Partitions of groups into sparse subsets

Igor Protasov

Abstract. A subset A of a group G is called sparse if, for every infinite subset X of G, there exists a finite subset $F \subset X$, such that $\bigcap_{x \in F} x A$ is finite. We denote by $\eta(G)$ the minimal cardinal such that G can be partitioned in $\eta(G)$ sparse subsets. If $|G|>\left(\kappa^{+}\right)^{\aleph_{0}}$ then $\eta(G)>\kappa$, if $|G| \leqslant \kappa^{+}$then $\eta(G) \leqslant \kappa$. We show also that $\operatorname{cov}(A) \geqslant c f|G|$ for each sparse subset A of an infinite group G, where $\operatorname{cov}(A)=\min \{|X|: G=X A\}$.

A subset A of a group G with the identity e is called

- large if there exists a finite subset F such that $G=F A$;
- small if $L \backslash A$ is large for each large subset L of G;
- thin if $g A \cap A$ is finite for every $g \in G \backslash\{e\}$;
- sparse if, for every infinite subset X of G, there exists a finite subset $F \subset X$ such that $\bigcap_{x \in F} x A$ is finite.

We note that large, small, and thin subsets can be considered as asymptotic counterparts of dense, nowhere dense and discrete subsets of a topological space [7, Chapter 9]. The sparse subsets were introduced in [2] to characterize the strongly prime ultrafilters in the Stone- \check{C} ech compactification βG of G. If G is infinite then each thin subset is sparse, and each sparse subset is small [3].

2010 Mathematics Subject Classification: 03E75, 20F99, 20K99.
Key words and phrases: partition of a group, sparse subset of a group.

By [4], every infinite group G can be partitioned in \aleph_{0} large subsets, and if G is amenable then G can not be partitioned in $>\aleph_{0}$ large subsets. By [5], every infinite group G can be partitioned in \aleph_{0} small subsets.

For a group G, we denote by $\mu(G)$ and $\eta(G)$ respectively the minimal cardinals such that G can be partitioned in $\mu(G)$ thin subsets and in $\eta(G)$ sparse subsets. By $[6], \mu(G)=|G|$ if $|G|$ is a limit cardinal, and $\mu(G)=\kappa$ if G is infinite and $|G|=\kappa^{+}$, where κ^{+}is the cardinal-successor of κ. In Theorem 1, we evaluate the cardinal $\eta(G)$.

A covering number of a subset A of G is the cardinal $\operatorname{cov}(A)=$ $\min \{|X|: G=X A\}$. In Theorem 2, we show that $\operatorname{cov}(A) \geqslant c f|G|$ for every sparse subset A of an infinite group G, where $c f|G|$ is the cofinality of $|G|$.

Lemma 1. A subset S of a group G is not sparse if and only if there exists an infinite subset X of G such that, for each infinite subset F of X, the set $\left\{x \in G: F^{-1} x \subseteq A\right\}$ is infinite.

Proof. It suffices to note that $x \in \bigcap_{g \in F} g S$ if and only if $F^{-1} x \subseteq A$.
We say that a subset S of a group G is rectangle free if $X Y \nsubseteq S$ for any infinite subsets X, Y of G.

Lemma 2. Every sparse subset S of a group G is rectangle free.
Proof. Apply Lemma 1.
Lemma 3. Let X and Y be infinite sets of cardinality $|X|=\kappa^{+}$and $|Y|>\left(\kappa^{+}\right)^{\lambda}$ for some non-zero cardinal $\lambda \leqslant \kappa^{+}$. For any κ-coloring $\chi: X \times Y \rightarrow \kappa$, there are subsets $A \subseteq X$ and $Z \subseteq Y$ such that $|A|=\lambda$, $|Z|>\left(\kappa^{+}\right)^{\lambda}$ and the set $A \times Z$ is monochrome.

Proof. [1, Lemma 1].
Theorem 1. Let G be an infinite group, κ be an infinite cardinal. If $|G|>\left(\kappa^{+}\right)^{\aleph_{0}}$ then $\eta(G)>\kappa$. If $|G| \leqslant \kappa^{+}$then $\eta(G) \leqslant \kappa$.

Proof. Suppose that $|G|>\left(\kappa^{+}\right)^{\aleph_{0}}$, take an arbitrary partition of G into κ subsets and denote by χ^{\prime} corresponding κ-coloring. Then we choose a subset X of G with $|X|=\kappa^{+}$, put $Y=G$ and define a coloring $\chi: X \times Y \rightarrow \kappa$ by the rule $\chi((x, y))=\chi^{\prime}((x, y))$. Applying Lemma 3 with $\lambda=\aleph_{0}$, we get $A \subseteq X$ and $Z \subseteq Y$ such that $|A|=\aleph_{0},|Z|>\left(\kappa^{+}\right)^{\aleph_{0}}$ and $A \times Z$ is monochrome. By Lemma $2, A \times Z$ is not sparse, so at least one cell of the partition is not sparse and $\eta(G)>\kappa$.

