure of x in G. Further, $G=\{x, y, a, c\}$ and $G=A H$. It follows from Proposition 1 that $A \cap H=1$ (since A is finite) and therefore $G=A \ltimes H$.

Proposition 2. The group G is a regular, weakly branch group, branching over $H^{\prime \prime}$.

Proof. The group G is infinite self-similar group acting on a binary three. Therefore it is level transitive by Lemma 3.

Since

$$
\begin{aligned}
x^{2} & =(x, \sigma, \sigma, x) \\
y^{-1} x^{2} y & =\left(y, x^{-1} \sigma x, \sigma, x\right)
\end{aligned}
$$

we have that

$$
H^{\prime \prime} \times\left\langle\sigma, x^{-1} \sigma x\right\rangle^{\prime \prime} \times\langle\sigma\rangle^{\prime \prime} \times\langle x\rangle^{\prime \prime} \preceq H^{\prime \prime} .
$$

On the other hand, $\left\langle\sigma, x^{-1} \sigma x\right\rangle$ is metabelian (in fact dihedral, since the generators have order 2) and $\langle\sigma\rangle$ and $\langle x\rangle$ are abelian (cyclic). Therefore

$$
H^{\prime \prime} \times 1 \times 1 \times 1 \preceq H^{\prime \prime}
$$

The group $H^{\prime \prime}$ is normal in G, since it is characteristic in the normal subgroup H. Finally, $H^{\prime \prime}$ is not trivial. For instance it is easy to show that $\left[[x, y],\left[x, y^{-1}\right]\right] \neq 1$ (see $\left.\left[\mathrm{BGK}^{+} \mathrm{b}\right]\right)$.
776. Wreath recursion: $a=\sigma(b, a), b=(c, b), c=(a, a)$.

The element $\left(b^{-1} a\right)^{4}$ stabilizes the vertex 00 and its section at this vertex is equal to $\left(b^{-1} a\right)^{-1}$. Hence, $b^{-1} a$ has infinite order. Furthermore, by Lemma $1 a b$ has infinite order, which yields that a, c and b also have infinite order, because $a^{2}=(a b, b a)$. Since $b^{n}=\left(c^{n}, b^{n}\right)$ we obtain that b^{n} belong to the nucleus for all $n \geq 1$. Thus G_{776} is not contracting.

We have $a^{-1} b a^{-1} c=\left(1, b^{-1} c\right), b a^{-1} c a^{-1}=\left(c b^{-1}, 1\right)$, hence by Lemma 4 the group is not free.
777. Wreath recursion: $a=\sigma(c, a), b=(c, b), c=(a, a)$.

The states a, c form the 2 -state automaton generating \mathbb{Z} (see Theorem 7). So the group is not torsion and $G_{777}=\langle a, b\rangle$. Since c has infinite order, so has b. Therefore the relation $b^{n}=\left(c^{n}, b^{n}\right)$ implies that b^{n} belong to the nucleus for all $n \geq 1$. Thus G_{777} is not contracting.

Also we have $a b^{-1}=\sigma\left(1, a b^{-1}\right)$ is the adding machine. Since $a^{-3}=$ $\sigma\left(1, a^{3}\right)$ elements $a b^{-1}$ and a^{-3} generate the Brunner-Sidki-Vierra group (see [BSV99]).
779. Wreath recursion: $a=\sigma(b, b), b=(c, b), c=(a, a)$.

The element $\left(a b^{-1}\right)^{2}$ stabilizes the vertex 01 and its section at this vertex is equal to $\left(a b^{-1}\right)^{-1}$. Hence, $a b^{-1}$ has infinite order.
780. Wreath recursion: $a=\sigma(c, b), b=(c, b), c=(a, a)$.

The element $\left(c^{-1} a\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $c^{-1} a$. Hence, $c^{-1} a$ has infinite order. Since $\left.[c, a]\right|_{100}=$ $\left(c^{-1} a\right)^{a}$ and 100 is fixed under the action of $[c, a]$ we obtain that $[c, a]$ also has infinite order. Finally, $[c, a]$ stabilizes the vertex 00 and its section at this vertex is $[c, a]$. Therefore G_{780} is not contracting.
$\mathbf{7 8 3} \cong G_{775} \cong C_{2} \ltimes I M G\left(\left(\frac{z-1}{z+1}\right)^{2}\right)$. Wreath recursion: $a=\sigma(c, c)$, $b=(c, b), c=(a, a)$.

All generators have order 2 and $a c=c a$. If we conjugate the generators of this group by the automorphism $\gamma=(c \gamma, \gamma)$ we obtain the wreath recursion

$$
a^{\prime}=\sigma(1,1), \quad b^{\prime}=\left(c^{\prime}, b^{\prime}\right), \quad c^{\prime}=\left(a^{\prime}, a^{\prime}\right)
$$

where $a^{\prime}=a^{\gamma}, b^{\prime}=b^{\gamma}$, and $c^{\prime}=c^{\gamma}$. The same wreath recursion is obtained after conjugating G_{775} by $\mu=(a \mu, \mu)$ (where a denotes the generator of G_{775}).

Since $b c a=\sigma(b c a, a), G_{783}=\langle a c b, a, c\rangle \cong G_{2205}$. $\mathbf{8 0 2} \cong C_{2} \times C_{2} \times C_{2}$. Wreath recursion: $a=\sigma(a, a), b=(c, c), c=(a, a)$.

Direct calculation.
$\mathbf{8 0 3} \cong G_{771} \cong \mathbb{Z}^{2}$. Wreath recursion: $a=\sigma(b, a), b=(c, c), c=(a, a)$.
The group G_{771} is finitely generated, abelian, and self-replicating. Therefore, it is free abelian [NS04]. Let $\phi: \operatorname{Stab}_{G_{803}}(1) \rightarrow G_{803}$ be the $\frac{1}{2}$-endomorphism associated to the vertex 0 , given by $\phi(g)=h$, provided $g=(h, *)$. The matrix of the linear map $\mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ induced by ϕ with to the basis corresponding to the triple $\{a, b, c\}$ is given by

$$
A=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & 1 \\
\frac{1}{2} & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

The eigenvalues are $\lambda_{1}=1, \lambda_{2}=-\frac{1}{4}-\frac{1}{4} i \sqrt{7}$ and $\lambda_{3}=-\frac{1}{4}+\frac{1}{4} i \sqrt{7}$. Let v_{i}, $i=1,2,3$, be eigenvectors corresponding to the eigenvalues $\lambda_{i}, i=1,2,3$. Note that v_{1} may be selected to be equal to $v_{1}=(2,1,1)$. This shows that $a^{2} b c=1$ in G_{803} and the rank of $G_{803}=\langle a, c\rangle$ is at most 2. We will prove that $a^{2 m} c^{n} \neq 1$ (except when $m=n=0$) by proving that iterations of the action of A eventually push the vector $v=(2 m, 0, n)$ out of the set $D=\{(2 i, j, k), i, j, k \in \mathbb{Z}\}$ corresponding to the first level stabilizer.

Let $v=a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}$. The vector v is not a scalar multiple of v_{1}. Therefore either $a_{2} \neq 0$ or $a_{3} \neq 0$. Since $\left|\lambda_{2}\right|=\left|\lambda_{3}\right|<1$, we have $A^{t}(v)=a_{1} v_{1}+\lambda_{2}^{t} a_{2} v_{2}+\lambda_{3}^{t} a_{3} v_{3} \rightarrow a_{1} v_{1}$, as $t \rightarrow \infty$. Note that, since $a_{2} \neq 0$ or $a_{3} \neq 0, A^{t}(v)$ is never equal to $a_{1} v_{1}$. Choose a neighborhood U of $a_{1} v_{1}$ that does not contain vectors from D, except possibly the vector $a_{1} v_{1}$. For t large enough t, the vector $A^{t}(v)$ is in U and is therefore outside of D.

Thus the rank of G_{803} is 2 .
$\mathbf{8 0 4} \cong G_{731} \cong \mathbb{Z}$. Wreath recursion: $a=\sigma(c, a), b=(c, c), c=(a, a)$.
Indeed, the states a and c form a 2 -state automaton generating the cyclic group \mathbb{Z} (see Theorem 7). Since $b=a^{4}$ we are done.
$\mathbf{8 0 6} \cong G_{802} \cong C_{2} \times C_{2} \times C_{2}$. Wreath recursion: $a=\sigma(b, b), b=(c, c)$, $c=(a, a)$.

Direct calculation.
$\mathbf{8 0 7} \cong G_{771} \cong \mathbb{Z}^{2}$. Wreath recursion: $a=\sigma(c, b), b=(c, c), c=(a, a)$.
The same arguments as in the case of G_{771} show that G_{807} is free abelian. It has a relation $c^{2} b a^{2}=1$ and, hence, it has either rank 1 or rank 2. Analogically to G_{803} we consider a $\frac{1}{2}$-endomorphism $\phi: \operatorname{Stab}_{G_{807}}(1) \rightarrow$ G_{807}, and a linear map $A: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ induced by ϕ. It has the following matrix representation with respect to the basis corresponding to the triple $\{a, b, c\}$:

$$
A=\left(\begin{array}{ccc}
0 & 0 & 1 \\
\frac{1}{2} & 0 & 0 \\
\frac{1}{2} & 1 & 0
\end{array}\right)
$$

Its characteristic polynomial $\chi_{A}(\lambda)=-\lambda^{3}+\frac{1}{2} \lambda+\frac{1}{2}$ has three distinct complex roots $\lambda_{1}=1, \lambda_{2}=-\frac{1}{2}-\frac{1}{2} i$ and $\lambda_{3}=-\frac{1}{2}+\frac{1}{2} i$. Analogically for $v=(2 m, 0, n)$ we get that $A^{t}(v)$ will be pushed out from the domain corresponding to $\operatorname{Stab}_{G_{807}}(1)$. Thus $c^{n} a^{2 m} \neq 1$ in G_{807} and $G_{807} \cong \mathbb{Z}^{2}$.
$\mathbf{8 1 0} \cong G_{802} \cong C_{2} \times C_{2} \times C_{2}$. Wreath recursion: $a=\sigma(c, c), b=(c, c)$, $c=(a, a)$.

Direct calculation.
$\mathbf{8 2 0} \cong D_{\infty}$. Wreath recursion: $a=\sigma(a, a), b=(b, a), c=(b, a)$.
The states a and b form a 2-state automaton generating D_{∞} (see Theorem 7) and $c=b$.
821. Lamplighter group $\mathbb{Z} \backslash C_{2}$. Wreath recursion: $a=\sigma(b, a), b=(b, a)$, $c=(b, a)$.

The states a and b form a 2-state automaton generating the Lamplighter group (see Theorem 7) and $c=b$.
$\mathbf{8 2 4} \cong G_{820} \cong D_{\infty}$. Wreath recursion: $a=\sigma(a, a), b=(b, a), c=(b, a)$.
The states a and b form a 2-state automaton generating D_{∞} (see Theorem 7) and $c=b$.
$\mathbf{8 3 8} \cong C_{2} \ltimes\left\langle s, t \mid s^{2}=t^{2}\right\rangle$. Wreath recursion: $a=\sigma(a, a), b=\sigma(a, b)$, $c=(b, a)$.

All generators have order 2. Consider the subgroup $H=\langle b a=$ $\sigma(b a, 1), c a=\sigma(1, a b)\rangle \cong G_{2860}=\left\langle s, t \mid s^{2}=t^{2}\right\rangle$. This subgroup is normal in G_{838} because the generators have order 2. Since $G_{838}=\langle H, a\rangle$, it has a structure of a semidirect product $\langle a\rangle \ltimes H=C_{2} \ltimes\left\langle s, t \mid s^{2}=t^{2}\right\rangle$ with the action of a on H as $(b a)^{b}=(b a)^{-1}$ and $(c a)^{b}=(c a)^{-1}$.
$839 \cong G_{821}$. Lamplighter group $\mathbb{Z} \imath C_{2}$. Wreath recursion: $a=\sigma(b, a)$, $b=(a, b), c=(b, a)$.

The states a and b form a 2-state automaton generating the Lamplighter group (see Theorem 7). Since $b^{-1} a=\sigma=a c^{-1}$, we see that
$c=a^{-1} b a$ and $G=\langle a, b\rangle$.
840. Wreath recursion: $a=\sigma(c, a), b=(a, b), c=(b, a)$.

The element $\left(b^{-1} a\right)^{2}$ stabilizes the vertex 01 and its section at this vertex is equal to $b^{-1} a$. Hence, $b^{-1} a$ has infinite order.

The element $\left(c^{-1} b\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $\left(c^{-1} b\right)^{-1}$. Hence, $c^{-1} b$ has infinite order. Since $\left.\left(b^{-1} a^{-1} b^{-1} c b a\right)^{2}\right|_{00000000}=c^{-1} b$ and the vertex 00000000 is fixed under the action of $\left(b^{-1} a^{-1} b^{-1} c b a\right)^{2}$ we obtain that $b^{-1} a^{-1} b^{-1} c b a$ also has infinite order. Finally, $b^{-1} a^{-1} b^{-1} c b a$ stabilizes the vertex 0001 and has itself as a section at this vertex. Therefore G_{840} is not contracting.

We have $b^{-1} a^{-1} c a=\left(1, b^{-1} c^{-1} b c\right), a b^{-1} a^{-1} c=\left(c b^{-1} c^{-1} b, 1\right)$, hence by Lemma 4 the group is not free.
$\mathbf{8 4 2} \cong G_{838} \cong C_{2} \ltimes\left\langle s, t \mid s^{2}=t^{2}\right\rangle$. Wreath recursion: $a=\sigma(b, b)$, $b=\sigma(a, b), c=(b, a)$.

All generators have order 2. Consider the subgroup $H=\langle u=b a=$ $\left.\sigma(1, b a)=\sigma\left(1, u^{-1}\right), v=c a=\sigma(a b, 1)=\sigma\left(u^{-1}, 1\right)\right\rangle$. Let us prove that $H \cong W=\left\langle s, t \mid s^{2}=t^{2}\right\rangle$. Indeed, the relation $u^{2}=v^{2}$ is satisfied, so H is a homomorphic image of W with respect to the homomorphism induced by $s \mapsto u$ and $t \mapsto v$. Each element of W can be written in its normal form $t^{r}(s t)^{l} s^{n}, n \in \mathbb{Z}, l \geq 0, r \in\{0,1\}$. It suffices to prove that images of these words (except for the identity word, of course) represent nonidentity elements in H.

We have $u^{2 n}=\left(u^{-n}, u^{-n}\right), u^{2 n+1}=\sigma\left(a^{-n}, a^{-n-1}\right)$ for any integer n; $(u v)^{l}=\left(u^{2 l}, 1\right)$ for any integer l. Thus

$$
(u v)^{l} u^{2 n}=\left(u^{-2 l-n}, u^{-n}\right) \neq 1
$$

in G if $n \neq 0$ or $l \neq 0$ since u has infinite order, as it is conjugate to the adding machine.

Furthermore,

$$
\begin{aligned}
& v(u v)^{l} u^{2 n}=\sigma\left(u^{-2 l-n-1}, u^{-n}\right) \neq 1 \\
& (u v)^{l} u^{2 n+1}=\sigma\left(u^{-n}, u^{-2 l-n-1}\right) \neq 1
\end{aligned}
$$

since they act nontrivially on the first level of the tree.
Finally, $v(u v)^{l} u^{2 n+1}=\left(u^{-2 l-n-2}, u^{-n}\right)=1$ if and only if $n=0$ and $l=-1$, which is not the case, because l must be nonnegative. Thus $H \cong W$.

The subgroup H is normal in G_{842} because generators are of order 2. Since $G_{842}=\langle H, a\rangle$, it has a structure of a semidirect product $\langle a\rangle \ltimes H=$ $C_{2} \ltimes\left\langle s, t \mid s^{2}=t^{2}\right\rangle$ with the action of a on H as $(b a)^{b}=(b a)^{-1}$ and $(c a)^{b}=(c a)^{-1}$. Therefore it has the same structure as G_{838}.
843. Wreath recursion: $a=\sigma(c, b), b=(a, b), c=(b, a)$.

The element $c^{-1} a=\sigma\left(a^{-1} c, 1\right)$ is a conjugate of the adding machine. Therefore, it acts transitively on the level of the tree and has infinite order.

Since $\left(c^{-1} a b^{-1} a\right)^{2}$ fixes the vertex 000 and its section at this vertex is equal to $c^{-1} a$, we obtain that $c^{-1} a b^{-1} a$ has infinite order. Since the element $c^{-1} a b^{-1} a$ fixes the vertex 10 and has itself as a section at this vertex, G_{843} is not contracting.

We have $c^{-1} a^{-1} b a=\left(1, a^{-1} c^{-1} a c\right), a c^{-1} a^{-1} b=\left(c a^{-1} c^{-1} a, 1\right)$, hence by Lemma 4 the group is not free.
$846 \cong C_{2} * C_{2} * C_{2}$. Wreath recursion: $a=\sigma(c, c), b=(a, b), c=(b, a)$.
The automaton [846] was studied during the Advanced Course on Automata Groups in Bellaterra, Spain, in the summer of 2004 and is since called the Bellaterra automaton. We present here a proof that $G_{846}=C_{2} * C_{2} * C_{2}$, based on the concept of dual automata. A different proof, still based on dual automata, is given in [Nek05].

Let $\mathcal{A}=(Q, X, \pi, \tau)$ be a finite automaton. Its dual automaton, by definition, is $\mathcal{A}^{\prime}=\left(X, Q, \pi^{\prime}, \tau^{\prime}\right)$, where $\pi^{\prime}(x, q)=\tau(q, x)$, and $\tau^{\prime}(x, q)=$ $\pi(q, x)$. Thus the dual automaton is obtained by exchanging the roles of the states and the alphabet (and the roles of the transition and output function) in a given automaton. The notion od dual automata is not new, but there is a recent renewed interest based on the new results and applications in [MNS00, GM05, BŠ06, VV05].

If in addition to \mathcal{A}, both \mathcal{A}^{\prime} and $\left(\mathcal{A}^{-1}\right)^{\prime}$ are invertible, the automaton \mathcal{A} is called fully invertible (or bi-reversible). Examples of such automata are the automaton 2240 generating a free group with three generators [VV05], Bellaterra automaton [846], and various automata constructed in [GM05], generating free groups of various ranks.

We now consider the automaton [846] and its dual more closely. Since the generators a, b, and c have order 2 , in order to prove that $G_{846} \cong$ $C_{2} * C_{2} * C_{2}$ we need to show that no word in $w \in R_{n}, n \geq 1$, is trivial in G_{846}, where R_{n} is the set of reduced words over $\{a, b, c\}$ of length n (here a word is reduced if it does not contain $a a, b b$, or $c c$). For every $n>0$, the set of words in R_{n} that are nontrivial in G_{846} is nonempty, since the word $r_{n}=a c b c b c b \cdots$ of length n acts nontrivially on level 1. If we prove that the dual automaton acts transitively on the sets $R_{n}, n \geq 1$, this would mean that r_{n} is a section of every element of G_{846} that can be represented as a reduced word of length n. Therefore, every word in R_{n} would represent a nontrivial element in G_{846} and our proof would be complete.

