Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups

Mohsen Ghasemi

Communicated by D. Simson

Abstract. A Cayley graph $X=\operatorname{Cay}(G, S)$ is called normal for G if the right regular representation $R(G)$ of G is normal in the full automorphism group $\operatorname{Aut}(X)$ of X. In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group G are normal when $(|G|, 2)=(|G|, 3)=1$, and X is not isomorphic to either $\operatorname{Cay}(G, S)$, where $|G|=5^{n}$, and $|\operatorname{Aut}(\mathrm{X})|=2^{m} \cdot 3 \cdot 5^{n}$, where $m \in\{2,3\}$ and $n \geq 3$, or $\operatorname{Cay}(G, S)$ where $|G|=5 q^{n}$ (q is prime) and $|\operatorname{Aut}(X)|=2^{m} .3 .5 . q^{n}$, where $q \geq 7, m \in\{2,3\}$ and $n \geq 1$.

1. Introduction

Throughout this paper, graphs are finite and simple. For a graph X, we denote by $\mathrm{V}(X), \mathrm{E}(X)$ and $\operatorname{Aut}(X)$ the vertex set, the edge set and the automorphism group of X, respectively, and X is said to be vertex-transitive if $\operatorname{Aut}(X)$ is transitive on vertices.

A finite group G is called minimal non-abelian if G is not abelian, but every proper subgroup of G is abelian. For a finite group G and a subset S of G such that $1_{G} \notin S$, and S is symmetric, that is $S^{-1}=\left\{s^{-1} \mid s \in S\right\}$ is equal to S. The Cayley $\operatorname{graph} X=\operatorname{Cay}(G, S)$ on G with respect to S is defined as the graph with vertex set G and edge set $\{[g, s g] \mid g \in G, s \in S\}$. Clearly the right regular representation $R(G)$ of G acts regularly on

2000 Mathematics Subject Classification: 05C25, 20B25.
Key words and phrases: Cayley graph, normal Cayley graph, minimal nonabelian group.
vertices, that is, $R(G)$ is transitive on vertices and only the identity element of $R(G)$ fixes a vertex. Furthermore, the $\operatorname{group} \operatorname{Aut}(G, S)=\{\alpha \in$ $\left.\operatorname{Aut}(G) \mid S^{\alpha}=S\right\}$ is also a subgroup of $\operatorname{Aut}(X)$. Actually, $\operatorname{Aut}(G, S)$ is a subgroup of $\operatorname{Aut}(X)_{1}$, the stabilizer of the vertex 1 in $\operatorname{Aut}(X)$. For two groups M and $N, N \rtimes M$ denotes a semidirect product of N by M.

A Cayley graph $\operatorname{Cay}(G, S)$ is said to be normal on G if the right regular representation $R(G)$ of G is normal in $\operatorname{Aut}(X)$. Let $N_{\text {Aut }(X)}(R(G))$ be the normalizer of $R(G)$ in $\operatorname{Aut}(X)$. By Godsil [8], or Xu [14], $N_{\text {Aut (X) }}(R(G))=R(G) \rtimes \operatorname{Aut}(G, S)$. Thus, $\operatorname{Cay}(G, S)$ is normal on G if and only if $\operatorname{Aut}(X)=R(G) \rtimes \operatorname{Aut}(G, S)$. If $N_{\operatorname{Aut}(X)}(R(G))$ is transitive on edges then $\operatorname{Cay}(G, S)$ is called a normal edge-transitive Cayley graph by Praeger [13]. Clearly, if $\operatorname{Cay}(G, S)$ is normal on G and edge-transitive then it is normal edge-transitive. Note that being a normal Cayley graph is not invariant under graph isomorphism, and so strictly depends upon which group the graph is a Cayley graph on. For example, the three-dimensional hypercube Q_{3} ia a Cayley graph on either the group $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or the group $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$. The Cayley graph on the first group is normal, but the Cayley graph on the second group is not.