If $|G| \leqslant \kappa^{+}$, by [6, Lemma 2], G can be partitioned in $\leqslant \kappa$ thin subsets. Since every thin subset is sparse, $\eta(G) \leqslant \kappa$.

Corollary 1. If $|G|>2^{\kappa}$ then $\eta(G)>\kappa$.
Proof. It suffices to note that, for any infinite cardinal $\kappa,\left(\kappa^{+}\right)^{\aleph_{0}} \leqslant\left(2^{\kappa}\right)^{\aleph_{0}}=$ 2^{κ}.

Corollary 2. If $\eta(G)=\aleph_{0}$ then $\aleph_{0} \leqslant|G| \leqslant 2^{\aleph_{0}}$.
Question 1. Does $|G|=2^{\aleph_{0}}$ imply $\eta(G)=\aleph_{0}$?
Under CH, Theorem 1 gives an affirmative answer to this question. To answer this question negatively under $\neg \mathrm{CH}$, it suffices to show that, for any \aleph_{0}-coloring of $\aleph_{2} \times \aleph_{2}$, there is a monochrome subset $A \times B$, $A \subset \aleph_{2}, B \subset \aleph_{2},|A|=|B|=\aleph_{0}$.

Theorem 2. For every sparse subset A of an infinite group $G, \operatorname{cov}(A) \geqslant$ $c f|G|$.

Proof. We suppose the contrary and choose $X \subset G$ such that $G=X A$ and $|X|<c f|G|$. Clearly, $|A|=|G|$. Since $|X|<c f|A|$ and $A=\bigcup_{x \in X}(A \cap x A)$, there is $x_{0} \in X$ such that $\left|A \cap x_{0} A\right|=|G|$. We put $A_{0}=A \cap x_{0} A$ so $x_{0} A_{0} \subseteq A$. Suppose that we have chosen distinct elements $x_{0}, x_{1}, \ldots, x_{n}$ of X and the subsets $A_{0} \supseteq A_{1} \supseteq \ldots \supseteq A_{n}$ of A such that $\left|A_{0}\right|=\left|A_{1}\right|=$ $\ldots=\left|A_{n}\right|=|G|$ and $x_{0} A_{0} \subseteq A_{1}, x_{1} A_{1} \subseteq A_{2}, \ldots, x_{n} A_{n} \subseteq A_{n+1}$. We take an arbitrary element $g \in G$ such that $g^{-1} X \cap\left\{x_{0}, \ldots, x_{n}\right\}=\varnothing$. Since $\left|g A_{n}\right|=|G|, g A_{n} \subseteq \bigcup_{x \in X} x A$ and $|X|<c f|G|$, there is $x \in X$ such that $\left|g A_{n} \cap x A\right|=|G|$. We put $x_{n+1}=g^{-1} X, A_{n+1}=A_{n} \cap g^{-1} X A$. Then $x_{n+1} \notin\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}, x_{n+1} A_{n+1} \subseteq A_{n}$.

After ω steps we get a countable set $X^{\prime}=\left\{x_{n}: n \in \omega\right\}$ and an increasing chain $\left\{A_{n}: n \in \omega\right\}$ of subsets of cardinality $|G|$ such that $A_{n+1} \subseteq\left\{g \in G:\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} g \subseteq A\right\}$. By Lemma $1, A$ is not sparse.

Question 2. Is $\operatorname{cov}(A)=|G|$ for every sparse subset A of an arbitrary infinite group G ? By Theorem 2, this is so if $|G|$ is regular.

References

[1] T. Banakh, I. Protasov, Partition of groups and matroids into independent subsets, Algebra and Discrete Math, 10 (2010), 1-7.
[2] M. Filali, Ie. Lutsenko, I.V. Protasov, Boolean group ideals and the ideal structure of βG, Math. Stud., 31(2009), 19-28.
[3] Ie. Lutsenko, I.V. Protasov, Sparse, thin and other subsets of groups, Intern. J. Algebra Computation, 19(2009), 491-510.
[4] I.V. Protasov, Partition of groups into large subsets, Math. Notes, 73 (2003), 271281.
[5] I.V. Protasov, Small systems of generators of groups, Math. Notes, 76 (2004), 420-426.
[6] I. Protasov, Partition of groups into thin subsets, Algebra and Discrete Math, 11(2011), 88-92.
[7] I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser. 12, VNTL, Lviv, 2007.

Contact information

I. Protasov

Department of Cybernetics, Kyiv National University, Volodimirska 64, 01033, Kyiv, Ukraine E-Mail: i.v.protasov@gmail.com