The automaton dual to 846 is the invertible automaton defined by
the wreath recursion

$$
\begin{align*}
& A=(a c b)(B, A, A) \tag{10}\\
& B=(a c)(A, B, B)
\end{align*}
$$

where the three coordinates in the recursion represent the sections at a, b, and c, respectively. Denote $D=\langle A, B\rangle$. The set $R=\bigcup_{n \geq 0} R_{n}$ of all reduced words over $\{a, b, c\}$ is a subtree of the ternary tree $\{\bar{a}, b, c\}^{*}$ and this subtree R is invariant under the action of D (this is because the set $\{a a, b b, c c\}$ is invariant under the action of $D)$. The structure of R is as follows. The root of R has three children a, b and c, each of which is a root of a binary tree. We want to understand the actio of D on the subtree R. It is given by

$$
\begin{align*}
& A=(a c b)\left(B_{a}, A_{b}, A_{c}\right) \tag{11}\\
& B=(a c)\left(A_{a}, B_{b}, B_{c}\right)
\end{align*}
$$

where $A_{a}, A_{b}, A_{c}, B_{a}, B_{b}, B_{c}$ are automorphisms of the binary trees hanging down from the vertices a, b and c. After identification of these three trees with the binary tree $\{0,1\}^{*}$, the action of $A_{a}, A_{b}, \ldots, B_{c}$ is defined by

$$
\begin{align*}
& A_{a}=\left(A_{b}, A_{c}\right), \\
& A_{b}=\sigma\left(B_{a}, A_{c}\right), \tag{12}\\
& A_{c}=\sigma\left(B_{a}, A_{b}\right), \\
& B_{a}=\sigma\left(B_{b}, B_{c}\right), \\
& B_{b}=\sigma\left(A_{a}, B_{c}\right), \\
& B_{c}=\sigma\left(A_{a}, B_{b}\right)
\end{align*}
$$

Using Lemma 2 one can verify that B_{b} acts level transitively on the binary tree. This is sufficient to show that D acts transitively on R, since it acts transitively on the first level, B stabilizes the vertex b, and its section at b is B_{b}.

The fact that G_{846} is not contracting follows now from the result of Nekrashevych [Nek07a], that a contracting group can not have free subgroups. Alternatively, it is sufficient to observe that $a b a$ has infinite order, stabilizes the vertex 01 and has itself as a section at this vertex.
$\mathbf{8 4 7} \cong D_{4}$. Wreath recursion: $a=\sigma(a, a), b=(b, b), c=(b, a)$.
The state b is trivial. The states a and c form a 2-state automaton generating D_{4} (see Theorem 7).
$\mathbf{8 4 8} \cong C_{2} \backslash \mathbb{Z}$. Wreath recursion: $a=\sigma(b, a), b=(b, b), c=(b, a)$.
The state b is trivial and a is the adding machine. Every element $g \in$ G_{848} has the form $g=\sigma^{i}\left(a^{n}, a^{m}\right)$. On the other hand, $c=(1, a), c^{a c^{-1}}=$ $(a, 1)$, so $\operatorname{Stab}_{G}(1)=\left\{\left(a^{n}, a^{m}\right)\right\} \cong \mathbb{Z}^{2}$. Since $a c^{-1}=\sigma$ we see that $G \cong C_{2} \backslash \mathbb{Z}$.
849. Wreath recursion: $a=\sigma(c, a), \mathrm{b}=(\mathrm{b}, \mathrm{b}), c=(b, a)$.

The state b is trivial. The element $a^{2} c=\left(a c, c a^{2}\right)$ is nontrivial because its section at 0 is $a c$, and $a c$ acts nontrivially on level 1 . The automorphism $\left(a^{2} c\right)^{2}$ fixes the vertex 00 and its section at this vertex is equal to $a^{2} c$. Therefore $a^{2} c$ has infinite order. Further, the section of $a^{2} c$ at 100 coincides with $a^{2} c$, implying that G_{849} is not contracting.

The group G_{849} is regular weakly branch group over its commutator G_{849}^{\prime}. This is clear since the group is self-replicating and $\left[a^{-1}, c\right] \cdot[c, a]=$ $([a, c], 1)$.

Conjugation of the generators of G_{849} by $\mu=\sigma\left(\mu, c^{-1} \mu\right)$ yields the wreath recursion

$$
x=\sigma(y x, 1), \quad y=(x, 1)
$$

where $x=a^{\mu}$ and $y=c^{\mu}$. Further, we have

$$
x=\sigma(y x, 1), \quad y x=\sigma(y x, x)
$$

and the last wreath recursion coincides with the one defining the automaton 2852. Therefore $G_{849} \cong G_{2852}$ (see G_{2852} for more information on this group).
$\mathbf{8 5 1} \cong G_{847} \cong D_{4}$. Wreath recursion: $a=\sigma(b, b), \mathrm{b}=(\mathrm{b}, \mathrm{b}), c=(b, a)$.
Direct calculation.
852. Basilica group $\mathcal{B}=\operatorname{IMG}\left(z^{2}-1\right)$. Wreath recursion: $a=\sigma(c, b)$, $b=(b, b), c=(b, a)$.

This group was studied in [GŻZ2a], where it is shown that \mathcal{B} is not a sub-exponentially amenable group, it does not contain free subgroups of rank 2 , and that the monoid generated by a and b is free. Some spectral considerations are provided in [GŻ02b]. Bartholdi and Virág showed in [BV05] that \mathcal{B} is amenable, distinguishing the Basilica group as the first example of an amenable group that is not sub-exponentially amenable.
$\mathbf{8 5 5} \cong G_{847} \cong D_{4}$. Wreath recursion: $a=\sigma(c, c), \mathrm{b}=(\mathrm{b}, \mathrm{b}), c=(b, a)$.
Direct calculation.
$\mathbf{8 5 6} \cong C_{2} \ltimes G_{2850}$. Wreath recursion: $a=\sigma(a, a), b=(c, b), c=(b, a)$.
All generators have order 2 , hence $H=\langle b a, c a\rangle$ is normal in G_{856}. Furthermore, $b a=\sigma(b a, c a), c a=\sigma(1, b a)$, and therefore $H=G_{2850}$. Thus $G_{856}=\langle a\rangle \ltimes H \cong C_{2} \ltimes G_{2850}$, where $(b a)^{a}=(b a)^{-1}$ and $(c a)^{a}=$ $(c a)^{-1}$. The group is not contracting since G_{2850} is not contracting.
857. Wreath recursion: $a=\sigma(b, a), b=(c, b), c=(b, a)$.

By using the approach used for G_{875}, we can show that the forward orbit of 10^{∞} under the action of a is infinite, and therefore a has infinite order.

Since $c=(b, a)$ and $b=(c, b)$, both b and c have infinite order and G_{857} is not a contracting group.
858. Wreath recursion: $a=\sigma(c, a), b=(c, b), c=(b, a)$.

The element $a b^{-1}=\sigma\left(1, a b^{-1}\right)$ is the adding machine.
By using the approach used for G_{875}, we can show that the forward orbit of 10^{∞} under the action of a is infinite, and therefore a has infinite order.

Since $c=(b, a)$ and $b=(c, b)$, both b and c have infinite order and G_{857} is not a contracting group.

We have $c^{-1} b^{-1} a b a^{-1} b=\left(1, a^{-1} b^{-1} a c a^{-1} b\right), a^{-1} c^{-1} b^{-1} a b a^{-1} b a=$ $\left(a^{-2} b^{-1} a c a^{-1} b a, 1\right)$, hence by Lemma 4 the group is not free.
860. Wreath recursion: $a=\sigma(b, b), b=(c, b), c=(b, a)$.

The element $\left(b a^{-1}\right)^{2}$ stabilizes the vertex 11 and its section at this vertex is equal to $\left(b a^{-1}\right)^{-1}$. Hence, $b a^{-1}$ has infinite order.

Furthermore, $b c^{-1}=\left(c b^{-1}, b a^{-1}\right)$ implies that the order of $b c^{-1}$ is infinite. Since this element stabilizes vertex 00 and its section at this vertex is equal to $b c^{-1}$, all its powers belong to the nucleus. Thus, G_{860} is not contracting.
861. Wreath recursion: $a=\sigma(b, b), b=(a, a), c=(b, a)$.

The element $a^{-1} c=\sigma\left(1, c^{-1} a\right)$ is conjugate to the adding machine and has infinite order.
864. Wreath recursion: $a=\sigma(c, c), b=(c, b), c=(b, a)$.

The element $\left(a b^{-1}\right)^{2}$ stabilizes the vertex 11 and its section at this vertex is equal to $a b^{-1}$. Hence, $a b^{-1}$ has infinite order.

Furthermore, $c b^{-1}=\left(b c^{-1}, a b^{-1}\right)$ implies that the order of $c b^{-1}$ is infinite. Since this element stabilizes vertex 00 and its section at this vertex is equal to $c b^{-1}, G_{864}$ is not contracting.
$865 \cong G_{820} \cong D_{\infty}$. Wreath recursion: $a=\sigma(a, a), b=(a, c), c=(b, a)$.
All generators have order 2 . Since $a b a c=(a c a b, 1)$ and $a c a b=$ $(1, a b a c)$, we see that $c=a b a$ and $G_{865}=\langle a, b\rangle$. The section of $(b a)^{2}$ at the vertex 0 is $(b a)^{-1}$, so $b a$ has infinite order and $G_{865} \cong D_{\infty}$.

Note that the group is conjugate to G_{932} by the automorphism $\delta=$ $(a \delta, \delta)$.
866. Wreath recursion: $a=\sigma(b, a), b=(a, c), c=(b, a)$.

The element $\left(c^{-1} b\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $c^{-1} b$, which is nontrivial. Hence, $c^{-1} b$ has infinite order.

The element $\left(b^{-1} a\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $b^{-1} a$. Hence, $b^{-1} a$ has infinite order. Since $\left.b^{-1} c^{-1} b a^{-1} b a\right|_{10}=\left(b^{-1} a\right)^{b}$ and vertex 10 is fixed under the action of $b^{-1} c^{-1} b a^{-1} b a$ we obtain that $b^{-1} c^{-1} b a^{-1} b a$ also has infinite order. Finally, $b^{-1} c^{-1} b a^{-1} b a$ stabilizes the vertex 00 and has itself as a section at this vertex. Therefore G_{866} is not contracting.
869. Wreath recursion: $a=\sigma(b, b), b=(a, c), c=(b, a)$.

All generators have order 2. By Lemma $1 a b$ has infinite order, which implies that babcba also has infinite order, because it fixes the vertex 000 and its section at this vertex is equal to $a b$. But babcba fixed 10 and has itself as a section at this vertex. Thus, G_{869} is not contracting.
870: Baumslag-Solitar group $B S(1,3)$. Wreath recursion: $a=\sigma(c, b)$, $b=(a, c), c=(b, a)$.

The automaton satisfies the conditions of Lemma 1. In particular $a b$ has infinite order. Since $b c=(a b, c a), a^{2}=(b c, c b)$, we obtain that $b c$ and a have infinite order. Since $b=(a, c), b$ also has infinite order. Since b has infinite order, fixes the vertex 10 and has itself as a section at this vertex, G_{870} is not contracting.

The element $\mu=b^{-1} a=\sigma\left(1, a^{-1} b\right)=\sigma\left(1, \mu^{-1}\right)$ is conjugate to the adding machine and therefore has infinite order. Since $a^{-1} c=\sigma\left(1, c^{-1} a\right)$ we see that $a^{-1} c=\mu$. Therefore $c=a b^{-1} a$ and $G_{870}=\langle a, b\rangle=\langle\mu, b\rangle$.

We claim that $b^{-1} \mu b=\mu^{3}$. Since $c=a b^{-1} a$, we have
$a b^{-1} a b^{-1} a b^{-1} a^{-1} b=\left(b a^{-1} b c^{-1} b^{-1} a, c a^{-1} b a^{-1}\right)=\left(b a^{-1} b a^{-1} b a^{-1} b^{-1} a, 1\right)$.
But $b a^{-1} b a^{-1} b a^{-1} b^{-1} a$ is a conjugate of the inverse of $a b^{-1} a b^{-1} a b^{-1} a^{-1} b$, which shows that $a b^{-1} a b^{-1} a b^{-1} a^{-1} b=1$, and the last relation is equivalent to $b^{-1} \mu b=\mu^{3}$.

Since b and μ have infinite order, $G_{870} \cong B S(1,3)$.
See [BŠ06] for realizations of $B S(1, m)$ for any value of $m, m \neq \pm 1$. $\mathbf{8 7 4} \cong C_{2} \ltimes G_{2852}$. Wreath recursion: $a=\sigma(a, a), b=(b, c), c=(b, a)$.

All the generators have order 2 , hence $H=\langle b a, c a\rangle$ is normal in G_{874}. Furthermore, $b a=\sigma(c a, b a), c a=\sigma(1, b a)$, therefore $H=G_{2852}$. Thus $G_{874}=\langle a\rangle \ltimes H \cong C_{2} \ltimes G_{2852}$, where $(b a)^{a}=(b a)^{-1}$ and $(c a)^{a}=(c a)^{-1}$. In particular, G_{874} is not contracting and has exponential growth.
875. Wreath recursion: $a=\sigma(b, a), b=(b, c), c=(b, a)$.

The equalities

$$
a\left(10^{\infty}\right)=010^{\infty}, \quad b\left(10^{\infty}\right)=10^{\infty}, \quad c\left(10^{\infty}\right)=110^{\infty}
$$

show that all members of the forward orbit of 10^{∞} under the action of a have only finitely many 1 's and that the position of the rightmost 1 cannot decrease under the action of a. Since $a\left(10^{\infty}\right)=010^{\infty}$, the forward orbit of 10^{∞} under the action of a can never return to 10^{∞} and a has infinite order.

Note that the above equalities also show that no nonempty words w over $\{a, b, c\}$ satisfies a relation of the form $w=1$ in G_{875}. First note that $c=(b, a)$ and $b=(b, c)$, implying that b and c have infinite order. Thus $b^{n} \neq 1$, for $n>0$. On the other hand, for any word w that contains
a or $c, w\left(10^{\infty}\right) \neq 10^{\infty}$ (again, since the position of the rightmost 1 moves to the right and never decreases).

Since b has infinite order and $b=(b, c), G_{875}$ is not contracting. 876. Wreath recursion: $a=\sigma(c, a), b=(b, c), c=(b, a)$.

By Lemma 2 the elements $b a$ and $a c b^{2} a^{2} c b$ act transitively on the levels of the tree and, hence, have infinite order. Since $\left.\left(b^{8}\right)\right|_{1100001100}=$ $a c b^{2} a^{2} c b$ and vertex 1100001100 is fixed under the action of b^{8} we obtain that b also has infinite order. Finally, b stabilizes the vertex 0 and has itself as a section at this vertex. Therefore G_{876} is not contracting.

We have $c^{-1} b=\left(1, a^{-1} c\right), a c^{-1} b a^{-1}=\left(c a^{-1}, 1\right)$, hence by Lemma 4 the group is not free.
$\mathbf{8 7 8} \cong C_{2} \ltimes I M G\left(1-\frac{1}{z^{2}}\right)$. Wreath recursion: $a=\sigma(b, b), b=(b, c)$, $c=(b, a)$.

Let $x=b c$ and $y=c a$. Since all generators have order 2, the index of the subgroup $H=\langle x, y\rangle$ in G_{878} is $2, H$ is normal and $G_{878} \cong C_{2} \ltimes$ H, where C_{2} is generated by c. The action of C_{2} on H is given by $x^{c}=x^{-1}$ and $y^{c}=y^{-1}$. We have $x=b c=(1, c a)=(1, y)$ and $y=$ $c a=\sigma(a b, 1)=\sigma\left(y^{-1} x^{-1}, 1\right)$. An isomorphic copy of H is obtained by exchanging the letters 0 and 1 , yielding the wreath recursion $x=(y, 1)$ and $y=\sigma\left(1, y^{-1} x^{-1}\right)$. The last recursion defines $\operatorname{IMG}\left(1-\frac{1}{z^{2}}\right)$ [BN06]. Thus, $G_{878} \cong C_{2} \ltimes \operatorname{IMG}\left(1-\frac{1}{z^{2}}\right)$.
879. Wreath recursion: $a=\sigma(c, b), b=(b, c), c=(b, a)$.

The element $c^{-1} a=\sigma\left(a^{-1} c, 1\right)$ is conjugate to the adding machine and has infinite order.

By Lemma 2 the element $c a$ acts transitively on the levels of the tree and, hence, has infinite order. Since $\left.\left(b^{2}\right)\right|_{1101}=c a$ and vertex 1101 is fixed under the action of b^{2} we obtain that b also has infinite order. Finally, b stabilizes the vertex 0 and has itself as a section at this vertex. Therefore G_{879} is not contracting.
882. Wreath recursion: $a=\sigma(c, c), b=(b, c), c=(b, a)$.

The element $\left(c a^{-1} c b^{-1}\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $c a^{-1} c b^{-1}$. Hence, $c a^{-1} c b^{-1}$ has infinite order.
$\mathbf{8 8 3} \cong C_{2} \ltimes G_{2841}$. Wreath recursion: $a=\sigma(a, a), b=(c, c), c=(b, a)$.
All generators have order 2, hence $H=\langle b a, c a\rangle$ is normal in G_{883}. Furthermore, $b a=\sigma(c a, c a), c a=\sigma(1, b a)$, therefore $H=G_{2841}$. Thus $G_{883}=\langle a\rangle \ltimes H \cong C_{2} \ltimes G_{2841}$, where $(b a)^{a}=(b a)^{-1}$ and $(c a)^{a}=(c a)^{-1}$. In particular, G_{883} is not contracting and has exponential growth.
884. Wreath recursion: $a=\sigma(b, a), b=(c, c), c=(b, a)$.

The element $\left(b^{-1} c a^{-1} c\right)^{2}$ stabilizes the vertex 0 and its section at this vertex is equal to $\left(b^{-1} c a^{-1} c\right)^{-1}$. Hence, $b^{-1} c a^{-1} c$ has infinite order. Since $\left.[b, a]^{2}\right|_{0100}=\left(b^{-1} c a^{-1} c\right)^{c}$ and 0100 is fixed under the action of $[b, a]^{2}$ we obtain that $[b, a]$ also has infinite order. Finally, $[b, a]$ stabilizes the vertex

00 and its section at this vertex is $[b, c]=[b, a]$. Therefore G_{884} is not contracting.
885. Wreath recursion: $a=\sigma(c, a), b=(c, c), c=(b, a)$.

The element $\left(c^{-1} b\right)^{2}$ stabilizes the vertex 10 and its section at this vertex is equal to $c^{-1} b$. Hence, $c^{-1} b$ has infinite order. Furthermore, $c^{-1} b$ stabilizes the vertex 00 and has itself as a section at this vertex. Therefore G_{885} is not contracting.

We have $b^{-1} a b a^{-1}=\left(1, c^{-1} a c a^{-1}\right), a^{-1} b^{-1} a b=\left(a^{-1} c^{-1} a c, 1\right)$, hence by Lemma 4 the group is not free.
887. Wreath recursion: $a=\sigma(b, b), b=(c, c), c=(b, a)$.

The element $\left(a c^{-1}\right)^{4}$ stabilizes the vertex 001 and its section at this vertex is equal to $\left(a c^{-1}\right)^{2}$, which is nontrivial. Hence, $a c^{-1}$ has infinite order.
888. Wreath recursion: $a=\sigma(c, b), b=(c, c), c=(b, a)$.

The element $a^{-1} c=\sigma\left(1, c^{-1} a\right)$ is conjugate to the adding machine and has infinite order. Since $\left.c^{-1} b\right|_{1}=a^{-1} c$ and vertex 1 is fixed under the action of $c^{-1} b$ we obtain that $c^{-1} b$ also has infinite order. Finally, $c^{-1} b$ stabilizes the vertex 00 and has itself as a section at this vertex. Therefore G_{888} is not contracting.