A Cayley graph X of a group G is called a graphical regular representation if $\operatorname{Aut}(X)=G$. It implies that $\operatorname{Aut}(X)_{1}=1$ and so $\operatorname{Aut}(G, S)=1$. Therefore, a necessary condition for X to be a graphical regular representation of G is $\operatorname{Aut}(G, S)=1$. In some circumstance, this necessary condition is also sufficient for X to be a graphical regular representation. However, it is of course not the case in general, that is, there exist groups G and Cayley graphs $\operatorname{Cay}(G, S)$ such that $\operatorname{Aut}(G, S)=1$ but $\operatorname{Cay}(G, S)$ is not a graphical regular representation of G. Hence the following natural problem was proposed by Godsil [9].

Problem A. Determine classes of groups G and Cayley graphs $\operatorname{Cay}(G, S)$ for which Cay (G, S) is a graphical regular representation of G if and only if $\operatorname{Aut}(G, S)=1$.

The solution of Problem A is known only for some classes of groups. Godsil solved the problem in [8, Theorem 3.8] for p-groups with p prime which have no homomorphism onto $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$, and $\mathrm{Li}[10]$, solved the problem A for arbitrary cubic Cayley graphs of 2-power order, also Li and Sim solved the problem A for metacyclic p-groups with prime p (see [11]). In the present paper, it is proved that for most finite minimal non-abelian groups G, a tetravalent Cayley graph $\operatorname{Cay}(G, S)$ is a graphical regular representation if and only if $\operatorname{Aut}(G, S)=1$.

Fang et al. [5] proved that the vast majority of connected cubic

Cayley graphs on non-abelian simple groups are normal. It was shown in $[1,2,6]$, that most connected Cayley graphs of small valency on abelian groups are normal, and that all connected tetravalent Cayley graphs on p-groups of nilpotency class 2 with p an odd prime are normal. Also the normality of tetravalent Cayley graphs on regular p-groups was done by Feng and Xu [7]. In the present paper, we shall prove that all connected tetravalent Cayley graphs on a minimal non-abelian group are normal when $(|G|, 2)=(|G|, 3)=1$, and X is not isomorphic to either Cay (G, S), where $|G|=5^{n}$, and $|\operatorname{Aut}(\mathrm{X})|=2^{m} .3 .5^{n}$ where $m \in\{2,3\}$ and $n \geq 3$, or $\operatorname{Cay}(G, S)$ where $|G|=5 q^{n}\left(q\right.$ is prime) and $|\operatorname{Aut}(X)|=2^{m} .3 .5 \cdot q^{n}$, where $q \geq 7, m \in\{2,3\}$ and $n \geq 1$.

2. Preliminaries

In this section we give some results which will be used later. The following fact is basic for Cayley graphs.

Proposition 2.1. [3, Lemma 16.3] A graph X is a Cayley graph of a group G if and only if $A u t(X)$ contains a regular subgroup isomorphic to G.

We have the following result for minimal non-abelian p-groups.
Proposition 2.2. [12] Let G be a finite minimal non-abelian group. Then one of the following holds:
(1) G is a minimal non-abelian p-group;
(2) G is a semi-direct product of an elementary abelian q-group Q of order q^{α} by a cyclic group $P=\langle b\rangle$ of order p^{β}, where p, q are distinct primes and the action of b on Q is an automorphism of Q of order p.

Let $X=\operatorname{Cay}(G, S)$ be a Cayley graph on a finite group G and H a normal subgroup of G. Let X_{H} be the quotient graph corresponding to the cosets of H in G, with two cosets adjacent in X_{H}, whenever there is an edge between those cosets in X.

Proposition 2.3 ([13]). The quotient graph X_{H} is a Cayley graph and

$$
X_{H}=C a y(G / H, S H / H)
$$

where $S H / H=\{s H \mid s \in S\}$.
The socle of a group G is the subgroup generated by the set of all minimal normal subgroups of G, and it is denoted by $\operatorname{soc}(G)$. By [4, Theorem 4.3], we have the following proposition:

Proposition 2.4. Let G be a nontrivial finite group. Then $\operatorname{soc}(G)=$ $T_{1} \times \ldots \times T_{k}$, where $T_{i}(1 \leq i \leq k)$ are simple normal subgroups and $T_{i} \cong T_{j}(1 \leq i, j \leq k)$.