We have $c^{-1} a b^{-1} a=\left(1, a^{-1} b\right), a c^{-1} a b^{-1}=\left(c a^{-1} b c^{-1}, 1\right)$, hence by Lemma 4 the group is not free.
$\mathbf{8 9 1} \cong C_{2} \ltimes\left(\mathbb{Z} \prec C_{2}\right)$. Wreath recursion: $a=\sigma(c, c), b=(c, c), c=(b, a)$.
Let $x=a c$ and $y=c b$. Since all generators have order 2 , the index of the subgroup $H=\langle x, y\rangle$ in G_{891} is $2, H$ is normal and $G_{891} \cong C_{2} \ltimes H$, where C_{2} is generated by c. The action of C_{2} on H is given by $x^{c}=x^{-1}$ and $y^{c}=y^{-1}$.

In fact, to support the claim that H has index 2 in G_{891} we need to prove that $c \notin H$. We will prove a little bit more than that. Let $w=1$ be a relation in G_{891} where w is a word over $\{a, b, c\}$. The number of occurrences of a in w must be even (otherwise w would act nontrivially on level 1). Similarly, the number of occurrences of c in w is even. Indeed, if it were odd, then exactly one of the words w_{0} and w_{1} in the decomposition $w=\left(w_{0}, w_{1}\right)$ would have odd number of occurrences of the letter a, and the action of w would be nontrivial on level 2 . Finally, we claim that the number of occurrences of b in w is also even. Otherwise the number of c 's in both w_{0} and w_{1} would be odd and the action of w would be nontrivial on level 3 . Thus every word over $\{a, b, c\}$ representing 1 must have even number of occurrences of each of the three letters. Note that this implies that the abelianization of G_{891} is $C_{2} \times C_{2} \times C_{2}$.

We now prove that H is isomorphic to the Lamplighter group $\mathbb{Z} \imath C_{2}$.

The group H is self-similar, which can be seen from

$$
x=a c=\sigma(c b, c a)=\sigma\left(y, x^{-1}\right), \quad y=c b=(b c, a c)=\left(y^{-1}, x\right)
$$

Consider the elements $s_{n}=\sigma^{y^{n}}=y^{-n} x y^{n+1}, n \in \mathbb{Z}$ (note that $x y=\sigma)$. For $n>0$, we have $s_{0} s_{1} \cdots s_{n-1}=x^{n} y^{n}$ and $s_{-n} s_{-n+1} \cdots s_{-1}=$ $y^{n} x^{n}$. On the other hand, $s_{n}=y^{-n} \sigma y^{n}=\sigma\left(x^{-n} y^{-n}, y^{n} x^{n}\right)$ and $s_{-n}=$ $y^{n} \sigma y^{-n}=\sigma\left(x^{n} y^{n}, y^{-n} x^{-n}\right)$, implying

$$
s_{n}=\sigma\left(s_{-1} s_{-2} \cdots s_{-n}, s_{-n} \cdots s_{-2} s_{-1}\right)
$$

and

$$
s_{-n}=\sigma\left(s_{0} s_{1} \cdots s_{n-1}, s_{n-1} \cdots s_{1} s_{0}\right)
$$

By induction on n we obtain that the depth of s_{n} is $2 n+1$ for $n \geq 0$ and the depth of s_{-n} is $2 n$ for $n>0$ (depth of a finitary element is the lowest level at which all sections of the element are trivial). This implies that all $s_{i}, i \in \mathbb{Z}$ are different, have order 2 (they are conjugates of σ), and commute (for each i and each level m all sections of s_{i} at level m are equal). Therefore y has infinite order and $H=\langle x, y\rangle=\langle y, \sigma\rangle \cong \mathbb{Z} \imath C_{2}$.

Since y has infinite order, stabilizes the vertex 00 and has itself as a section at this vertex, G_{891} is not contracting.
$\mathbf{9 1 9} \cong G_{820} \cong D_{\infty}$. Wreath recursion: $a=\sigma(a, a), b=(a, b), c=(c, a)$.
The states a, b form a 2-state automaton generating D_{∞} (see Theorem 7) and $c=a b a$.
920. Wreath recursion: $a=\sigma(b, a), b=(a, b), c=(c, a)$.

The element $\left(a c^{-1}\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $a c^{-1}$. Hence, $b a^{-1}$ has infinite order.
923. Wreath recursion: $a=\sigma(b, b), b=(a, b), c=(c, a)$.

The states a and b form a 2-state automaton generating D_{∞} (see Theorem 7).
$\mathbf{9 2 4} \cong G_{870}$. Baumslag-Solitar group $B S(1,3)$. Wreath recursion: $a=$ $\sigma(c, b), b=(a, b), c=(c, a)$.

This fact is proved in [BŠ06].
$\mathbf{9 2 8} \cong G_{820} \cong D_{\infty}$. Wreath recursion: $a=\sigma(a, a), b=(b, b), c=(c, a)$.
The states a and c form a 2-state automaton generating D_{∞} (see Theorem 7) and b is trivial.
$\mathbf{9 2 9} \cong G_{2851}$. Wreath recursion: $a=\sigma(b, a), b=(b, b), c=(c, a)$.
See G_{2851} for an isomorphism (in fact the groups coincide as subgroups of $\operatorname{Aut}\left(X^{*}\right)$).
$\mathbf{9 3 0} \cong G_{821}$. Lamplighter group $\mathbb{Z} \imath C_{2}$. Wreath recursion: $a=\sigma(c, a)$, $b=(b, b), c=(c, a)$.

The states a and c form a 2-state automaton generating the Lamplighter group (see Theorem 7) and b is trivial.
$\mathbf{9 3 2} \cong G_{820} \cong D_{\infty}$. Wreath recursion: $a=\sigma(b, b), b=(b, b), c=(c, a)$.
We have $b=1$ and $a^{2}=c^{2}=1$. The element $a c=\sigma(c, a)$ is clearly nontrivial. Since $(a c)^{2}=(a c, c a)$, this element has infinite order. Thus $G \cong D_{\infty}$.
$\mathbf{9 3 3} \cong G_{849}$. Wreath recursion: $a=\sigma(c, b), b=(b, b), c=(c, a)$.
See G_{2852} for an isomorphism between G_{933} and G_{2852} and G_{849} for an isomorphism between G_{2852} and G_{849}.
$\mathbf{9 3 6} \cong G_{820} \cong D_{\infty}$. Wreath recursion: $a=\sigma(c, c), b=(b, b), c=(c, a)$.
The states a and c form a 2-state automaton generating D_{∞} (see Theorem 7) and b is trivial.
$937 \cong C_{2} \ltimes G_{929}$. Wreath recursion: $a=\sigma(a, a), b=(c, b), c=(c, a)$.
All generators have order 2 , hence $H=\langle c a, b a\rangle=\langle c a, c a b a\rangle$ is normal in G_{937}. Furthermore, $c a=\sigma(1, c a), c a b a=\sigma(c a b a, c a)$, therefore $H=$ G_{929}. Thus $G_{937}=\langle a\rangle \ltimes H \cong C_{2} \ltimes G_{929}$, where $(b a)^{a}=(b a)^{-1}$ and $(c a)^{a}=(c a)^{-1}$. In particular, G_{937} is regular weakly branch over H^{\prime}, has exponential growth and is not contracting.
938. Wreath recursion: $a=\sigma(b, a), b=(c, b), c=(c, a)$.

The element $\left(b^{-1} a^{-1} c a\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $\left(\left(b^{-1} a^{-1} c a\right)^{-1}\right)^{a^{-1} c}$. Hence, $b^{-1} a^{-1} c a$ has infinite order. Furthermore, $b^{-1} a^{-1} c a$ stabilizes the vertex 1 and has itself as a section at this vertex. Therefore G_{938} is not contracting.

We have $c^{-1} b=\left(1, a^{-1} b\right), a^{-1} c^{-1} b a=\left(a^{-2} b a, 1\right)$, hence by Lemma 4 the group is not free.
939. Wreath recursion: $a=\sigma(c, a), b=(c, b), c=(c, a)$.

The states a and c form a 2-state automaton generating the Lamplighter group (see Theorem 7). Hence, G_{939} is neither torsion, nor contracting, and has exponential growth.
941. Wreath recursion: $a=\sigma(b, b), b=(c, b), c=(c, a)$.

The second iteration of the wreath recursion is

$$
a=(02)(13)(c, b, c, b), \quad b=(c, a, c, b), \quad c=(23)(c, a, b, b)
$$

Conjugation by $g=(c g, g, g, b g)$ gives the wreath recursion

$$
a^{\prime}=(02)(13), \quad b=\left(c^{\prime}, a^{\prime}, c^{\prime}, b^{\prime}\right), \quad c=(23)\left(c^{\prime}, a^{\prime}, 1,1\right)
$$

where $a^{\prime}=a^{g}, b^{\prime}=b^{g}$, and $c^{\prime}=c^{g}$. The last recursion coincides with the second iteration of the recursion

$$
\alpha=\sigma, \quad \beta=(\gamma, \beta), \quad \gamma=(\gamma, \alpha) .
$$

Conjugating the last recursion by $h=(\gamma h, h)$ yields the recursion defining G_{945}. Thus, $G_{941} \cong G_{945} \cong C_{2} \ltimes I M G\left(z^{2}-1\right)$ (see $\left.G_{945}\right)$. The limit space is half of the Basilica.
942. Wreath recursion: $a=\sigma(c, b), b=(c, b), c=(c, a)$.

The Lamplighter group $L=\mathbb{Z} \imath C_{2}$ can be defined as the group generated by a^{\prime} and b^{\prime} given by the wreath recursion (see Theorem 7)

$$
\begin{aligned}
a^{\prime} & =\sigma\left(a^{\prime}, b^{\prime}\right) \\
b^{\prime} & =\left(a^{\prime}, b^{\prime}\right)
\end{aligned}
$$

Let $H=\langle a, b\rangle \leq G_{942}$. We will show that H and L are isomorphic. Let Y^{*} be the subtree of X^{*} consisting of all words over the alphabet $Y=\{01,11\}$. The element b fixes the letter in Y, while a swaps them. Since $a_{01}=b_{01}=a, a_{11}=b_{11}=b$, the tree Y^{*} is invariant under the action of H. Moreover, the action of H on Y^{*} coincides with the action of the Lamplighter group $L=\left\langle a^{\prime}, b^{\prime}\right\rangle$ on X^{*} (after the identification $01 \leftrightarrow 0,11 \leftrightarrow 1)$. This implies that the map $\phi: H \rightarrow L$ given by $a \mapsto a^{\prime}, b \mapsto b^{\prime}$ can be extended to a homomorphism. We claim that this homomorphism is in fact an isomorphism. Let $w=w(a, b)$ be a group word representing an element of the kernel of ϕ. Since $w\left(a^{\prime}, b^{\prime}\right)$ represents the identity in the lamplighter group L, the total exponent of a in w must be even and the total exponent ε of both a and b in w must be 0 . Therefore the element $g=w(a, b)$ stabilizes the top two levels of the tree X^{*} and can be decomposed as

$$
g=\left(c^{\varepsilon}, *, c^{\varepsilon}, *\right)
$$

where the *'s are words over a and b representing the identity in H (these words correspond precisely to the first level sections of $w\left(a^{\prime}, b^{\prime}\right)$ in $L)$. Since $\varepsilon=0$, we see that $g=1$ and the kernel of ϕ is trivial.

Thus, the Lamplighter group is a subgroup of G_{942}, which shows that G_{942} is not a torsion group, it is not free, and has exponential growth. Since $b=(c, b)$ and b has infinite order, G_{942} is not a contracting group. $\mathbf{9 4 5} \cong G_{941} \cong C_{2} \ltimes \operatorname{IMG}\left(z^{2}-1\right)$. Wreath recursion: $a=\sigma(c, c), b=$ $(c, b), c=(c, a)$.

All generators have order 2. Since $a b=\sigma(1, c b)$ and $c b=(1, a b)$ we see that $H=\langle a b, c b\rangle \cong G_{852}=I M G\left(z^{2}-1\right)$. This subgroup is normal in G_{945} because the generators have order 2. Since $G_{945}=\langle H, b\rangle$, it has a structure of a semidirect product $\langle b\rangle \ltimes H=C_{2} \ltimes I M G\left(z^{2}-1\right)$ with the action of b on H given by $(a b)^{b}=(a b)^{-1}$ and $(c b)^{b}=(c b)^{-1}$. It follows that G_{945} is regular weakly branch over H^{\prime} and has exponential growth. See G_{941} for an isomorphism.
$\mathbf{9 5 5} \cong G_{937} \cong C_{2} \ltimes G_{929}$. Wreath recursion: $a=\sigma(a, a), b=(b, c)$, $c=(c, a)$.

All generators have order 2. Consider the subgroup $H=\langle b a=$ $\sigma(c a, b a), c a=\sigma(1, c a)\rangle \cong G_{929}$. This subgroup is normal in G_{955} because all generators have order 2 . Since $G_{955}=\langle H, a\rangle$, it has a structure
of a semidirect product $\langle a\rangle \ltimes H=C_{2} \ltimes G_{929}$ with the action of a on H given by $(b a)^{b}=(b a)^{-1}$ and $(c a)^{b}=(c a)^{-1}$. It is proved above that G_{937} has the same structure. It follows that G_{955} is regular weakly branch over H^{\prime} and has exponential growth.
956. Wreath recursion: $a=\sigma(b, a), b=(b, c), c=(c, a)$.

The element $\left(c^{-1} b\right)^{2}$ stabilizes the vertex 10 and its section at this vertex is equal to $\left(c^{-1} b\right)^{-1}$. Hence, $c^{-1} b$ has infinite order. Furthermore, $c^{-1} b$ stabilizes the vertex 0 and has itself as a section at this vertex. Therefore G_{956} is not contracting.

We have $c^{-1} b^{-1} a b a^{-1} b=\left(1, a^{-1} c^{-1} a b a^{-1} c\right), a^{-1} c^{-1} b^{-1} a b a^{-1} b a=$ $\left(a^{-2} c^{-1} a b a^{-1} c a, 1\right)$, hence by Lemma 4 the group is not free.
957. Wreath recursion: $a=\sigma(c, a), b=(b, c), c=(c, a)$.

The states a, c form a 2-state automaton generating the Lamplighter group (see Theorem 7). Hence, G_{957} is neither torsion, nor contracting and has exponential growth.
959. Wreath recursion: $a=\sigma(b, b), b=(b, c), c=(c, a)$.

The element $\left(a^{-1} c\right)^{4}$ stabilizes the vertex 00 and its section at this vertex is equal to $\left(a^{-1} c\right)^{-1}$. Hence, $a^{-1} c$ has infinite order.

Furthermore, since $c^{-1} b=\left(c^{-1} b, a^{-1} c\right)$, this element also has infinite order. Thus, G_{959} is not contracting.
960. Wreath recursion: $a=\sigma(c, b), b=(b, c), c=(c, a)$.

Define $x=a c^{-1}, y=b a^{-1}$ and $z=c b^{-1}$. Then $x=\sigma(1, y), y=$ $\sigma\left(z, z^{-1}\right)$ and $z=(z, x)$.

The element $(z x y)^{8}$ stabilizes the vertex 001010 and its section at this vertex is equal to $x y^{-1} z=x y z=(z x y)^{z^{-1}}\left(\right.$ since $\left.y^{2}=1\right)$. Hence, $z x y$ has infinite order.

Denote $t=\left(b^{-1} c\right)^{4}\left(b^{-1} a\right)\left(c^{-1} a\right)^{5}\left(b^{-1} c\right)$. Then t^{2} stabilizes the vertex 00 and $\left.t^{2}\right|_{00}=t^{b^{-1} c}$. Hence, t has infinite order. Let $s=c^{-2} b^{2}$. Since $\left.s^{32}\right|_{111000000100}=t^{c}$ and s^{32} fixes 111000000100 , we obtain that s also has infinite order. Finally, s stabilizes the vertex 00 and has itself as a section at this vertex. Therefore G_{960} is not contracting.
963. Wreath recursion: $a=\sigma(c, c), b=(b, c), c=(c, a)$.

All generators have order 2. The element $a c=\sigma(1, c a)$ is conjugate to the adding machine and has infinite order.

Furthermore, since $c b=(c b, a c)$, this element also has infinite order. Thus, G_{963} is not contracting.
$\mathbf{9 6 4} \cong G_{739} \cong C_{2} \ltimes\left(C_{2} \backslash \mathbb{Z}\right)$. Wreath recursion: $a=\sigma(a, a), b=(c, c)$, $c=(c, a)$.

All generators have order 2. The elements $u=a c b a=(c a, 1)$ and $v=$ $b c=(1, c a)$ generate \mathbb{Z}^{2} because $c a=\sigma(1, c a)$ is the adding machine and has infinite order. We have $c a c b=\sigma$ and $\langle u, v\rangle$ is normal in $H=\langle u, v, \sigma\rangle$
because $u^{\sigma}=v$ and $v^{\sigma}=u$. In other words, $H \cong C_{2} \ltimes(\mathbb{Z} \times \mathbb{Z})=C_{2} \backslash \mathbb{Z}$.
Furthermore, $G_{964}=\langle H, a\rangle$ and H is normal in G_{972} because $u^{a}=$ $v^{-1}, v^{a}=u^{-1}$ and $\sigma^{a}=\sigma$. Thus $G_{964}=C_{2} \ltimes\left(C_{2}(\mathbb{Z})\right.$, where the action of C_{2} on H is specified above and coincides with the one in G_{739}. Therefore $G_{964} \cong G_{739}$.
965. Wreath recursion: $a=\sigma(b, a), b=(c, c), c=(c, a)$.

The element $\left(a c^{-1}\right)^{2}$ stabilizes the vertex 01 and its section at this vertex is equal to $\left(a c^{-1}\right)^{-1}$. Hence, $a c^{-1}$ has infinite order.

By Lemma 2 the element a acts transitively on the levels of the tree and, hence, has infinite order. Since $c=(c, a)$ we obtain that c also has infinite order. Therefore G_{965} is not contracting.

We have $b c^{-1}=\left(1, c a^{-1}\right), a^{-1} b c^{-1} a=\left(a^{-1} c, 1\right)$, hence by Lemma 4 the group is not free.
966. Wreath recursion: $a=\sigma(c, a), b=(c, c), c=(c, a)$.

The states a and c form a 2-state automaton generating the Lamplighter group (see Theorem 7). Hence, G_{966} is neither torsion, nor contracting, and has exponential growth.

Since $b=(c, c)$ we obtain that G_{966} can be embedded into the wreath product $C_{2} 乙\left(\mathbb{Z} \imath \mathbb{C}_{2}\right)$. This shows that G_{966} is solvable.
968. Wreath recursion: $a=\sigma(b, b), b=(c, c), c=(c, a)$.

We will show that this group contains \mathbb{Z}^{5} as a subgroup of index 16 . It is a contracting group, with nucleus consisting of 73 elements (the self-similar closure of the nucleus consists of 77 elements).

All generators have order 2. Let $x=(a c)^{2}, y=b c b a$, and $K=\langle x, y\rangle$. Conjugating x and y by $\gamma=(b \gamma, a \gamma)$ yields the self-similar copy K^{\prime} of K generated by $x^{\prime}=\left(\left(y^{\prime}\right)^{-1},\left(y^{\prime}\right)^{-1}\right)$ and $y=\sigma\left(x^{\prime}, y^{\prime}\right)$, where $x^{\prime}=x^{\gamma}$ and $y^{\prime}=y^{\gamma}$. Since $\left[x^{\prime}, y^{\prime}\right]=\left(\left[x^{\prime}, y^{\prime}\right]^{\left(y^{\prime}\right)^{-1}}, 1\right) K^{\prime}$ is abelian. The matrix of the corresponding virtual endomorphism is given by

$$
A=\left(\begin{array}{cc}
0 & \frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right) .
$$

The eigenvalues $\lambda=\frac{1}{4} \pm \frac{1}{4} \sqrt{7} i$ of this matrix are not algebraic integers. Therefore K^{\prime} (ad therefore K as well) is free abelian of rank 2, by the results in [NS04].