3. Main result

The main purpose of this paper is to prove the following theorem.
Theorem 3.1. Let p be a prime and G a minimal non-abelian group which $(|G|, 2)=(|G|, 3)=1$. Let $X=\operatorname{Cay}(G, S)$ be a connected tetravalent Cayley graph on G. Then we have $\operatorname{Aut}(\operatorname{Cay}(G, S))=R(G) \rtimes \operatorname{Aut}(G, S)$, except when X is not isomorphic to either $\operatorname{Cay}(G, S)$, where $|G|=5^{n}$, and \mid Aut $(X) \mid=2^{m} .3 .5^{n}$, where $m \in\{2,3\}$ and $n \geq 3$, or $\operatorname{Cay}(G, S)$ where $|G|=5 q^{n}$ (q is prime) and $|\operatorname{Aut}(X)|=2^{m} .3 .5 . q^{n}$, where $q \geq 7, m \in\{2,3\}$ and $n \geq 1$.

Let $Q_{8}=\left\langle a, b \mid a^{4}=1, b a b^{-1}=a^{-1}, a^{2}=b^{2}\right\rangle$, be a quaternion group, and $S=\left\{a, a^{3}, b, b^{3}\right\}$ a subset of Q_{3}. Now $\sigma=\left(a b, a^{3} b\right) \in A_{1}$, but $\sigma \notin \operatorname{Aut}(G, S)$ and hence $\operatorname{Cay}\left(Q_{8},\left\{a, a^{3}, b, b^{3}\right\}\right)$ is not normal. Also if $D_{6}=\left\langle a, b \mid a^{3}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle$, and $S=\left\{a, a^{2}, b, a b\right\}$, then $\delta=$ $(a, b)\left(a^{2}, a b\right) \in A_{1}$, but $\delta \notin \operatorname{Aut}(G, S)$ and hence $\operatorname{Cay}\left(D_{6},\left\{a, a^{2}, b, a b\right\}\right)$ is not normal. It follows that Theorem 3.1 is not true generally when $(|G|, 2) \neq 1$, and $(|G|, 3) \neq 1$. As a consequence of Theorem 3.1, we have the following result.

Corollary 3.2. Let G be a minimal non-abelian group, and $(|G|, 2)=$ $(|G|, 3)=1$. Also let X is not isomorphic to either $\operatorname{Cay}(G, S)$, where $|G|=$ 5^{n}, and $|A u t(X)|=2^{m} .3 .5^{n}$, where $m \in\{2,3\}$ and $n \geq 3$, or $\operatorname{Cay}(G, S)$ where $|G|=5 q^{n}$ (q is prime) and $|\operatorname{Aut}(X)|=2^{m} .3 .5 . q^{n}$, where $q \geq 7$, $m \in\{2,3\}$ and $n \geq 1$. Then a connected Cayley graph $X=\operatorname{Cay}(G, S)$ of valency 4 is a graphical regular representation of G if and only if $\operatorname{Aut}(G, S)=1$.

Proof of Theorem 3.1. Recall that Aut $(\operatorname{Cay}(G, S))=R(G) \rtimes A u t(G, S)$ if and only if $\operatorname{Cay}(G, S)$ is normal on G. Let G be a counterexample of least order, that is, G has the smallest order with the following properties: G is a minimal non-abelian group and there exists a subset $S=\left\{s_{1}, s_{2}, s_{1}^{-1}, s_{2}^{-1}\right\}$ of G such that $X=\operatorname{Cay}(G, S)$ is not a normal 4 -valent connected Cayley graph. Let $A=\operatorname{Aut}(X)$ and let A_{1} be the stabilizer of 1 in A. Since X has valency 4 , the stabilizer A_{1} of the vertex 1 in A is a $\{2,3\}$-group. By Proposition 2.2, first assume that G is a p-group. By our assumption G is not 2 - or 3 -group. By Proposition $2.4, \operatorname{soc}(A)=T_{1} \times \ldots \times T_{k}$, where
$k \geq 1$ and $T_{i} \cong T_{j}(1 \leq i, j \leq k) . T$ is a $\{2,3, p\}$-group because A is $\{2,3, p\}$-group.