The subgroup $H=\langle a b, b c\rangle$ has index 2 in G_{968} (the generators of G_{968} have order 2). The second level stabilizer $\operatorname{Stab}_{H}(2)$ has index 8 in H (the quotient group is isomorphic to the dihedral group D_{4}). The stabilizer $\operatorname{Stab}_{H}(2)$, is generated by $(b c)^{2},\left((b c)^{2}\right)^{b a},(a b)^{2},\left((a b)^{2}\right)^{b c},\left((a b)^{2}\right)^{(b c)^{b a}}$,
and $\left((a b)^{2}\right)^{b c(b c)^{b a}}$. Conjugating these elements by $g=(b, c, b, 1)$ gives

$$
\begin{aligned}
& g_{1}=\left((b c)^{2}\right)^{g} \quad=(b c b c)^{g}=\quad\left(1, \quad 1, \quad y, y^{-1}\right), \\
& g_{2}=\left((b c)^{2}\right)^{b a g} \quad=(a c b c b a)^{g}=\quad(y, y, \quad 1, \quad 1), \\
& g_{3}=\left((a b)^{2}\right)^{b c g} \quad=(c b a b a c)^{g}=\quad(1, \quad x, \quad x, 1), \\
& g_{4}=\left((a b)^{2}\right)^{g} \quad=(a b a b)^{g}=\quad\left(1, x, 1, x^{-1}\right), \\
& g_{5}=\left((a b)^{2}\right)^{(b c)^{b a g} g}=(a b c b a b a c b a)^{g}=\quad\left(x, 1, \quad 1, \quad x^{-1}\right), \\
& g_{6}=\left((a b)^{2}\right)^{b c(b c)^{b a} g}=(a b c a c b a b a c a c b a)^{g}=\left(\begin{array}{llll}
x & 1, & x & 1
\end{array}\right) .
\end{aligned}
$$

Therefore, $\operatorname{Stab}_{H}(2)$ is abelian and $g_{6}=g_{5} g_{3} g_{4}^{-1}$. If $\prod_{i=1}^{5} g_{i}^{n_{i}}=1$, then $x^{n_{5}} y^{n_{2}}=x^{n_{3}+n_{4}} y^{n_{2}}=x^{n_{3}} y^{n_{1}}=x^{n_{4}+n_{5}} y^{n_{1}}=1$. Since K is free abelian, we obtain $n_{i}=0, i=1, \ldots, 5$. Therefore $\operatorname{Stab}_{H}(2)$ is a free abelian group of rank 5 .
969. Wreath recursion: $a=\sigma(c, b), b=(c, c), c=(c, a)$.

The element $\left(c b^{-1}\right)^{4}$ stabilizes the vertex 100 and its section at this vertex is equal to $c b^{-1}$. Hence, $c b^{-1}$ has infinite order.

We have $b c^{-1}=\left(1, c a^{-1}\right), c a^{-1}=\sigma\left(a b^{-1}, 1\right), a b^{-1}=\sigma\left(1, b c^{-1}\right)$, hence the subgroup generated by these elements is isomorphic to $I M G\left(1-\frac{1}{z^{2}}\right)$ (see [BN06]).

We also have $c^{-1} b=\left(1, a^{-1} c\right), a^{-1} c^{-1} b a=\left(b^{-1} a^{-1} c b, 1\right)$, hence by Lemma 4 the group is not free.
$\mathbf{9 7 2} \cong G_{739} \cong C_{2} \ltimes\left(C_{2} \prec \mathbb{Z}\right)$. Wreath recursion : $a=\sigma(c, c), b=(c, c)$, $c=(c, a)$.

All generators have order 2. The elements $u=a c b a=(c a, 1)$ and $v=b c=(1, a c)$ generate \mathbb{Z}^{2} because $c a=\sigma(a c, 1)$ is conjugate to the adding machine and has infinite order. Also we have $b a=\sigma$ and $\langle u, v\rangle$ is normal in $H=\langle u, v, \sigma\rangle$ because $u^{\sigma}=v$ and $v^{\sigma}=u$. In other words, $H \cong C_{2} \ltimes(\mathbb{Z} \times \mathbb{Z})=C_{2} \backslash \mathbb{Z}$.

Furthermore, $G_{972}=\langle H, a\rangle$ and H is normal in G_{972} because $u^{a}=$ $v^{-1}, v^{a}=u^{-1}$ and $\sigma^{a}=\sigma$. Thus $G_{972}=C_{2} \ltimes\left(C_{2} \imath \mathbb{Z}\right)$, where the action of C_{2} on H is specified above and coincides with the one in G_{739}. Therefore $G_{972} \cong G_{739}$.
$1090 \cong C_{2}$. Wreath recursion: $a=\sigma(a, a), b=(b, b), c=(b, b)$.
Both b and c are trivial and $a^{2}=1$.
$1091 \cong G_{731} \cong \mathbb{Z}$. Wreath recursion: $a=\sigma(b, a), b=(b, b), c=(b, b)$.
Both b and c are trivial and a is the adding machine.
$1094 \cong G_{1090} \cong C_{2}$. Wreath recursion: $a=\sigma(b, b), b=(b, b), c=(b, b)$.
Both b and c are trivial and $a^{2}=1$.
$\mathbf{2 1 9 0} \cong G_{848} \cong C_{2}$ 乙 \mathbb{Z}. Wreath recursion: $a=\sigma(c, a), b=\sigma(a, a)$, $c=(a, a)$.

First note that $c=a^{-2}$. Therefore $G=\langle a, b\rangle$, where $a=\sigma\left(a^{-2}, a\right)$, and $b=\sigma(a, a)$. Also, a has infinite order.

Consider the subgroup $H=\langle b a, a b\rangle<G$. The generators of H commute since $b a=\left(a^{-1}, a^{2}\right)$ and $a b=\left(a^{2}, a^{-1}\right)$. Furthermore, $(b a)^{n}(a b)^{m}=\left(a^{-n+2 m}, a^{2 n-m}\right)=1$ if and only if $m=n=0$. Therefore $H \cong \mathbb{Z}^{2}$.

Consider the element $b a^{2}=b c^{-1}=\sigma$. This element does not belong to H, since H stabilizes the first level of the tree. On the other hand $a=(b a)^{-1} b a^{2}=(b a)^{-1} \sigma$ and $b=a^{-1}(a b)$ so $G=\langle\sigma, H\rangle$. Finally, $(b a)^{\sigma}=a b$ and $(a b)^{\sigma}=b a$ implies that H is normal in G and $G=$ $C_{2} \backslash H \cong C_{2} \backslash \mathbb{Z} \cong G_{848}$.

Also note that $\left\langle a, a^{b}\right\rangle=G_{2212} \cong \mathbb{Z} *_{2 \mathbb{Z}} \mathbb{Z}$.
2193. Wreath recursion: $a=\sigma(c, b), b=\sigma(a, a), c=(a, a)$.

Let $x=c a^{-1}$ and $y=a b^{-1}$. Then $x=\sigma\left(a b^{-1}, a c^{-1}\right)=\sigma\left(y, x^{-1}\right)$ and $y=\left(b a^{-1}, c a^{-1}\right)=\left(y^{-1}, x\right)$. It is already shown (see $\left.G_{891}\right)$, that $\langle x, y\rangle$ is not contracting and is isomorphic to the Lamplighter group. Therefore G_{2193} is not a torsion group, it is not contracting, and has exponential growth.
$2196 \cong G_{802} \cong C_{2} \times C_{2} \times C_{2}$. Wreath recursion: $a=\sigma(c, c), b=\sigma(a, a)$, $c=(a, a)$.

Direct calculation.
2199. Wreath recursion: $a=\sigma(c, a), b=\sigma(b, a), c=(a, a)$.

By Lemma 2 the element $a c$ acts transitively on the levels of the tree and, hence, has infinite order. Since $b a=(a c, b a)$ we obtain that $b a$ also has infinite order. Therefore G_{2199} is not contracting.

We have $b^{-2} a b c b a=b^{-2} a b a^{-2} b a=1$, and a and b do not commute, hence the group is not free.
2202. Wreath recursion: $a=\sigma(c, b), b=\sigma(b, a), c=(a, a)$.

The element $\left(b^{-1} a\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $b^{-1} a$. Hence, $b^{-1} a$ has infinite order. Furthermore, $b^{-1} a$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2202} is not contracting.

We have $c b^{-1} c^{-1} b=\left(1, a b^{-1} a^{-1} b\right), b c b^{-1} c^{-1}=\left(b a b^{-1} a^{-1}, 1\right)$, hence by Lemma 4 the group is not free.
2203. Wreath recursion: $a=\sigma(a, c), b=\sigma(b, a), c=(a, a)$.

The states a and c form a 2-state automaton generating the infinite cyclic group \mathbb{Z} in which $c=a^{-2}$ (see Theorem 7).

Since $\left.b^{-1} a\right|_{1}=a^{-1} c$ and vertex 1 is fixed under the action of $b^{-1} a$ we obtain that $b^{-1} a$ also has infinite order. Finally, $b^{-1} a$ stabilizes the vertex 0 and has itself as a section at this vertex. Therefore G_{2203} is not contracting.

We have $c^{-2} a b=\left(1, a^{-2} c b\right), b c^{-2} a=\left(b a^{-2} c, 1\right)$, hence by Lemma 4 the group is not free.
2204. Wreath recursion: $a=\sigma(b, c), b=\sigma(b, a), c=(a, a)$.

The element $\left(b^{-1} a c^{-1} a\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $b^{-1} a c^{-1} a$. Hence, $b^{-1} a c^{-1} a$ has infinite order. Since $\left.[c, a]^{2}\right|_{000}=\left(b^{-1} a c^{-1} a\right)^{a^{-1} c b}$ and 000 is fixed under the action of $[c, a]^{2}$ we obtain that $[c, a]$ also has infinite order. Finally, $[c, a]$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2204} is not contracting.

We have $a b^{-1}=\left(1, c a^{-1}\right), b^{-1} a=\left(a^{-1} c, 1\right)$, hence by Lemma 4 the group is not free.
$\mathbf{2 2 0 5} \cong G_{775} \cong C_{2} \ltimes I M G\left(\left(\frac{z-1}{z+1}\right)^{2}\right)$. Wreath recursion: $a=\sigma(c, c)$, $b=\sigma(b, a), c=(a, a)$.

See G_{783} for an isomorphism between G_{783} and G_{2205}.
$\mathbf{2 2 0 6} \cong G_{748} \cong D_{4} \times C_{2}$. Wreath recursion: $a=\sigma(a, a), b=\sigma(c, a)$, $c=(a, a)$.

Direct calculation.
2207. Wreath recursion: $a=\sigma(b, a), b=\sigma(c, a), c=(a, a)$.

The element $\left(c^{-1} a\right)^{4}$ stabilizes the vertex 000 and its section at this vertex is equal to $c^{-1} a$. Hence, $c^{-1} a$ has infinite order.

Since $\left.b^{-1} a^{-1} b^{-1} a b a\right|_{001}=\left(c^{-1} a\right)^{a}$ and the vertex 001 is fixed under the action of $b^{-1} a^{-1} b^{-1} a b a$ we obtain that $b^{-1} a^{-1} b^{-1} a b a$ also has infinite order. Finally, $b^{-1} a^{-1} b^{-1} a b a$ stabilizes the vertex 000 and has itself as a section at this vertex. Therefore G_{2207} is not contracting.

We have $a^{-2} b a b^{-2} a b=1$, and a and b do not commute, hence the group is not free.
2209. Wreath recursion: $a=\sigma(a, b), b=\sigma(c, a), c=(a, a)$.

The element $\left(b^{-1} a\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $\left(b^{-1} a\right)^{-1}$. Hence, $b^{-1} a$ has infinite order. Furthermore, $b^{-1} a$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2209} is not contracting.

We have $a c a^{-2} c^{-1} a c a c^{-1} a^{-2} c a c^{-1}=1$, and a and c do not commute, hence the group is not free.
2210. Wreath recursion: $a=\sigma(b, b), b=\sigma(c, a), c=(a, a)$.

The element $\left(a^{-1} c\right)^{2}$ stabilizes the vertex 000 and its section at this vertex is equal to $a^{-1} c$. Hence, $a^{-1} c$ has infinite order. Since $\left.\left(b^{-1} a\right)^{2}\right|_{00}=$ $a^{-1} c$ and 00 is fixed under the action of $b^{-1} a$ we obtain that $b^{-1} a$ also has infinite order. Finally, $b^{-1} a$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2210} is not contracting.

We have $c^{-1} b^{-1} c b=\left(1, a^{-1} c^{-1} a c\right), b c^{-1} b^{-1} c=\left(c a^{-1} c^{-1} a, 1\right)$, hence by Lemma 4 the group is not free.
2212. Klein bottle group, $\left\langle a, b \mid a^{2}=b^{2}\right\rangle$. Wreath recursion: $a=\sigma(a, c)$, $b=\sigma(c, a), c=(a, a)$.

The states a and c form a 2-state automaton generating the infinite cyclic group \mathbb{Z} in which $c=a^{-2}$ (see Theorem 7).

We have $a=\sigma\left(a, a^{-2}\right), b=\sigma\left(a^{-2}, a\right)$, and $x=a b^{-1}=\left(a^{-3}, a^{3}\right)$. Finally, since $x^{a}=b^{-1} a=\left(a^{3}, a^{-3}\right)=x^{-1}$, we have $G_{2212}=\langle x, a| x^{a}=$ $\left.x^{-1}\right\rangle$ and G_{2212} is the Klein bottle group. Tietze transformations yield the presentation $G_{2212}=\left\langle a, b \mid a^{2}=b^{2}\right\rangle$ in terms of the generators a and b.
2213. Wreath recursion: $a=\sigma(b, c), b=\sigma(c, a), c=(a, a)$.

By Lemma 2 the element $c b$ acts transitively on the levels of the tree and, hence, has infinite order. Since $\left.(b a)\right|_{100}=c b$ and the vertex 100 is fixed under the action of $b a$ we obtain that $b a$ also has infinite order. Finally, $b a$ stabilizes the vertex 01 and has itself as a section at this vertex. Therefore G_{2213} is not contracting.

We have $c^{-1} b^{-1} c b=\left(1, a^{-1} c^{-1} a c\right), b c^{-1} b^{-1} c=\left(c a^{-1} c^{-1} a, 1\right)$, hence by Lemma 4 the group is not free.
$\mathbf{2 2 1 4} \cong G_{748} \cong D_{4} \times C_{2}$. Wreath recursion: $a=\sigma(c, c), b=\sigma(c, a)$, $c=(a, a)$.

Direct calculation.
$\mathbf{2 2 2 6} \cong G_{820} \cong D_{\infty}$. Wreath recursion: $a=\sigma(c, a), b=\sigma(b, b)$, and $c=(a, a)$.

We have $b a=(b c, b a), b c=\sigma(b a, b a)$, and $b=\sigma(b, b)$. Therefore x, y and b satisfy the wreath recursion defining the automaton \mathcal{A}_{2394}. Thus $G_{2226}=G_{2394} \cong G_{820}$.
2229. Wreath recursion: $a=\sigma(c, b), b=\sigma(b, b), c=(a, a)$.

Note that b is of order 2. Post-conjugating the recursion by $(1, b)$ (which is equivalent to conjugating by the tree automorphism $g=(g, b g)$ in $\operatorname{Aut}\left(X^{*}\right)$ gives a copy of G_{2229} defined by

$$
a=\sigma(b c, 1), \quad b=\sigma, \quad c=(a, b a b)
$$

The stabilizer of the first level is generated by

$$
a^{2}=(b c, b c), \quad c=(a, b a b), \quad b a=(b c, 1), \quad b c b=(b a b, a)
$$

Its projection on the first level is generated by

$$
b c=\sigma(a, b a b), \quad a=\sigma(b c, 1), \quad b a b=\sigma(1, b c)
$$

Furthermore,

$$
b c b c=(b a b a, a b a b), \quad a b a b=(1, b c b c), \quad b a b a=(b c b c, 1)
$$

which implies that $b c$ is of order 2 and $a^{-1}=b a b$. Hence, the projection of the stabilizer on the first level is generated by the recursion

$$
a=\sigma(b c, 1), \quad b c=\sigma\left(a, a^{-1}\right)
$$

Post-conjugating by $(1, a)$, we obtain the recursion

$$
a=\sigma\left(a^{-1} \cdot b c, a\right), \quad b c=\sigma
$$

which is the group $C_{4} \ltimes \mathbb{Z}^{2}$ of all orientation preserving automorphisms of the integer lattice (see [BN06]). Note that the nucleus of G_{2229} consists of 52 elements.
$\mathbf{2 2 3 2} \cong G_{730}$. Klein Group $C_{2} \times C_{2}$. Wreath recursion: $a=\sigma(c, c)$, $b=\sigma(b, b), c=(a, a)$.

Direct calculation.
2233. Wreath recursion: $a=\sigma(a, a), b=\sigma(c, b), c=(a, a)$.

Therefore, $\langle b a=(b a, c a), c a=\sigma\rangle=G_{932} \cong D_{\infty}$.
Conjugating by $g=(a g, g)$, we obtain the recursion

$$
\alpha=\sigma, \quad \beta=\sigma(\gamma \beta, \alpha \beta), \quad \gamma=(\alpha, \alpha),
$$

where $\alpha=a^{g}, \beta=b^{g}$, and $\gamma=c^{g}$. Therefore

$$
\alpha=\sigma, \quad \alpha \beta=(\gamma \alpha, \alpha \beta), \quad \gamma \alpha=\sigma(\alpha, \alpha),
$$

and the last wreath recursion defines a bounded automaton (see Section 3 for a definition). It follows from [BKN] that G_{2233} is amenable.
2234. Wreath recursion: $a=\sigma(b, a), b=\sigma(c, b), c=(a, a)$.

The element $\left(c^{-1} b\right)^{4}$ stabilizes the vertex 00 and its section at this vertex is equal to $\left(c^{-1} b\right)^{-1}$. Hence, $c^{-1} b$ has infinite order. Since $\left.\left(b^{-1} a\right)\right|_{0}=c^{-1} b$ and 0 is fixed under the action of $b^{-1} a$ we obtain that $b^{-1} a$ also has infinite order. Finally, $b^{-1} a$ stabilizes the vertex 1 and has itself as a section at this vertex. Therefore G_{2234} is not contracting.

We have $c^{-1} b^{-1} a c^{-1} a^{2}=\left(1, a^{-1} c^{-1} b^{2}\right), a c^{-1} b^{-1} a c^{-1} a=$ $\left(b a^{-1} c^{-1} b, 1\right)$, hence by Lemma 4 the group is not free.
2236. Wreath recursion: $a=\sigma(a, b), b=\sigma(c, b), c=(a, a)$.

By Lemma 2 the element b acts transitively on the levels of the tree and, hence, has infinite order.

By Lemma 2 the element $c b$ acts transitively on the levels of the tree and, hence, has infinite order. Since $b a=(b a, c b)$ we obtain that $b a$ also has infinite order. Since $b a$ has itself as a section at 0 the group is not contracting.