First let T be an abelian group. Then $\operatorname{soc}(A)$ is an elementary abelian q-group, where $q=2,3$, or p. If $H=\operatorname{soc}(A)$ is transitive on $\mathrm{V}(X)$, then $H=\operatorname{soc}(A)$ acts regularly on $\mathrm{V}(X)$. Thus $|\operatorname{soc}(A)|=|G|$, and hence $\operatorname{soc}(A)=G$, a contradiction. So $H=\operatorname{soc}(A)$ is not transitive on $\mathrm{V}(X)$. Now assume that $\Sigma=\left\{B_{1}, B_{2}, \ldots, B_{t}\right\}$ is the set of orbits of H on $\mathrm{V}(X)$. By the normality of H in A we have that t and $\left|B_{i}\right|(1 \leq i \leq t)$ are powers of p. It follows that H is a p-group and $H \leq G$. Consider the quotient graph X_{H} defined by $\mathrm{V}\left(X_{H}\right)=\Sigma$, and $\left(B_{i}, B_{j}\right) \in E\left(X_{H}\right)$ if and only if there exists $v_{i} \in B_{i}, v_{j} \in B_{j}$ such that $\left(v_{i}, v_{j}\right) \in E(X)$. Since the quotient group G / H acts regularly on Σ, therefore by Proposition $2.1 X_{H}$ must be connected Cayley graph of G / H. So by Proposition $2.3 X_{H} \cong \operatorname{Cay}(\bar{G}, \bar{S})$, where $\bar{G}=G / H$ and $\bar{S}=\{s H \mid s \in S\}$. Since $\left|V\left(X_{H}\right)\right|$ is odd, the valency $v\left(X_{H}\right)$ of X_{H} could not be 3 and hence $v\left(X_{H}\right)=2$, or $v\left(X_{H}\right)=4$. If $v\left(X_{H}\right)=4$ and G / H be a non-abelian, then by the minimality of $|G|$, X_{H} is normal as a Cayley graph of G / H. Thus $G / H \unlhd \operatorname{Aut}\left(X_{H}\right)$. Let K be the kernel of A on Σ. Also let K_{1} be the stabilizer of the vertex 1 in K. Then K_{1} fixes the neighborhood $N(1)$ of 1 in X pointwise. Since X is connected, K_{1} fixes each vertex in X. Thus $K_{1}=1$, and hence $K=H$. Therefore $A / H \leq \operatorname{Aut}\left(X_{H}\right)$, and G / H is normal in A / H, which implies that $G \unlhd \operatorname{Aut}(X)$, a contradiction. Now if $v\left(X_{H}\right)=4$ and G / H is an abelian, then by [2], X_{H} is normal except when $X_{H}=\operatorname{Cay}(G / H, S H / H)$, where $G / H \cong \mathbb{Z}_{5}$. If X_{H} is normal, then $G / H \unlhd \operatorname{Aut}\left(X_{H}\right)$ and so $G \unlhd \operatorname{Aut}(X)$, a contradiction. Now suppose that $X_{H}=K_{5}$, and $\operatorname{Aut}\left(X_{H}\right)=S_{5}$. Therefore $|A / H| \mid 2^{3} .3 .5$ and hence $|\operatorname{Aut}(\mathrm{X})|=2^{m} .3 .5^{n}$, where $m \in\{2,3\}$ and $n \geq 3$. If $3 \nmid|A|$, then clearly $\mathrm{R}(G) \unlhd A$, a contradiction. Thus $3||A|$. Now $X=\operatorname{Cay}(G, S)$ is not normal. Suppose to the contrary that X is normal. Hence $A_{1}=\operatorname{Aut}(G, S)$, and so $3||\operatorname{Aut}(G, S)|$. Therefore there exists an element α of order 3 in $\operatorname{Aut}(G, S)$. Then $|S|=4$ implies that α fixes an element in S, say s. Consequently, α fixes s^{-1}. Since $s, s^{-1} \in S$ and $s \neq s^{-1}$, we have that α fixes S pointwise and hence $\langle S\rangle=G$ implies $\alpha=1$, a contradiction. Now assume that $v\left(X_{H}\right)=2$. Then X_{H} is a cycle of length $p^{m}=|G / H|$, for some positive integer m. Also Aut $\left(X_{H}\right) \cong D_{2 p^{m}}$. We have $S H / H=\left\{H s_{1}, H s_{2}\right\}$. Clearly $H s_{1} \neq H s_{1}^{-1}$ and $H s_{2} \neq H s_{2}^{-1}$. Therefore $H s_{1}=H s_{2}^{-1}$, and $s_{1} s_{2} \in H$. If $H \cap S \neq \emptyset$, then $G=H$, a contradiction. So $H \cap S=\emptyset$, and hence $G=\left\langle H, s_{1}\right\rangle$. Now since G / H is a cyclic group and $\left\{H s_{1}\right\}$ is a minimal generating set, by [14, Proposition 3.1], we have $\operatorname{Aut}(X)=G / H$, a contradiction.