We have $a^{-2} b a b^{-2} a b=1$, and a and b do not commute, hence the group is not free.
2237. Wreath recursion: $a=\sigma(b, b), b=\sigma(c, b), c=(a, a)$.

By Lemma 2 the elements b and $(b c)^{3}$ acts transitively on the levels of the tree and, hence, have infinite order.

Since $\left.(c b a)^{2}\right|_{00000}=(b c)^{3}$ and 00000 is fixed under the action of $(c b a)^{2}$ we obtain that $c b a$ also has infinite order. Finally, $c b a$ stabilizes the
vertex 101 and has itself as a section at this vertex. Therefore G_{2237} is not contracting.

We have $a^{-2} b a b^{-2} a b=1$, and a and b do not commute, hence the group is not free.
2239. Wreath recursion: $a=\sigma(a, c), b=\sigma(c, b), c=(a, a)$.

The group contains elements of infinite order by Lemma 1. In particular, $c a$ has infinite order. Since $\left.(b a)\right|_{100}=c a$ and the vertex 100 is fixed under the action of $b a$ we obtain that $b a$ also has infinite order. Finally, $b a$ stabilizes the vertex 1 and has itself as a section at this vertex. Therefore G_{2239} is not contracting.

We have $c a^{-2} c b a^{-1}=\left(1, c^{-1} a b c^{-1}\right), a^{-1} c a^{-2} c b=\left(c^{-2} a b, 1\right)$, hence by Lemma 4 the group is not free.

We can also simplify the wreath recursion in the following way. Since $c=a^{-2}$ we have

$$
a=\sigma\left(a, a^{-2}\right), \quad b=\sigma\left(a^{-2}, b\right)
$$

Therefore

$$
a b=\left(a^{-4}, a b\right), \quad a=\sigma\left(a, a^{-2}\right)
$$

which can be written as

$$
a b=\left(a^{-4}, a b\right), \quad a=\sigma\left(1, a^{-1}\right)
$$

which is a subgroup of

$$
\beta=(a, \beta), \quad a=\sigma\left(1, a^{-1}\right)
$$

2240. Free group of rank 3. Wreath recursion: $a=\sigma(b, c), b=\sigma(c, b)$, $c=(a, a)$.

The automaton appeared for the first time in [Ale83]. The fact that G_{2240} is free group of rank 3 with basis $\{a, b, c\}$ is proved in [VV05]. This is the smallest automaton among all automata over a 2-letter alphabet generating a free nonabelian group.

The fact that G_{2240} is not contracting follows now from the result of Nekrashevych [Nek07a], that a contracting group cannot have free subgroups. Alternatively, $b^{-1} c a$ has infinite order, stabilizes the vertex 11 and has itself as a section at this vertex. Hence, the group is not contracting.
$\mathbf{2 2 4 1} \cong G_{739} \cong C_{2} \ltimes\left(C_{2}\right.$ 亿 $\left.\mathbb{Z}\right)$. Wreath recursion: $a=\sigma(c, c), b=\sigma(c, b)$, $c=(a, a)$.

Consider G_{747}. Its wreath recursion is given by $a=\sigma(c, c), b=(b, a)$, $c=(a, a)$. All generators have order 2 and a commutes with c. Therefore
$a c b=\sigma(c a b, c)=\sigma(a c b, c)$ and wa have $G_{747}=\langle a, a c b, c\rangle=G_{2241}$. Thus $G_{2241}=G_{747} \cong G_{739}$.
$\mathbf{2 2 6 0} \cong G_{802} \cong C_{2} \times C_{2} \times C_{2}$. Wreath recursion: $a=\sigma(a, a), b=(c, c)$, $c=(a, a)$.

Direct calculation.
2261. Wreath recursion: $a=\sigma(b, a), b=\sigma(c, c), c=(a, a)$.

The element $\left(a c^{-1}\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $\left(a c^{-1}\right)^{-1}$. Hence, $a c^{-1}$ and $c^{-1} a$ have infinite order.

Since $\left.b^{-1} c^{-1} a c^{-1} b a\right|_{001}=\left(\left(c^{-1} a\right)^{2}\right)^{a}$ and the vertex 001 is fixed under the action of $b^{-1} c^{-1} a c^{-1} b a$ we obtain that $b^{-1} c^{-1} a c^{-1} b a$ also has infinite order. Finally, $b^{-1} c^{-1} a c^{-1} b a$ stabilizes the vertex 000 and has itself as a section at this vertex. Therefore G_{2261} is not contracting.

We have $a c a c^{-1} a^{-2} c a c^{-1} a c a^{-2} c^{-1}=1$, and a and c do not commute, hence the group is not free.
$\mathbf{2 2 6 2} \cong G_{848} \cong C_{2} \backslash \mathbb{Z}$. Wreath recursion: $a=\sigma(c, a), b=\sigma(c, c)$, $c=(a, a)$.

The states a and c form a 2 -state automaton (see Theorem 7). Moreover, $c=a^{-2}$ and a has infinite order.

Thus $a=\sigma\left(a^{-2}, a\right), b=\sigma\left(a^{-2}, a^{-2}\right)$ and $G_{2262}=\langle a, b\rangle$. Further, $b^{-1} a=\left(1, a^{3}\right)$ and $a^{-3}=\sigma\left(1, a^{3}\right)$, yielding $a^{-4} b=\sigma$. Therefore $G=$ $\langle a, \sigma\rangle$. Since $\left\langle a, a^{\sigma}\right\rangle=\mathbb{Z}^{2}$, we obtain that $G_{2262} \cong C_{2} \backslash Z^{2} \cong G_{848}$.
$\mathbf{2 2 6 4} \cong G_{730}$. Klein Group $C_{2} \times C_{2}$. Wreath recursion: $a=\sigma(b, b)$, $b=\sigma(c, c), c=(a, a)$.

Direct calculation.
2265. Wreath recursion: $a=\sigma(c, b), b=\sigma(c, c), c=(a, a)$.

The element $\left(c^{-1} b\right)^{4}$ stabilizes the vertex 0000 and its section at this vertex is equal to $\left(\left(c^{-1} b\right)^{-1}\right)^{c^{-1} a}$. Hence, $c^{-1} b$ has infinite order. Since $\left.[c, a]\right|_{10}=\left(c^{-1} b\right)^{c}$ and 10 is fixed under the action of $[c, a]$ we obtain that $[c, a]$ also has infinite order. Finally, $[c, a]$ stabilizes the vertex 00 and has itself as a section at this vertex. Therefore G_{2265} is not contracting.

We have $a^{-2} b a b^{-2} a b=1$, and a and b do not commute, hence the group is not free.
2271. Wreath recursion: $a=\sigma(c, a), b=\sigma(a, a), c=(b, a)$.

The element $\left(a c^{-1}\right)^{4}$ stabilizes the vertex 001 and its section at this vertex is equal to $a c^{-1}$. Hence, $a c^{-1}$ has infinite order.

The element $\left(a^{-1} b\right)^{4}$ stabilizes the vertex 000 and its section at this vertex is equal to $a^{-1} b$. Hence, $a^{-1} b$ has infinite order. Since $\left.b^{-1} c^{-1} a c^{-1} a^{2}\right|_{001}=\left(a^{-1} b\right)^{a}$ and the vertex 001 is fixed under the action of $b^{-1} c^{-1} a c^{-1} a^{2}$ we obtain that $b^{-1} c^{-1} a c^{-1} a^{2}$ also has infinite order. Finally, $b^{-1} c^{-1} a c^{-1} a^{2}$ stabilizes the vertex 000 and has itself as a section at this vertex. Therefore G_{2271} is not contracting.

We have $a^{-2} b a b^{-2} a b=1$, and a and b do not commute, hence the group is not free.
2274. Wreath recursion: $a=\sigma(c, b), b=\sigma(a, a), c=(b, a)$.

The element $a^{-1} c=\sigma\left(1, c^{-1} a\right)$ is conjugate to the adding machine and has infinite order. Since $\left.\left(b^{-1} a\right)\right|_{0}=a^{-1} c$ and 0 is fixed under the action of $b^{-1} a$ we obtain that $b^{-1} a$ also has infinite order. Finally, $b^{-1} a$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2274} is not contracting.

We have $b c^{-2} b=\left(1, a b^{-2} a\right), b^{2} c^{-2}=\left(a^{2} b^{-2}, 1\right)$, hence by Lemma 4 the group is not free.
$2277 \cong C_{2} \ltimes(\mathbb{Z} \times \mathbb{Z})$. Wreath recursion: $a=\sigma(c, c), b=\sigma(a, a)$, $c=(b, a)$.

All generators have order 2. Let $x=c b, y=a b$ and $H=\langle x, y\rangle$. We have $x=\sigma\left(1, y^{-1}\right)$ and $y=\left(x y^{-1}, x y^{-1}\right)$. The elements x and y commute and the matrix of the associated virtual endomorphism is given by

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 / 2 & -1
\end{array}\right)
$$

The eigenvalues $-\frac{1}{2} \pm \frac{1}{2} i$ are not algebraic integers, and therefore, according to [NS04], H is free abelian of rank 2.

The subgroup H is normal of index 2 in G_{2277}. Therefore $G_{2277}=$ $\langle H, b\rangle=C_{2} \ltimes(\mathbb{Z} \times \mathbb{Z})$, where C_{2} is generated by b, which acts on H is inversion of the generators.
2280. Wreath recursion: $a=\sigma(c, a), b=\sigma(b, a), c=(b, a)$.

We prove that a has infinite order by considering the forward orbit of 10^{∞} under the action of a^{2}. We have

$$
\begin{array}{rlrl}
a^{2} & =(a c, c a), & a c & =\sigma\left(c b, a^{2}\right), \\
c b & =\sigma(a b, b a), & & c a=\sigma(a c, b a) \\
c a c, b a), & & a b=(a b, c a)
\end{array}
$$

The equalities

$$
\begin{aligned}
& a^{2}\left(10^{\infty}\right)=a b\left(10^{\infty}\right)=1110^{\infty} \\
& a c\left(10^{\infty}\right)=c a\left(10^{\infty}\right)=c b\left(10^{\infty}\right)=0010^{\infty}, \text { and } \\
& b a\left(10^{\infty}\right)=10110^{\infty}
\end{aligned}
$$

show that all members of the forward orbit of 10^{∞} under the action of a^{2} have only finitely many 1 's and that the position of the rightmost 1 cannot decrease under the action of a^{2}. Since $a^{2}\left(10^{\infty}\right)=1110^{\infty}$, the forward orbit of 10^{∞} under the action of a^{2} can never return to 10^{∞} and a^{2} has infinite order.

Since $a^{2}=(a c, c a)$, the elements $c a$ and $a b=(a b, c a)$ have infinite order, showing that G_{2280} is not contracting.
2283. Wreath recursion: $a=\sigma(c, b), b=\sigma(b, a), c=(b, a)$.

By Lemma 2 the element $a c$ acts transitively on the levels of the tree and, hence, has infinite order. Since $b a=\left(a c, b^{2}\right)$ we obtain that $b a$ also has infinite order. Finally, $b a$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2283} is not contracting.
2284. Wreath recursion: $a=\sigma(a, c), b=\sigma(b, a), c=(b, a)$.

Define $u=b^{-1} a, v=a^{-1} c$ and $w=c^{-1} b$. Then $u=(u, v), v=$ $\sigma(w, 1)$ and $w=\sigma\left(u^{-1}, u\right)$. The group $\langle u, v, w\rangle$ is generated by the automaton symmetric to the one generating the subgroup $\langle x, y, z\rangle$ of G_{960} (see G_{960} for the definition). It is shown above that $z x y$ has infinite order. Therefore $w v u$ also has infinite order.

The element $\left(b^{-1} a c^{-1} a\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $\left(b^{-1} a c^{-1} a\right)^{a^{-1} b}$. Hence, $b^{-1} a c^{-1} a$ has infinite order. Let $t=b^{-1} a b^{-2} a^{2}$. Since $\left.t\right|_{110}=b^{-1} a c^{-1} a$ and the vertex 110 is fixed under the action of t we see that t also has infinite order. Finally, t stabilizes the vertex 11101000 and has itself as a section at this vertex. Therefore G_{2284} is not contracting.
2285. Wreath recursion: $a=\sigma(b, c), b=\sigma(b, a), c=(b, a)$.

The element $a c^{-1}=\sigma\left(1, c a^{-1}\right)$ is conjugate to the adding machine and has infinite order.

By Lemma 2 the element $a b c b$ acts transitively on the levels of the tree and, hence, has infinite order. Since $\left.(b a)^{2}\right|_{000}=\left(a c, b^{2}\right)$ and the vertex 000 is fixed under the action of $(b a)^{2}$ we obtain that $b a$ also has infinite order. Finally, $b a$ stabilizes the vertex 01 and has itself as a section at this vertex. Therefore G_{2285} is not contracting.
2286. Wreath recursion: $a=\sigma(c, c), b=\sigma(b, a), c=(b, a)$.

The element $\left(c^{-1} a\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $\left(c^{-1} a\right)^{a^{-1} b}$. Hence, $c^{-1} a$ has infinite order. Since $\left.\left(c^{-2} a^{2}\right)\right|_{000}=\left(c^{-1} a\right)^{b^{-1}}$ and 000 is fixed under the action of $c^{-2} a^{2}$ we obtain that $c^{-2} a^{2}$ also has infinite order. Finally, $c^{-2} a^{2}$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2286} is not contracting.
2287. Wreath recursion: $a=\sigma(a, a), b=\sigma(c, a), c=(b, a)$.

The element $b c^{-1}=\sigma\left(c b^{-1}, 1\right)$ is conjugate to the adding machine and has infinite order.

Conjugating the generators by $g=(g, a g)$, we obtain the wreath recursion

$$
a^{\prime}=\sigma, \quad b^{\prime}=\sigma\left(a^{\prime} c^{\prime}, 1\right), \quad c^{\prime}=\left(b^{\prime}, a^{\prime}\right)
$$

where $a^{\prime}=a^{g}, b^{\prime}=b^{g}$, and $c^{\prime}=c^{g}$. Therefore

$$
a^{\prime}=\sigma, \quad b^{\prime}=\sigma\left(a^{\prime} c^{\prime}, 1\right), \quad a^{\prime} c^{\prime}=\sigma\left(b^{\prime}, a^{\prime}\right)
$$

A direct computation shows that the iterated monodromy group of $\frac{z^{2}+2}{1-z^{2}}$ is generated by

$$
\alpha=\sigma, \quad \beta=\sigma\left(\gamma^{-1} \beta^{-1}, \alpha\right), \quad \gamma=\left(\beta \gamma \beta^{-1}, \alpha\right)
$$

where α, β, and γ are loops around the post-critical points $2,-1$ and -2 , respectively (recall the definition of iterated monodromy group in Section 5). We see that

$$
\alpha=\sigma, \quad \beta \gamma=\sigma\left(\beta^{-1}, 1\right), \quad \beta=\sigma\left(\gamma^{-1} \beta^{-1}, \alpha\right)
$$

satisfy the same recursions as a, b and $a c$, only composed with taking inverses. If we take second iteration of the wreath recursions, we obtain isomorphic self-similar groups.

It follows that the group G_{2287} is isomorphic to $I M G\left(\frac{z^{2}+2}{1-z^{2}}\right)$ and the limit space is homeomorphic to the Julia set of this rational function.
2293. Wreath recursion: $a=\sigma(a, c), b=\sigma(c, a), c=(b, a)$.

The element $\left(b^{-1} c\right)^{2}$ stabilizes the vertex 0 and its section at this vertex is equal to $\left(b^{-1} c\right)^{-1}$. Hence, $b^{-1} c$ has infinite order. Since $\left.\left(c^{-1} b c^{-1} a\right)^{2}\right|_{000}=b^{-1} c$ and 000 is fixed under the action of $\left(c^{-1} b c^{-1} a\right)^{2}$ we obtain that $c^{-1} b c^{-1} a$ also has infinite order. Finally, $c^{-1} b c^{-1} a$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2293} is not contracting.

We have $b^{-1} c^{2} a^{-1}=\left(1, c^{-1} b^{2} c^{-1}\right), c^{2} a^{-1} b^{-1}=\left(b^{2} c^{-2}, 1\right)$, hence by Lemma 4 the group is not free.
2294. Baumslag-Solitar group $B S(1,-3)$. Wreath recursion: $a=\sigma(b, c)$, $b=\sigma(c, a), c=(b, a)$.

The automaton satisfies the conditions of Lemma 1. Therefore $c b$ has infinite order. Since $a^{2}=(c b, b c), c=(b, a)$ and $b a=\left(a b, c^{2}\right)$, the elements a, c and $b a$ have infinite order. Finally, $b a$ fixes the vertex 01 and has itself as a section at this vertex, showing that G_{2294} is not contracting.

Let $\mu=c a^{-1}$. We have $\mu=c a^{-1}=\sigma\left(a c^{-1}, 1\right)=\sigma\left(\mu^{-1}, 1\right)$, and therefore μ is conjugate of the adding machine and has infinite order. Further, we have $b c^{-1}=\sigma\left(c b^{-1}, 1\right)=\sigma\left(\left(b c^{-1}\right)^{-1}, 1\right)$, showing that $b c^{-1}=$ $\mu=c a^{-1}$. Therefore $G_{2294}=\langle\mu, a\rangle$.

It can be shown that $a \mu a^{-1}=\mu^{-3}$ in G_{2294} (compare to G_{870}. Since both a and μ have infinite order $G_{2294} \cong B S(1,-3)$.
2295. Wreath recursion: $a=\sigma(c, c), b=\sigma(c, a), c=(b, a)$.

The element $c b^{-1}=\sigma\left(1, b c^{-1}\right)$ is conjugate to the adding machine and has infinite order. Hence, its conjugate $a^{-1} c b^{-1} a$ also has infinite order. Since $c^{-1} a c^{-1} b=\left(c^{-1} a c^{-1} b, a^{-1} c b^{-1} a\right)$, the element $c^{-1} a c^{-1} b$ has infinite order and G_{2295} is not contracting.

We have $a^{-2} b a b^{-2} a b=1$, and a and b do not commute, hence the group is not free.
2307. Contains G_{933}. Wreath recursion: $a=\sigma(c, a), b=\sigma(b, b), c=$ (b, a).

We have $b a=(b c, b a)$, and $b c=\sigma(1, b a)$. Therefore G_{933} is a subgroup of G_{2307} (the wreath recursion for $b a$ and $b c$ defines an automaton that is symmetric to the one defining the automaton [993]).

The element $\left(a^{-1} b\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $a^{-1} b$. Hence, $a^{-1} b$ has infinite order. Furthermore, $a^{-1} b$ stabilizes the vertex 1 and has itself as a section at this vertex. Therefore G_{2307} is not contracting.
$\mathbf{2 3 1 3} \cong G_{2277} \cong C_{2} \ltimes(\mathbb{Z} \times \mathbb{Z})$. Wreath recursion: $a=\sigma(c, c), b=\sigma(b, b)$, $c=(b, a)$.

Since all generators have order 2 the subgroup $H=\langle b a, b c\rangle$ is normal in G_{2313}. Furthermore, $b a=\sigma(b c, b c)$ and $b c=\sigma(1, b a)$. Hence, $H=$ $G_{771} \cong \mathbb{Z}^{2}$.

Finally, $G_{2313}=\langle H, b\rangle=\langle b\rangle \ltimes H=C_{2} \ltimes(\mathbb{Z} \times \mathbb{Z})$, where b inverts the generators of H. This action coincides with the one for G_{2277}, which proves that these groups are isomorphic.
$\mathbf{2 3 2 0} \cong G_{2294}$. Baumslag-Solitar group $B S(1,-3)$. Wreath recursion: $a=\sigma(a, c), b=\sigma(c, b), c=(b, a)$.

It is proved in [BŠ06] that the automaton [2320] generates $B S(1,-3)$. 2322. Wreath recursion: $a=\sigma(c, c), b=\sigma(c, b), c=(b, a)$.

The element $\left(a^{-1} c\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $\left(a^{-1} c\right)^{b^{-1}}$. Hence, $a^{-1} c$ has infinite order. Since $\left.\left(c^{-2} a^{2}\right)^{2}\right|_{000}=a^{-1} c$ and 000 is fixed under the action of $c^{-2} a^{2}$ we obtain that $c^{-2} a^{2}$ also has infinite order. Finally, $c^{-2} a^{2}$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2322} is not contracting.

We have $a^{-2} b a b^{-2} a b=1$, and a and b do not commute, hence the group is not free.
$\mathbf{2 3 5 2} \cong G_{740}$. Wreath recursion: $a=\sigma(c, a), b=\sigma(a, a), c=(c, a)$.
We have $a c^{-1} b=(a, a)$. Therefore $G_{2352}=\left\langle a, a c^{-1} b, c\right\rangle=G_{740}$.
2355. Wreath recursion: $a=\sigma(c, b), b=\sigma(a, a), c=(c, a)$.

The element $\left(b^{-1} a\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $\left(b^{-1} a\right)^{a^{-1} c}$. Hence, $b^{-1} a$ has infinite order. Furthermore, $b^{-1} a$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2355} is not contracting.

We have $a^{-1} c b^{-1} c=\left(b^{-1} c, 1\right), c b^{-1} c a^{-1}=\left(1, c b^{-1}\right)$, hence by Lemma 4 the group is not free.
$\mathbf{2 3 5 8} \cong G_{820} \cong D_{\infty}$. Wreath recursion: $a=\sigma(c, c), b=\sigma(a, a), c=$ (c, a).

The states a and c form a 2-state automaton generating D_{∞} (see Theorem 7) and $b=a c a$.
2361. Wreath recursion: $a=\sigma(c, a), b=\sigma(b, a), c=(c, a)$.

The element $b c^{-1}=\sigma\left(b c^{-1}, 1\right)$ is conjugate to the adding machine and has infinite order.
2364. Wreath recursion: $a=\sigma(c, b), b=\sigma(b, a), c=(c, a)$.

The element $c b^{-1}=\sigma\left(1, c b^{-1}\right)$ is the adding machine and has infinite order. Therefore its conjugate $b^{-1} c$ also has infinite order. Since $\left.\left(b^{-1} a\right)\right|_{0}=b^{-1} c$ and 0 is fixed under the action of $b^{-1} a$ we obtain that $b^{-1} a$ also has infinite order. Finally, $b^{-1} a$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2364} is not contracting.

We have $c^{-1} a c^{-1} b=\left(1, a^{-1} b c^{-1} b\right), b c^{-1} a c^{-1}=\left(b a^{-1} b c^{-1}, 1\right)$, hence by Lemma 4 the group is not free.
2365. Wreath recursion: $a=\sigma(a, c), b=\sigma(b, a), c=(c, a)$.

By Lemma 2 the element $c b$ acts transitively on the levels of the tree and, hence, has infinite order.
2366. Wreath recursion: $a=\sigma(b, c), b=\sigma(b, a), c=(c, a)$.

By Lemma 2 the element a acts transitively on the levels of the tree and, hence, has infinite order. Since $c=(c, a)$ we obtain that c also has infinite order and G_{2366} is not contracting.

We have $a^{-2} b a b^{-2} a b=1$, and a and b do not commute, hence the group is not free.
2367. Wreath recursion: $a=\sigma(c, c), b=\sigma(b, a), c=(c, a)$.

The states a and c form a 2-state automaton generating D_{∞} (see Theorem 7).

Also we have $b c=\sigma(b c, 1)$ and $c a=\sigma(a c, 1)$. Therefore the elements $b c$ and $c a$ generate the Brunner-Sidki-Vierra group (see [BSV99]).
$\mathbf{2 3 6 8} \cong G_{739} \cong C_{2} \ltimes\left(C_{2} \backslash \mathbb{Z}\right)$. Wreath recursion: $a=\sigma(a, a), b=\sigma(c, a)$, $c=(c, a)$.

We have $b c^{-1} a=(a, a)$. Therefore $G_{2368}=\left\langle a, c, b c^{-1} a\right\rangle=G_{739}$.
2369. Wreath recursion: $a=\sigma(b, a), b=\sigma(c, a), c=(c, a)$.

By using the approach already used for G_{875}, we can show that the forward orbit of 10^{∞} under the action of a is infinite, and therefore a has infinite order.

Since $a^{2}=(a b, b a)$, the element $a b$ also has infinite order. Furthermore, $a b$ fixes 00 and has itself as a section at this vertex. Therefore G_{2369} is not contracting.
2371. Wreath recursion: $a=\sigma(a, b), b=\sigma(c, a), c=(c, a)$.

The element $\left(c^{-1} a b^{-1} a\right)^{2}$ stabilizes the vertex 01 and its section at this vertex is equal to $c^{-1} a b^{-1} a$, which is nontrivial. Hence, $c^{-1} a b^{-1} a$ has infinite order.

Let $t=b^{-1} c^{-1} a^{2} c^{-1} b a^{-1} c a^{-1} c a^{-2} c b c^{-1} a b^{-1} a$. Then t^{2} stabilizes the vertex 00 and $\left.t^{2}\right|_{00}=t^{a^{-1} b a^{-1} c}$. Hence, t has infinite order. Let $s=$ $b^{-1} c^{-2} a^{3}$ Since $\left.s^{8}\right|_{00100001}=t$ and s fixes the vertex 00100001 we see that s also has infinite order. Finally, s stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2371} is not contracting.
2372. Wreath recursion: $a=\sigma(b, b), b=\sigma(c, a), c=(c, a)$.

By Lemma 2 the elements b and $a c$ act transitively on the levels of the tree and, hence, have infinite order. Since $\left.\left(c^{2}\right)\right|_{100}=a c$ and the vertex 100 is fixed under the action of c^{2} we obtain that c also has infinite order. Finally, c stabilizes the vertex 0 and has itself as a section at this vertex. Therefore G_{2372} is not contracting.
$\mathbf{2 3 7 4} \cong G_{821}$. Lamplighter group $\mathbb{Z} \backslash C_{2}$. Wreath recursion: $a=\sigma(a, c)$, $b=\sigma(c, a), c=(c, a)$.

The states a and c form a 2-state automaton that generates the Lamplighter group (see Theorem 7). Since $b c^{-1}=\sigma=c^{-1} a$, we have $b=a^{c}$ and $G=\langle a, c\rangle$.
2375. Wreath recursion: $a=\sigma(b, c), b=\sigma(c, a), c=(c, a)$.

The element $\left(a^{-1} c\right)^{2}$ stabilizes the vertex 01 and its section at this vertex is equal to $a^{-1} c$. Hence, $a^{-1} c$ and $c^{-1} a$ have infinite order. Since $\left.c^{-1} b^{-1} a c^{-1} a^{2}\right|_{00}=c^{-1} a$ and the vertex 00 is fixed under the action of $c^{-1} b^{-1} a c^{-1} a^{2}$ we obtain that $c^{-1} b^{-1} a c^{-1} a^{2}$ also has infinite order. Finally, $c^{-1} b^{-1} a c^{-1} a^{2}$ stabilizes the vertex 11 and has itself as a section at this vertex. Therefore G_{2375} is not contracting.
$\mathbf{2 3 7 6} \cong G_{739} \cong C_{2} \ltimes\left(C_{2} \backslash \mathbb{Z}\right)$. Wreath recursion: $a=\sigma(c, c), b=\sigma(c, a)$, $c=(c, a)$.

Since $\sigma=b c^{-1}$, we have $G_{2376}=\langle a, c, \sigma\rangle$. We already proved that $G_{972}=\langle a, c, \sigma\rangle$. Therefore $G_{2376}=G_{972} \cong G_{739}$.
$\mathbf{2 3 8 8} \cong G_{821}$. Lamplighter group $\mathbb{Z} \backslash C_{2}$. Wreath recursion: $a=\sigma(c, a)$, $b=\sigma(b, b), c=(c, a)$.

The states a and c form a 2-state automaton generating the Lamplighter group (see Theorem 7) and $b=\sigma=a c^{-1}$.
2391. Wreath recursion: $a=\sigma(c, b), b=\sigma(b, b), c=(c, a)$.

The element $\left(c^{-1} b a^{-1} b\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $c^{-1} b a^{-1} b$. Hence, $c^{-1} b a^{-1} b$ has infinite order. Since $\left.\left(b c^{-2} b\right)^{2}\right|_{000}=c^{-1} b a^{-1} b$ and 000 is fixed under the action of $b c^{-2} b$ we obtain that $b c^{-2} b$ also has infinite order. Finally, $b c^{-2} b$ stabilizes the vertex 1 and has itself as a section at this vertex. Therefore G_{2391} is not contracting.
$\mathbf{2 3 9 4} \cong G_{820} \cong D_{\infty}$. Wreath recursion: $a=\sigma(c, c), b=\sigma(b, b), c=$ (c, a).

All generators have order 2 , hence $H=\langle b a, b c\rangle$ is normal in G_{2394}. Furthermore, $b a=(b c, b c), b c=\sigma(b c, b a)$, and therefore $H=G_{731} \cong \mathbb{Z}$.

Thus $G_{2394}=\langle b\rangle \ltimes H \cong C_{2} \ltimes \mathbb{Z} \cong D_{\infty}$ since $(b c)^{b}=(b c)^{-1}$.
2395. Wreath recursion: $a=\sigma(a, a), b=\sigma(c, b), c=(c, a)$.

By Lemma 2 the element $c a$ acts transitively on the levels of the tree.
The element $\left(c^{-1} a\right)^{2}$ stabilizes the vertex 0 and its section at this vertex is equal to $c^{-1} a$. Hence, $c^{-1} a$ has infinite order. Since $\left.\left(b^{-1} a\right)\right|_{0}=$ $c^{-1} a$ and 0 is fixed under the action of $b^{-1} a$ we obtain that $b^{-1} a$ also has infinite order. Finally, $b^{-1} a$ stabilizes the vertex 1 and has itself as a section at this vertex. Therefore G_{2395} is not contracting.

Note that $a b=(a c, a b), a c=\sigma(a c, 1)$ and $b a=(b a, c a), c a=\sigma(1, c a)$, i.e., G_{2395} contains copies of G_{929}.
2396. Boltenkov group. Wreath recursion: $a=\sigma(b, a), b=\sigma(c, b)$, $c=(c, a)$.

This group was studied by A. Boltenkov (under direction of R. Grigorchuk), who showed that the monoid generated by $\{a, b, c\}$ is free, and the group G_{2396} is torsion free.

Proposition 2. The monoid generated by a, b, and c is free.
Proof. By way of contradiction, assume that there are some relations and let $w=u$ be a relation for which $\max (|w|,|u|)$ minimal.

We first consider the case when neither w nor u is empty. Because of cancelation laws, the words w and u must end in different letters. We have $w=\sigma_{w}\left(w_{0}, w_{1}\right)=\sigma_{u}\left(u_{0}, u_{1}\right)=u$, where σ_{w}, and σ_{u} are permutations in $\{1, \sigma\}$. Clearly, $w_{0}=u_{0}$ and $w_{1}=u_{1}$ must also be relations.

Assume that w ends in b and u ends in c. Then w_{0} and u_{0} both end in c. Therefore, by minimality, $w_{0}=u_{0}$ as words and $|u|=|w|$. Since $b \neq c$ in G_{2396} the length of w and u is at least 2 . We can recover the second to last letter in w and u. Indeed, the second to last letter in u_{0} can be only b or c (these are the possible sections at 0 of the three generators), while the second to last letter of w_{0} can be only a or b (these are the possible sections at 1 of the three generators). Therefore $w_{0}=u_{0}=\ldots b c, w=\ldots b b$, and $u=\ldots a c$. Since $b b \neq a c$ in G_{2396} (look at the action at level 1), the length of w and u must be at least 3. Continuing in the same fashion we obtain that $w_{0}=u_{0}=b \ldots b b c$, $w=\ldots a b a b b$, and $u=\ldots b a b a c$. Since the lengths of w and u are equal, they have different action on level 1 , which is a contradiction.

Assume that w ends in a and u ends in b or c. Then u_{0} and w_{0} end in b and c, respectively, and we may proceed as before.

It remains to show that, say, u cannot be empty word. If this is the case then $w_{0}=1=w_{1}$, implying that $w_{0}=w_{1}$ is also a minimal relation. But this is impossible since both w_{0} and w_{1} are nonempty.

For a group word w over $\{a, b, c\}$, define the $\operatorname{exponent}^{\exp }{ }_{a}(w)$ of
a in w as the sum of the exponents in all occurrences of a and a^{-1} in w. Define $\exp _{b}(w)$ and $\exp _{c}(w)$ in analogous way and let $\exp (w)=$ $\exp _{a}(w)+\exp _{b}(w)+\exp _{c}(w)$.

Lemma 5. If $w=1$ in G_{2396} then $\exp (w)=0$.
Proof. By way of contradiction, assume otherwise and choose a freely reduced group word w over $\{a, b, c\}$ such that $w=1$ in $G_{2396}, \exp (w) \neq 0$, and w has minimal length among such words. If $w=\left(w_{0}, w_{1}\right)$, w_{0} and w_{1} also represent 1 in G_{2396} and $\exp \left(w_{0}\right)=\exp \left(w_{1}\right)=\exp (w) \neq 0$. Since the exponents is nonzero, the words w_{0} and w_{1} are nonempty and, by minimality, their length must be equal to $|w|$. Note that $a c^{-1}=\sigma\left(b c^{-1}, 1\right)$ and $b c^{-1}=\sigma\left(1, b a^{-1}\right)$. This implies that w cannot $a c^{-1}, b c^{-1}, c a^{-1}$, or $c b^{-1}$ as a subword (otherwise the length of w_{0} or w_{1} would be shorter than the length of w). By the same reason, w_{0} and w_{1} cannot have the above 4 words as subwords, which implies that w does not have $a b^{-1}=\left(a b^{-1}, b c^{-1}\right)$ or its inverse $b a^{-1}$ as a subword. Therefore w has the form $w=W_{1}\left(a^{-1}, b^{-1}, c^{-1}\right) W_{2}(a, b, c)$, and since $w=1$ in G_{2396}, we obtain a relation between positive words over $\{a, b, c\}$, which contradicts Proposition 2.

Lemma 6. If $w=1$ in G_{2396} then $\exp _{a}(w), \exp _{b}(w)$ and $\exp _{c}(w)$ are even.

Proof. Indeed, $\exp _{a}(w)+\exp _{b}(w)$ must be even (since both a and b are active at the root). By Lemma $5, \exp _{c}(w)$ must be even. If $w=$ $\left(w_{0}, w_{1}\right)$, then $\exp _{a}\left(w_{0}\right)+\exp _{b}\left(w_{0}\right)$ and $\exp _{a}\left(w_{1}\right)+\exp _{b}\left(w_{1}\right)$ must be even. Since $\exp _{a}(w)+\exp _{b}(w)=\exp _{b}\left(w_{0}\right)+\exp _{b}\left(w_{1}\right), \exp _{a}(w)+\exp _{c}(w)=$ $\exp _{a}\left(w_{0}\right)+\exp _{a}\left(w_{1}\right)$ we obtain that $2 \exp _{a}(w)+\exp _{b}(w)+\exp _{c}(w)$ is even, which then implies that $\exp _{b}(w)$ is even. Finally, since both $\exp _{b}(w)$ and $\exp _{c}(w)$ are even, $\exp _{a}(w)$ must be even as well (by Lemma 5).

Proposition 3. The group G_{2396} is torsion free.
Proof. By way of contradiction, assume otherwise. Let w be an element of order 2. We may assume that w does not belong to the stabilizer of the first level (otherwise we may pass to a section of w). Let $w=\sigma\left(w_{0}, w_{1}\right)$. Since $w^{2}=\left(w_{1} w_{0}, w_{0} w_{1}\right)=1$, we have the modulo 2 equalities $\exp _{b}\left(w_{0} w_{1}\right)=\exp _{b}\left(w_{0}\right)+\exp _{b}\left(w_{1}\right)=\exp _{a}(w)+\exp _{b}(w)$. Since $\exp _{b}\left(w_{0} w_{1}\right)$ is even, $\exp _{a}(w)+\exp _{b}(w)$ must be even, implying that w stabilizes level 1 , a contradiction.

Since $b^{-1} a=\left(c^{-1} b, b^{-1} a\right)$, the group G_{2396} is not contracting (our considerations above show that $b^{-1} a$ is not trivial and therefore has infinite order).

We have $c^{-1} b c^{-1} a=\left(1, a^{-1} b c^{-1} b\right), a c^{-1} b c^{-1}=\left(b a^{-1} b c^{-1}, 1\right)$, hence by Lemma 4 the group is not free.
2398. Dahmani group. Wreath recursion: $a=\sigma(a, b), b=\sigma(c, b)$, $c=(c, a)$.

This group is self-replicating, not contracting, weakly regular branch group over its commutator subgroup. It was studied by Dahmani in [Dah05].
2399. Wreath recursion: $a=\sigma(b, b), b=\sigma(c, b), c=(c, a)$.

By Lemma 2 the elements $c a$ and $c^{4} b c^{2} b c^{2} b^{2} c b^{2} c b^{3} a c b a^{2}$ act transitively on the levels of the tree and, hence, have infinite order. Since $\left.(c b a)^{8}\right|_{000010001}=c^{4} b c^{2} b c^{2} b^{2} c b^{2} c b^{3} a c b a^{2}$ and vertex 000010001 is fixed under the action of $(c b a)^{8}$ we obtain that $c b a$ also has infinite order. Finally, $c b a$ stabilizes the vertex 01001 and has itself as a section at this vertex. Therefore G_{2399} is not contracting.

We have $a^{-2} b a b^{-2} a b=1$, and a and b do not commute, hence the group is not free.
2401. Wreath recursion: $a=\sigma(a, c), b=\sigma(c, b)$ and $c=(c, a)$.

The states a and c form a 2-state automaton generating the Lamplighter group (see Theorem 7). Hence, G_{2401} is neither torsion, nor contracting and has exponential growth.
2402. Wreath recursion: $a=\sigma(b, c), b=\sigma(c, b), c=(c, a)$.

The element $\left(b c^{-1}\right)^{2}$ stabilizes the vertex 00 and its section at this vertex is equal to $b c^{-1}$. Hence, $b c^{-1}$ has infinite order.

We have $c^{-2} b a=\left(1, a^{-2} b^{2}\right), a c^{-2} b=\left(b a^{-2} b, 1\right)$, hence by Lemma 4 the group is not free.
$\mathbf{2 4 0 3} \cong G_{2287}$. Wreath recursion: $a=\sigma(c, c), b=\sigma(c, b), c=(c, a)$.
The states a and c form a 2-state automaton generating D_{∞} (see Theorem 7).

Also we have $b c=\sigma(1, b a)$ and $b a=(b c, 1)$. Therefore the elements $b c$ and $b a$ generate the Basilica group G_{852}.