Now let T is not an abelian group. Assume that $H=\operatorname{soc}(A) \cap G$. By
considering the order of A, one has $H \neq 1$. Clearly H is not transitive on $V(X)$. Now assume that $\Sigma=\left\{B_{1}, B_{2}, \ldots, B_{s}\right\}$ is the set of orbits of H on $\mathrm{V}(X)$. By the normality of H in G we have that s and $\left|B_{i}\right|$ $(1 \leq i \leq s)$ are powers of p. Considering the quotient graph X_{H} defined by $\mathrm{V}\left(X_{H}\right)=\Sigma$, and $\left(B_{i}, B_{j}\right) \in E\left(X_{H}\right)$ if and only if there exists $v_{i} \in B_{i}$, $v_{j} \in B_{j}$ such that $\left(v_{i}, v_{j}\right) \in E(X)$. Since the quotient group G / H acts regularly on Σ, therefore X_{H} must be connected Cayley graph of G / H. So $X_{H} \cong \operatorname{Cay}(\bar{G}, \bar{S})$, where $\bar{G}=G / H$ and $\bar{S}=\{s H \mid s \in S\}$. Now with the same arguments as before we get same result.

Finally assume that $G=Q \rtimes P$, where P and Q are Sylow p-subgroup and Sylow q-subgroup of G, respectively such that P is a cyclic group and $Q \cong \mathbb{Z}_{q} \times \mathbb{Z}_{q} \times \ldots \times \mathbb{Z}_{q}$. Now considering $\operatorname{soc}(A)=T_{1} \times \ldots \times T_{k}$, where $k \geq 1$ and $T_{i} \cong T_{j}(1 \leq i, j \leq k)$. If $\operatorname{soc}(A)$ is $\{2,3\}$-group, Then $\operatorname{Soc}(A)$ is abelian 2 -group or abelian 3 -group. Clearly $\operatorname{Soc}(A)$ is not transitive on $\mathrm{V}(X)$. Now assume that $\Sigma=\left\{B_{1}, B_{2}, \ldots, B_{s}\right\}$ is the set of orbits of $\operatorname{soc}(A)$ on $\mathrm{V}(X)$. By the normality of $\operatorname{soc}(A)$ in A, p, q or $p q$ divides s and $\left|B_{i}\right|(1 \leq i \leq s)$. This is a contradiction. Thus $H=\operatorname{soc}(A) \cap G \neq 1$ and H is not transitive on $V(X)$. Now assume that $\Sigma=\left\{B_{1}, B_{2}, \ldots, B_{s}\right\}$ is the set of orbits of H on $\mathrm{V}(X)$. By the normality of H in G, p, q, or $p q$ divides s and $\left|B_{i}\right|(1 \leq i \leq s)$. Since the quotient group G / H acts regularly on Σ, therefore X_{H} must be connected Cayley graph of G / H. So $X_{H} \cong \operatorname{Cay}(\bar{G}, \bar{S})$, where $\bar{G}=G / H$ and $\bar{S}=\{s H \mid s \in S\}$. Since $\left|V\left(X_{H}\right)\right|$ is odd, the valency $v\left(X_{H}\right)$ of X_{H} could not be 3 and hence $v\left(X_{H}\right)=2$, or $v\left(X_{H}\right)=4$. If $v\left(X_{H}\right)=4$ and G / H be a non-abelian, then by the minimality of $|G|, X_{H}$ is normal as a Cayley graph of G / H. Thus $G / H \unlhd \operatorname{Aut}\left(X_{H}\right)$. Let K be the kernel of A on Σ. Also