By conjugating by $g=(c g, g)$, we obtain

$$
a^{\prime}=\sigma, \quad b^{\prime}=\sigma\left(1, c^{\prime} b^{\prime}\right), \quad c^{\prime}=\left(c^{\prime}, a^{\prime}\right)
$$

where $a^{\prime}=a^{g}, b^{\prime}=b^{g}$, and $c^{\prime}=c^{g}$. Therefore

$$
a^{\prime}=\sigma, \quad b^{\prime}=\sigma\left(1, c^{\prime} b^{\prime}\right), \quad c^{\prime} b^{\prime}=\sigma\left(a^{\prime}, b^{\prime}\right)
$$

and G_{2402} is isomorphic to G_{2287}, i.e., to $\operatorname{IM} G\left(\frac{z^{2}+2}{1-z^{2}}\right)$.
$\mathbf{2 4 2 2} \cong G_{820} \cong D_{\infty}$. Wreath recursion: $a=\sigma(a, a), b=\sigma(c, c), c=$ (c, a).

The states a and c form a 2-state automaton generating D_{∞} (see Theorem 7) and $b=a c a$.
2423. Wreath recursion: $a=\sigma(b, a), b=\sigma(c, c), c=(c, a)$.

Contains elements of infinite order by Lemma 1. In particular, $a c$ has infinite order. Since $\left.c^{2}\right|_{100}=a c$ and the vertex 100 is fixed under the action of c^{2} we obtain that c also has infinite order. Since $c=(c, a)$ the group is not contracting.

We have $c^{-1} b c^{-1} a=\left(1, a^{-1} b\right), a c^{-1} b c^{-1}=\left(b a^{-1}, 1\right)$, hence by Lemma 4 the group is not free.
$\mathbf{2 4 2 4} \cong G_{966}$. Wreath recursion $a=\sigma(c, a), b=\sigma(c, c), c=(c, a)$.
We have $a c^{-1} b=(c, c)$. Therefore $G_{2424}=\left\langle a, a c^{-1} b, c\right\rangle=G_{966}$.
$2426 \cong G_{2277} \cong C_{2} \ltimes(\mathbb{Z} \times \mathbb{Z})$. Wreath recursion: $a=\sigma(b, b), b=\sigma(c, c)$, $c=(c, a)$.

Since all generators have order 2 the subgroup $H=\langle a b, c b\rangle$ is normal in G_{2426}. Furthermore, $a b=(b c, b c), c b=\sigma(a c, 1)=\sigma\left(a b(c b)^{-1}, 1\right)$, so H is self-similar. Since $a c b=b c a$ in G_{2426} we obtain $a b \cdot c b=a b c a a b=$ $a a c b a b=c b \cdot a b$, hence, H is an abelian self-similar 2-generated group.

Consider the $\frac{1}{2}$-endomorphism $\phi: \operatorname{Stab}_{H}(1) \rightarrow H$, given by $\phi(g)=h$, provided $g=(h, *)$ and consider the linear map $A: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ induced by ϕ. It has the following matrix representation with respect to the basis corresponding to the generating set $\{a b, c b\}$:

$$
A=\left(\begin{array}{cc}
0 & \frac{1}{2} \\
-1 & -\frac{1}{2}
\end{array}\right)
$$

Its eigenvalues are not algebraic integers and, therefore, by [NS04], H is a free abelian group of rank 2 .

Finally, $G_{2426}=\langle H, b\rangle=\langle b\rangle \ltimes H=C_{2} \ltimes(\mathbb{Z} \times \mathbb{Z})$, where b inverts the generators of H. This action coincides with the one for G_{2277}, which proves that these groups are isomorphic.
2427. The element $\left(b c^{-1}\right)^{4}$ stabilizes the vertex 000 and its section at this vertex is equal to $b c^{-1}$. Hence, $b c^{-1}$ has infinite order.

We have $a^{-2} b a b^{-2} a b=1$, and a and b do not commute, hence the group is not free.
$\mathbf{2 8 3 8} \cong G_{848} \cong C_{2}$ 乙 \mathbb{Z}. Wreath recursion: $a=\sigma(c, a), b=\sigma(a, a)$, $c=(c, c)$.

Since c is trivial, we have $G=\left\langle a, b a^{-1}\right\rangle$, where $a=\sigma(1, a)$ is the adding machine and $b a^{-1}=(1, a)$. Therefore $G_{2838}=G_{848}$.
2841. Wreath recursion: $a=\sigma(c, b), b=\sigma(a, a), c=(c, c)$.

The element c is trivial. Since $a^{2}=(b, b), b^{2}=\left(a^{2}, a^{2}\right)$ and a^{2} is nontrivial, the elements a and b have infinite order. Also we have $b a=(a, a b)$ and $a b=(b a, a)$, hence $b a$ has infinite order and G_{2841} is not contracting.

We claim that the monoid generated by a and b is free. Hence, G_{2841} has exponential growth.

Proof. We can first prove (analogous to G_{2851}) that $w \neq 1$ for any nonempty word $w \in\{a, b\}^{*}$.

By way of contradiction, let w and v be two nonempty words in $\{a, b\}^{*}$ with minimal $|w|+|v|$ such that $w=v$ in G_{2841}. Assume that w ends with a and v ends with b. Consider the following cases.

1. If $w=a$ then $\left.v\right|_{0}=1$ in G_{2841} and $\left.v\right|_{0}$ is nontrivial word.
2. If w ends with a^{2} then $\left.w\right|_{1}=\left.v\right|_{1}$ in $G_{2841},|w|_{1}\left|+|v|_{1}\right|<|w|+|v|$ and $\left.w\right|_{1}$ ends with $b,\left.v\right|_{1}$ with a.
3. If w ends with $b a$ and v ends with $a b$, then $\left.w\right|_{1}=\left.v\right|_{1}$ in G_{2841}, $|w|_{1}\left|+|v|_{1}\right|<|w|+|v|$ (because $|v|_{1}|<|v|)$ and $\left.w\right|_{1}$ ends with b, $\left.v\right|_{1}$ with a.
4. If w ends with $b a$ and v ends with b, then $\left.w\right|_{1}=\left.v\right|_{1}$ in G_{2841}, $|w|_{1}\left|+|v|_{1}\right| \leq|w|+|v|$ and $\left.w\right|_{1}$ ends with $a b,\left|v_{1}\right|$ with a. Therefore, words $\left.v\right|_{1}$ and $\left.w\right|_{1}$ satisfy one of the first three cases.

In all cases we obtain either a shorter relation, which contradicts to our assumption, or a relation of the form $v=1$, which is also impossible.

There are non-trivial group relations, e.g. $a^{-1} b^{-1} a^{-2} b a^{-1} b^{-1} a b a^{2} b^{-1} a b=1$, while a and b do not commute, hence the group is not free.
$\mathbf{2 2 8 4} \cong G_{730}$. Klein Group $C_{2} \times C_{2}$.
Direct calculation.
$\mathbf{2 8 4 7} \cong G_{929}$. Wreath recursion: $a=\sigma(c, a), b=\sigma(b, a), c=(c, c)$.
Since c is trivial, the generator $a=\sigma(1, a)$ is the adding machine and $b=\sigma(b, a)$. We have $a b=(a b, a)$. Therefore $G_{2847}=\langle a, a b\rangle=G_{929}$.
2850. Wreath recursion: $a=\sigma(c, b), b=\sigma(b, a), c=(c, c)$.

Since c is trivial, we have $a^{2}=(b, b), b^{2}=(a b, b a), a b=\left(b^{2}, a\right)$ and $b a=\left(a, b^{2}\right)$. Therefore the elements $a, b, a b$ and $b a$ have infinite order. Since $b a$ fixes the vertex 11 and has itself as a section at that vertex, G_{2850} is not contracting.

The group is regular weakly branch over G_{2850}^{\prime}, since it is selfreplicating and $\left[b, a^{2}\right]=(1,[a, b])$.

Semigroup $\langle a, b\rangle$ is free. Hence, G_{2850} has exponential growth.
Proof. We can first prove (analogous G_{2851}) that $w \neq 1$ for any nonempty word $w \in\{a, b\}^{*}$.

By way of contradiction, let w and v be two nonempty words in $\{a, b\}^{*}$ with minimal $|w|+|v|$ such that $w=v$ in G_{2850}. Assume that w ends with a and v ends with b. Consider the following cases.

1. If $w=a$ then $\left.v\right|_{0}=1$ in G and $\left.v\right|_{0}$ is nontrivial word.
2. If w ends with a^{2} then $\left.w\right|_{1}=\left.v\right|_{1}$ in $G,|w|_{1}\left|+|v|_{1}\right|<|w|+|v|$ and $\left.w\right|_{1}$ ends with $b,\left.v\right|_{1}$ with a.
3. If w ends with $b a$ then $\left.w\right|_{0}=\left.v\right|_{0}$ in $G,|w|_{0}\left|+|v|_{0}\right|<|w|+|v|$ and $\left.w\right|_{0}$ ends with $a,\left.v\right|_{0}$ with b.

In all cases we obtain either a shorter relation, which contradicts to our assumption, or a relation of the form $v=1$, which is also impossible.

Since $a^{-4} b a b^{-1} a^{2} b^{-1} a b=1$ and a and b do not commute, the group is not free.
$\mathbf{2 8 5 1} \cong G_{929}$. Wreath recursion: $a=\sigma(a, c), b=\sigma(b, a), c=(c, c)$.
The automorphism c is trivial. Therefore $a=\sigma(a, 1)$ is the inverse of the adding machine. Since $b a^{-1}=\left(a, b a^{-1}\right)$, the order of $b a^{-1}$ is infinite and G_{2851} is not contracting.

Since G_{2851} is self-replicating and $\left[a^{2}, b\right]=([a, b], 1)$, the group is a regular weakly branch group over its commutator.

The monoid $\langle a, b\rangle$ is free.
Proof. By way of contradiction, assume that w be a nonempty word over $\{a, b\}$ such that $w=1$ in G_{2851} and w has the smallest length among all such words. The word w must contain both a and b (since they have infinite order). Therefore, one of the projections of w is be shorter than w, nonempty, and represents the identity in G_{2851}, a contradiction.

Assume now that w and v are two nonempty words over $\{a, b\}$ such that $w=v$ in G_{2851} and they are chosen so that the sum $|w|+|v|$ is minimal. Assume that w ends in a and v ends in b. Then

- if w ends in a^{2}, then w_{0} is a nonempty word that is shorter than w ending in a, while v_{0} is a nonempty word of length no greater than $|v|$ ending in b. Since $w_{0}=v_{0}$ in G_{2851}, this contradicts the minimality assumption.
- if w ends in $b a$, then w_{1} is a word that is shorter than w ending in b, while v_{1} is a nonempty word of length no greater than $|v|$ ending in a. Since $w_{1}=v_{1}$ in G_{2851}, this contradicts the minimality assumption.
- if $w=a$ then $v_{1}=1$ in G and v_{1} is a nonempty word. Thus we obtain a relation $v_{1}=1$ in G_{2851}, a contradiction.

This shows that G has exponential growth, while the orbital Schreier graph $\Gamma(G, 000 \ldots)$ has intermediate growth (see [BH05, BCSN]).

The groups G_{2851} and G_{929} coincide as subgroups of $\operatorname{Aut}\left(X^{*}\right)$. Indeed, $a^{-1}=\sigma\left(1, a^{-1}\right)$ is the adding machine and $b^{-1} a=\left(b^{-1} a, a^{-1}\right)$, showing that $G_{929}=\left\langle a^{-1}, b^{-1} a\right\rangle=G_{2851}$.
$\mathbf{2 8 5 2} \cong G_{849}$. Wreath recursion: $a=\sigma(b, c), b=\sigma(b, a), c=(c, c)$.
The automorphism c is trivial. Therefore $a=\sigma(b, 1), a^{2}=(b, b)$ and $a b=(b, b a)$, which implies that G_{2852} is self-replicating and level transitive.

The group G_{2852} is a regular weakly branch group over its commutator. This follows from $\left[a^{-1}, b\right] \cdot[b, a]=([a, b], 1)$, together with the selfreplicating property and the level transitivity. Moreover, the commutator is not trivial, since G_{2852} is not abelian (note that $[b, a]=\left(b^{-1} a b, a^{-1}\right) \neq$ 1).

We have $b^{2}=(a b, b a), b a=(a b, b)$, and $a b=(b, b a)$. Therefore b^{2} fixes the vertex 00 and has b as a section at this vertex. Therefore b has infinite order (since it is nontrivial), and so do $a b$ and a (since $a^{2}=(b, b)$). Since $a b$ fixes the vertex 10 and has itself as a section at that vertex, G_{2852} is not contracting.

The monoid generated by a and b is free (and therefore the group has exponential growth).

Proof. By way of contradiction assume that w is a word of minimal length over all nonempty words over $\{a, b\}$ such that $w=1$ in G_{2851}. Then w must have occurrences of both a and b (since both have infinite order). This implies that one of the sections of w is shorter than w (since $\left.a\right|_{1}$ is trivial), nonempty (since both $\left.b\right|_{0}$ and $\left.b\right|_{1}$ are nontrivial), and represents the identity in G_{2851}, a contradiction.

Assume now that there are two nonempty words $w, v \in\{a, b\}^{*}$ such that $w=u$ in G_{2852} and choose such words with minimal sum $|w|+|v|$. Let $w=\sigma_{w}\left(w_{0}, w_{1}\right)$ and $u=\sigma_{u}\left(u_{0}, u_{1}\right)$, where $\sigma_{w}, \sigma_{w} \in\{1, \sigma\}$. Assume that w ends in a and v ends in b (they must end in different letters because of the cancelation property and the minimality of the choice). Then $w_{1}=$ v_{1} in G_{2851}, the word v_{1} is nonempty, $\left|v_{1}\right| \leq|v|$, and $\left|w_{1}\right|<|w|$. Thus we either obtain a contradiction with the minimality of the choice of w and v or we obtain a relation of the type $v_{1}=1$, also a contradiction.

See G_{849} for an isomorphism between G_{2852} and G_{849}.
If we conjugate the generators of G_{2852} by the automorphism $\mu=$ $\sigma(b \mu, \mu)$, we obtain the wrath recursion

$$
x=\sigma(y, 1), \quad y=\sigma(x y, 1)
$$

where $x=a^{\mu}$ and $y=b^{\mu}$. Further,

$$
y=\sigma(x y, 1), \quad x y=(x y, y)
$$

and the last recursion defines the automaton 933. Therefore $G_{2852} \cong$ G_{933}.
$\mathbf{2 8 5 3} \cong I M G\left(\left(\frac{z-1}{z+1}\right)^{2}\right)$. Wreath recursion $a=\sigma(c, c), b=\sigma(b, a)$ and $c=(c, c)$.

The automorphism c is trivial and $a=\sigma$.
It is shown in [BN06] that IMG $\left(\left(\frac{z-1}{z+1}\right)^{2}\right)$ is generated by $\alpha=\sigma(1, \beta)$ and $\beta=\left(\alpha^{-1} \beta^{-1}, \alpha\right)$.

We have then $\beta \alpha=\sigma\left(\alpha, \alpha^{-1}\right)$. If we conjugate by $\gamma=(\gamma, \alpha \gamma)$, we obtain the wreath recursion

$$
A=\sigma, \quad B=\sigma\left(B^{-1}, A\right)
$$

where $A=(\beta \alpha)^{\gamma}$ and $B=\alpha^{\gamma}$. The group $\langle A, B\rangle$ is conjugate to G_{2853} by the element $\delta=\left(\delta_{1}, \delta_{1}\right)$, where $\delta_{1}=\sigma(\delta, \delta)$ (this is the automorphism of the tree changing the letters on even positions).

Therefore $G_{2852} \cong I M G\left(\left(\frac{z-1}{z+1}\right)^{2}\right)$ and the limit space of G_{2852} is the Julia set of the rational map $z \mapsto\left(\frac{z-1}{z+1}\right)^{2}$.

Note that G_{2853} is contained in G_{775} as a subgroup of index 2. Therefore it is virtually torsion free (it contains the torsion free subgroup H mentioned in the discussion of G_{775} as a subgroup of index 2) and is a weakly branch group over $H^{\prime \prime}$.

The diameters of the Schreier graphs on the levels grow as $\sqrt{2}^{n}$ and have polynomial growth of degree 2 (see [BN, Bon07]).
$\mathbf{2 8 5 4} \cong G_{847} \cong D_{4}$. Wreath recursion: $a=\sigma(a, a), b=\sigma(c, a), c=(c, c)$.
Direct calculation.
$\mathbf{2 8 6 0} \cong G_{2212}$. Klein bottle group $\left\langle s, t \mid s^{2}=t^{2}\right\rangle$. Wreath recursion: $a=\sigma(a, c), b=\sigma(c, a), c=(c, c)\rangle$.

Note that c is trivial and therefore $a=\sigma(a, 1)$ and $b=\sigma(1, a)$. The element a has infinite order since a is inverse of the adding machine.

Let us prove that $G_{2860} \cong H=\left\langle s, t \mid s^{2}=t^{2}\right\rangle$. Indeed, the relation $a^{2}=b^{2}$ is satisfied, so G_{2860} is a homomorphic image of H with respect to the homomorphism induced by $s \mapsto a$ and $t \mapsto b$. Each element of H can be written in the form $t^{r}(s t)^{l} s^{n}, n \in \mathbb{Z}, l \geq 0, r \in\{0,1\}$. It suffices to prove that images of these words (except for the identity word, of course) represent nonidentity elements in G_{2860}.

We have $a^{2 n}=\left(a^{n}, a^{n}\right), a^{2 n+1}=\sigma\left(a^{n+1}, a^{n}\right),(a b)^{l}=\left(1, a^{2 l}\right)$. We only need to check words of even length (those of odd length act
nontrivially on level 1). We have $(a b)^{\ell} a^{2 n}=\left(a^{n}, a^{n+2 \ell}\right) \neq 1$ in G if $n \neq 0$ or $\ell \neq 0$, since a has infinite order. On the other hand, $b(a b)^{l} a^{2 n+1}=\left(a^{n+1+2 l+1}, a^{n}\right)=1$ if and only if $n=0$ and $l=-1$, which is not the case, because l must be nonnegative. This finishes the proof.
$\mathbf{2 8 6 1} \cong G_{731} \cong \mathbb{Z}$. Wreath recursion: $\left.a=\sigma(b, c), b=\sigma(c, a), c=(c, c)\right\rangle$.
Since c is trivial, $b a=(a b, 1), a b=(1, b a)$, which yields $a=b^{-1}$. Also $a^{2 n}=\left(b^{n}, b^{n}\right), b^{2 n}=\left(a^{n}, a^{n}\right)$ and $a^{2 n+1} \neq 1, b^{2 n+1} \neq 1$. Thus a has infinite order and $G_{2861} \cong \mathbb{Z}$.
$\mathbf{2 8 6 2} \cong G_{847} \cong D_{4}$. Wreath recursion: $a=\sigma(c, c), b=\sigma(c, a), c=$ $(c, c)\rangle$.

Direct calculation.
$\mathbf{2 8 7 4} \cong G_{820} \cong D_{\infty}$. Wreath recursion: $a=\sigma(a, c), b=\sigma(b, b), c=$ (c, c).

Since c is trivial, $G_{2874}=\langle b, b a\rangle$. Since $b a=(b a, b)$, the elements b and $b a$ form a 2-state automaton generating D_{∞} (see Theorem 7).
$\mathbf{2 8 8 0} \cong G_{730}$. Klein Group $C_{2} \times C_{2}$. Wreath recursion: $a=\sigma(c, c)$, $b=\sigma(b, b), c=(c, c)$.

Direct calculation.
$\mathbf{2 8 8 7} \cong G_{731} \cong \mathbb{Z}$. Wreath recursion: $a=\sigma(a, c), b=\sigma(c, b), c=(c, c)$.
Note that c is trivial, b is the adding machine and $a=b^{-1}$.
$\mathbf{2 8 8 9} \cong G_{848} \cong C_{2}$ 乙 \mathbb{Z}. Wreath recursion: $a=\sigma(c, c), b=\sigma(c, b)$, $c=(c, c)$.

Note that c is trivial. Since b is the adding machine and $a b=(1, b)$, we have $G_{2889}=\langle b, a b\rangle=G_{848}$.

References

[Adi79] S. I. Adian. The Burnside problem and identities in groups, volume 95 of Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Springer-Verlag, Berlin, 1979.
[Ale72] S. V. Alešin. Finite automata and the Burnside problem for periodic groups. Mat. Zametki, 11:319-328, 1972.
[Ale83] S. V. Aleshin. A free group of finite automata. Vestnik Moskov. Univ. Ser. I Mat. Mekh., (4):12-14, 1983.
[Bar03] Laurent Bartholdi. A Wilson group of non-uniformly exponential growth. C. R. Math. Acad. Sci. Paris, 336(7):549-554, 2003.
[BCSN] Ievgen Bondarenko, Tullio Checcherini-Silberstein, and Volodymyr Nekrashevych. Amenable graphs with dense holonomy and no compact isometry groups. In preparation.
[BG00a] L. Bartholdi and R. I. Grigorchuk. On the spectrum of Hecke type operators related to some fractal groups. Tr. Mat. Inst. Steklova, 231(Din. Sist., Avtom. i Beskon. Gruppy):5-45, 2000.
[BG00b] Laurent Bartholdi and Rostislav I. Grigorchuk. Lie methods in growth of groups and groups of finite width. In Michael Atkinson et al., editor, Computational and Geometric Aspects of Modern Algebra, volume 275 of London Math. Soc. Lect. Note Ser., pages 1-27. Cambridge Univ. Press, Cambridge, 2000.
$\left[B^{2} K^{+}\right.$a] I. Bondarenko, R. Grigorchuk, R. Kravchenko, Y. Muntyan, V. Nekrashevych, D. Savchuk, and Z. Šunić. Groups generated by 3 -state automata over 2-letter alphabet, I. accepted in Sao Paolo Journal of Mathematical Sciences, http://xxx.arxiv.org/abs/0704.3876.
$\left[\mathrm{BGK}^{+} \mathrm{b}\right]$ I. Bondarenko, R. Grigorchuk, R. Kravchenko, Y. Muntyan, V. Nekrashevych, D. Savchuk, and Z. Šunić. Groups generated by 3 -state automata over 2-letter alphabet, II. accepted in Journal of Mathematical Sciences (N.Y.), http://xxx.arxiv.org/abs/math/0612178.
[BGŠ03] Laurent Bartholdi, Rostislav I. Grigorchuk, and Zoran Šuniḱ. Branch groups. In Handbook of algebra, Vol. 3, pages 989-1112. North-Holland, Amsterdam, 2003.
[BH05] Itai Benjamini and Christopher Hoffman. ω-periodic graphs. Electron. J. Combin., 12:Research Paper 46, 12 pp. (electronic), 2005.
[BKN] Laurent Bartholdi, Vadim Kaimanovich, and Volodymyr Nekrashevych. On amenability of automata groups. arXiv:0802.2837.
[BN] Ievgen Bondarenko and Volodymyr Nekrashevych. Growth of Schreier graphs of groups generated by bounded automata. in preparation.
[BN06] Laurent I. Bartholdi and Volodymyr V. Nekrashevych. Thurston equivalence of topological polynomials. Acta Math., 197(1):1-51, 2006.
[BN07] Laurent Bartholdi and Volodymyr Nekrashevych. Iterated monodromy groups of quadratic polynomials, I, 2007. acceted in Groups, Geometry, and Dynamics.
[Bon07] Ievgen Bondarenko. Groups generated by bounded automata and their Schreier graphs. PhD dissertation, Texas A\&M University, 2007.
[BRS06] L. Bartholdi, I. I. Reznykov, and V. I. Sushchansky. The smallest Mealy automaton of intermediate growth. J. Algebra, 295(2):387-414, 2006.
[BŠ06] Laurent I. Bartholdi and Zoran Šuniḱ. Some solvable automaton groups. In Topological and Asymptotic Aspects of Group Theory, volume 394 of Contemp. Math., pages 11-29. Amer. Math. Soc., Providence, RI, 2006.
[BSV99] A. M. Brunner, Said Sidki, and Ana Cristina Vieira. A just nonsolvable torsion-free group defined on the binary tree. J. Algebra, 211(1):99-114, 1999.
[BV05] Laurent Bartholdi and Bálint Virág. Amenability via random walks. Duke Math. J., 130(1):39-56, 2005.
[CM82] Bruce Chandler and Wilhelm Magnus. The history of combinatorial group theory, volume 9 of Studies in the History of Mathematics and Physical Sciences. Springer-Verlag, New York, 1982.
[Dah05] François Dahmani. An example of non-contracting weakly branch automaton group. In Geometric methods in group theory, volume 372 of Contemp. Math., pages 219-224. Amer. Math. Soc., Providence, RI, 2005.
[Day57] Mahlon M. Day. Amenable semigroups. Illinois J. Math., 1:509-544, 1957.
[Eil76] Samuel Eilenberg. Automata, languages, and machines. Vol. B. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1976.
[EP84] M. Edjvet and Stephen J. Pride. The concept of "largeness" in group theory. II. In Groups - Korea 1983 (Kyoungju, 1983), volume 1098 of Lecture Notes in Math., pages 29-54. Springer, Berlin, 1984.
[GL02] Rostislav Grigorchuk and Igor Lysionok. Burnside problem. In Alexander V. Mikhalev and Günter F. Pilz, editors, The concise handbook of algebra, pages 111-115. Kluwer Academic Publishers, Dordrecht, 2002.
[GLSŻ00] Rostislav I. Grigorchuk, Peter Linnell, Thomas Schick, and Andrzej Żuk. On a question of Atiyah. C. R. Acad. Sci. Paris Sér. I Math., 331(9):663668, 2000.
[Glu61] V. M. Glushkov. Abstract theory of automata. Uspekhi mat. nauk., 16(5):362, 1961. (in Russian).
[GM05] Yair Glasner and Shahar Mozes. Automata and square complexes. Geom. Dedicata, 111:43-64, 2005 . (available at http://arxiv.org/abs/math.GR/0306259).
[GN07] Rostislav Grigorhuk and Volodymyr Nekrashevych. Self-similar groups, operator algebras and schur complement. J. Modern Dyn., 1(3):323-370, 2007.
[GNS00] R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskĭ̌. Automata, dynamical systems, and groups. Tr. Mat. Inst. Steklova, 231(Din. Sist., Avtom. i Beskon. Gruppy):134-214, 2000.
[GNŠ06a] Rostislav Grigorchuk, Volodymyr Nekrashevych, and Zoran Šunić. Hanoi towers group on 3 pegs and its pro-finite closure. Oberwolfach Reports, 25:15-17, 2006.
[GNŠ06b] Rostislav Grigorchuk, Volodymyr Nekrashevych, and Zoran Šunić. Hanoi towers groups. Oberwolfach Reports, 19:11-14, 2006.
[Gol68] E. S. Golod. Some problems of Burnside type. In Proc. Internat. Congr. Math. (Moscow, 1966), pages 284-289. Izdat. "Mir", Moscow, 1968.
[GP72] F. Gecseg and I. Peák. Algebraic theory of automata. Akadémiai Kiadó, Budapest, 1972. Disquisitiones Mathematicae Hungaricae, 2.
[Gri80] R. I. Grigorčuk. On Burnside's problem on periodic groups. Funktsional. Anal. i Prilozhen., 14(1):53-54, 1980.
[Gri83] R. I. Grigorchuk. On the Milnor problem of group growth. Dokl. Akad. Nauk SSSR, 271(1):30-33, 1983.
[Gri84] R. I. Grigorchuk. Degrees of growth of finitely generated groups and the theory of invariant means. Izv. Akad. Nauk SSSR Ser. Mat., 48(5):939-985, 1984.
[Gri85] R. I. Grigorchuk. Degrees of growth of p-groups and torsion-free groups. Mat. Sb. (N.S.), 126(168)(2):194-214, 286, 1985.
[Gri89] R. I. Grigorchuk. On the Hilbert-Poincaré series of graded algebras that are associated with groups. Mat. Sb., 180(2):207-225, 304, 1989.
[Gri98] R. I. Grigorchuk. An example of a finitely presented amenable group that does not belong to the class EG. Mat. Sb., 189(1):79-100, 1998.
[Gri99] R. I. Grigorchuk. On the system of defining relations and the Schur multiplier of periodic groups generated by finite automata. In Groups St. Andrews 1997 in Bath, I, volume 260 of London Math. Soc. Lecture Note Ser., pages 290-317. Cambridge Univ. Press, Cambridge, 1999.
[Gri00] R. I. Grigorchuk. Just infinite branch groups. In New horizons in pro-p groups, volume 184 of Progr. Math., pages 121-179. Birkhäuser Boston, Boston, MA, 2000.
[GS83a] N. Gupta and Said Sidki. Some infinite p-groups. Algebra i Logika, 22(5):584-589, 1983.
[GS83b] Narain Gupta and Saïd Sidki. On the Burnside problem for periodic groups. Math. Z., 182(3):385-388, 1983.
[GŠ06] Rostislav Grigorchuk and Zoran Šunik. Asymptotic aspects of Schreier graphs and Hanoi Towers groups. C. R. Math. Acad. Sci. Paris, 342(8):545550, 2006.
[GŠ07] Rostislav Grigorchuk and Zoran Šunić. Self-similarity and branching in group theory. In Groups St. Andrews 2005, I, volume 339 of London Math. Soc. Lecture Note Ser., pages 36-95. Cambridge Univ. Press, Cambridge, 2007.
[GSŠ07] Rostislav Grigorchuk, Dmytro Savchuk, and Zoran Šunić. The spectral problem, substitutions and iterated monodromy. In Probability and mathematical physics, volume 42 of CRM Proc. Lecture Notes, pages 225-248. Amer. Math. Soc., Providence, RI, 2007.
[Gup89] Narain Gupta. On groups in which every element has finite order. Amer. Math. Monthly, 96(4):297-308, 1989.
[GW00] R. I. Grigorchuk and J. S. Wilson. The conjugacy problem for certain branch groups. Tr. Mat. Inst. Steklova, 231(Din. Sist., Avtom. i Beskon. Gruppy):215-230, 2000.
[GW03] R. I. Grigorchuk and J. S. Wilson. A structural property concerning abstract commensurability of subgroups. J. London Math. Soc. (2), 68(3):671682, 2003.
[GŻ99] Rostislav I. Grigorchuk and Andrzej Żuk. On the asymptotic spectrum of random walks on infinite families of graphs. In Random walks and discrete potential theory (Cortona, 1997), Sympos. Math., XXXIX, pages 188-204. Cambridge Univ. Press, Cambridge, 1999.
[GŻ01] Rostislav I. Grigorchuk and Andrzej Żuk. The lamplighter group as a group generated by a 2 -state automaton, and its spectrum. Geom. Dedicata, 87(1-3):209-244, 2001.
[GŻ02a] Rostislav I. Grigorchuk and Andrzej Żuk. On a torsion-free weakly branch group defined by a three state automaton. Internat. J. Algebra Comput., 12(1-2):223-246, 2002.
[GŻ02b] Rostislav I. Grigorchuk and Andrzej Żuk. Spectral properties of a torsionfree weakly branch group defined by a three state automaton. In Computational and statistical group theory (Las Vegas, NV/Hoboken, NJ, 2001), volume 298 of Contemp. Math., pages 57-82. Amer. Math. Soc., Providence, RI, 2002.
[Hoř63] Jiří Hořejš. Transformations defined by finite automata. Problemy Kibernet., 9:23-26, 1963.
[KAP85] V. B. Kudryavtsev, S. V. Aleshin, and A. S. Podkolzin. Vvedenie v teoriyu avtomatov. "Nauka", Moscow, 1985.
[KM82] M. I. Kargapolov and Yu. I. Merzlyakov. Osnovy teorii grupp. "Nauka", Moscow, third edition, 1982.
[Kos90] A. I. Kostrikin. Around Burnside, volume 20 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by James Wiegold.
[KSS06] Mark Kambites, Pedro V. Silva, and Benjamin Steinberg. The spectra of lamplighter groups and Cayley machines. Geom. Dedicata, 120:193-227, 2006.
[Leo98] Yu. G. Leonov. The conjugacy problem in a class of 2-groups. Mat. Zametki, 64(4):573-583, 1998.
[LN02] Yaroslav Lavreniuk and Volodymyr Nekrashevych. Rigidity of branch groups acting on rooted trees. Geom. Dedicata, 89:159-179, 2002.
[Lys85] I. G. Lysënok. A set of defining relations for the Grigorchuk group. Mat. Zametki, 38(4):503-516, 634, 1985.
[Mer83] Yu. I. Merzlyakov. Infinite finitely generated periodic groups. Dokl. Akad. Nauk SSSR, 268(4):803-805, 1983.
[Mil68] J. Milnor. Problem 5603. Amer. Math. Monthly, 75:685-686, 1968.
[MNS00] O. Macedońska, V. Nekrashevych, and V. Sushchansky. Commensurators of groups and reversible automata. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, (12):36-39, 2000.
[MS08] Y. Muntyan and D. Savchuk. AutomGrp - GAP package for computations in self-similar groups and semigroups, Version 1.1.2, 2008. (available at http://finautom.sourceforge.net).
[Nek05] Volodymyr Nekrashevych. Self-similar groups, volume 117 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005.
[Nek07a] V. Nekrashevych. Free subgroups in groups acting on rooted trees, 2007. preprint.
[Nek07b] Volodymyr Nekrashevych. A group of non-uniform exponential growth locally isomorphic to $\operatorname{IMG}\left(z^{2}+i\right)$, 2007. preprint.
[Neu86] Peter M. Neumann. Some questions of Edjvet and Pride about infinite groups. Illinois J. Math., 30(2):301-316, 1986.
[NS04] V. Nekrashevych and S. Sidki. Automorphisms of the binary tree: stateclosed subgroups and dynamics of $1 / 2$-endomorphisms. volume 311 of London Math. Soc. Lect. Note Ser., pages 375-404. Cambridge Univ. Press, 2004.
[NT08] Volodymyr Nekrashevych and Alexander Teplyaev. Groups and analysis on fractals. to appear in Proceedings of "Analysis on Graphs and Applications", 2008.
[Oli98] Ricardo Oliva. On the combinatorics of extenal rays in the dynamics of the complex Henon map. PhD thesis, Cornell University, 1998.
[Per00] E. L. Pervova. Everywhere dense subgroups of a group of tree automorphisms. Tr. Mat. Inst. Steklova, 231(Din. Sist., Avtom. i Beskon. Gruppy):356-367, 2000.
[Per02] E. L. Pervova. The congruence property of AT-groups. Algebra Logika, 41(5):553-567, 634, 2002.
[Pri80] Stephen J. Pride. The concept of "largeness" in group theory. In Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), volume 95 of Stud. Logic Foundations Math., pages 299-335. North-Holland, Amsterdam, 1980.
[Roz93] A. V. Rozhkov. Centralizers of elements in a group of tree automorphisms. Izv. Ross. Akad. Nauk Ser. Mat., 57(6):82-105, 1993.
[Roz98] A. V. Rozhkov. The conjugacy problem in an automorphism group of an infinite tree. Mat. Zametki, 64(4):592-597, 1998.
[RS] John Rhodes and Pedro V. Silva. An algebraic analysis of turing machines and cook's theorem leading to a profinite fractal differential equation. preprint.
[RS02a] I. I. Reznikov and V. I. Sushchanskiĭ. Growth functions of two-state automata over a two-element alphabet. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, (2):76-81, 2002.
[RS02b] I. I. Reznikov and V. I. Sushchanskiir. Two-state Mealy automata of intermediate growth over a two-letter alphabet. Mat. Zametki, 72(1):102-117, 2002.
[RS02c] I. I. Reznykov and V. I. Sushchansky. 2-generated semigroup of automatic transformations whose growth is defined by Fibonachi series. Mat. Stud., 17(1):81-92, 2002.
[Sav03] Dmytro M. Savchuk. On word problem in contracting automorphism groups of rooted trees. Vīsn. Kiüv. Unīv. Ser. Fīz.-Mat. Nauki, (1):51-56, 2003.
[Sid87a] Said Sidki. On a 2-generated infinite 3-group: subgroups and automorphisms. J. Algebra, 110(1):24-55, 1987.
[Sid87b] Said Sidki. On a 2 -generated infinite 3-group: the presentation problem. J. Algebra, 110(1):13-23, 1987.
[Sid00] Said Sidki. Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity. J. Math. Sci. (New York), 100(1):1925-1943, 2000. Algebra, 12.
[Sid04] Said Sidki. Finite automata of polynomial growth do not generate a free group. Geom. Dedicata, 108:193-204, 2004.
[Sus79] V. I. Sushchansky. Periodic permutation p-groups and the unrestricted Burnside problem. DAN SSSRR., 247(3):557-562, 1979. (in Russian).
[VV05] M. Vorobets and Ya. Vorobets. On a free group of transformations defined by an automaton, 2005. To appear in Geom. Dedicata. (available at http://arxiv.org/abs/math/0601231).
[Wil04a] John S. Wilson. Further groups that do not have uniformly exponential growth. J. Algebra, 279(1):292-301, 2004.
[Wil04b] John S. Wilson. On exponential growth and uniformly exponential growth for groups. Invent. Math., 155(2):287-303, 2004.
[Wol02] Stephen Wolfram. A new kind of science. Wolfram Media, Inc., Champaign, IL, 2002.
[WZ97] J. S. Wilson and P. A. Zalesskii. Conjugacy separability of certain torsion groups. Arch. Math. (Basel), 68(6):441-449, 1997.
[Zar64] V. P. Zarovnyĭ. On the group of automatic one-to-one mappings. Dokl. Akad. Nauk SSSR, 156:1266-1269, 1964.
[Zar65] V. P. Zarovnyĭ. Automata substitutions and wreath products of groups. Dokl. Akad. Nauk SSSR, 160:562-565, 1965.
[Zel91] Efim I. Zelmanov. On the restricted Burnside problem. In Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pages 395-402, Tokyo, 1991. Math. Soc. Japan.

Contact information

I. Bondarenko Kyiv Taras Shevchenko University, Ukraine E-Mail: ievgbond@gmail.com

R. Grigorchuk	Texas A\&M University, USA
	E-Mail: grigorch@math.tamu. edu
	URL: www.math.tamu.edu/ ${ }^{\text {grigorch }}$

$\begin{array}{ll}\text { R. Kravchenko } & \text { Texas A\&M University, USA } \\ & \text { E-Mail: rkchenko@math.tamu.edu }\end{array}$
Y. Muntyan
V. Nekrashevych Texas A\&M University, USA

E-Mail: nekrash@math.tamu.edu URL: www.math.tamu.edu/~nekrash
D. Savchuk Texas A\&M University, USA

E-Mail: savchuk@math.tamu.edu $U R L$: www.math.tamu.edu/~savchuk

Z. Šunić
Texas A\&M University, USA
E-Mail: sunic@math.tamu.edu
URL: www.math.tamu.edu/~sunik

Received by the editors: 18.12.2007
and in final form 15.02.2007.

[^0]: All authors were partially supported by at least one of the NSF grants DMS-308985, DMS-456185, DMS-600975, and DMS-605019

 2000 Mathematics Subject Classification: 20E08.
 Key words and phrases: automata groups, self-similar groups, branch groups.