let K_{1} be the stabilizer of the vertex 1 in K. Then K_{1} fixes the neighborhood $N(1)$ of 1 in X pointwise. Since X is connected, K_{1} fixes each vertex in X. Thus $K_{1}=1$, and hence $K=H$. Therefore $A / H \leq \operatorname{Aut}\left(X_{H}\right)$, and G / H is normal in A / H, which implies that $G \unlhd \operatorname{Aut}(X)$, a contradiction. Now if $v\left(X_{H}\right)=4$ and G / H is an abelian, then by [2], X_{H} is normal except when $X_{H}=\operatorname{Cay}(G / H, S H / H)$, where $G / H \cong \mathbb{Z}_{5}$. If X_{H} is normal, then $G / H \unlhd \operatorname{Aut}\left(X_{H}\right)$ and so $G \unlhd \operatorname{Aut}(X)$, a contradiction. Now suppose that $X_{H}=K_{5}$, and $\operatorname{Aut}\left(X_{H}\right)=S_{5}$. Therefore $|\operatorname{Aut}(\mathrm{X})|=2^{m} .3 .5 . q^{n}$, where $m \in\{2,3\}$ and $n \geq 1$. If $3 \nmid|A|$, then $|A|=2^{m} .5 . q^{n}$. Clearly $P Q / Q \unlhd A / Q$ and so $P Q \unlhd A$. Thus $\mathrm{R}(G) \unlhd A$, a contradiction. Thus $3||A|$. Now $X=\operatorname{Cay}(G, S)$ is not normal. Suppose to the contrary that X is normal. Hence $A_{1}=\operatorname{Aut}(G, S)$, and so $3||\operatorname{Aut}(G, S)|$. Therefore there exists an element α of order 3 in $\operatorname{Aut}(G, S)$. Then $|S|=4$ implies that α fixes an element in S, say s. Consequently, α fixes s^{-1}. Since $s, s^{-1} \in S$ and
$s \neq s^{-1}$, we have that α fixes S pointwise and hence $\langle S\rangle=G$ implies $\alpha=1$, a contradiction. Now assume that $v\left(X_{H}\right)=2$. Then X_{H} is a cycle of length $p^{m} q^{n}=|G / H|$, for some positive integer m, n. Also $\operatorname{Aut}\left(X_{H}\right) \cong D_{2 p^{m} q^{n}}$. We have $S H / H=\left\{H s_{1}, H s_{2}\right\}$. Clearly $H s_{1} \neq H s_{1}^{-1}$ and $H s_{2} \neq H s_{2}^{-1}$. Therefore $H s_{1}=H s_{2}^{-1}$, and $s_{1} s_{2} \in H$. If $H \cap S \neq \emptyset$, then $G=H$, a contradiction. So $H \cap S=\emptyset$, and hence $G=\left\langle H, s_{1}\right\rangle$. Now since G / H is a cyclic group and $\left\{H s_{1}\right\}$ is a minimal generating set, by [14, Proposition 3.1], we have $\operatorname{Aut}(X)=G / H$, a contradiction.

References

[1] Y. G. Baik, Y. Q. Feng, and H. S. Sim, The normality of Cayley graphs of finite Abelian groups with valency 5, Systems Sci. Math. Sci. 13 (2000) 425-431.
[2] Y. G. Baik, Y. Q. Feng, H. S. Sim, and M. Y. Xu, On the normality of Cayley graphs of Abelian groups, Algebra Colloq. 5 (1998) 297-304.
[3] N. Bigss, Algebraic Graph Theory, second ed., Cambridge University Press, Cambridge, 1993.
[4] J. D. Dixon, and B. Mortimer, Permutation Groups (Springer, New York, 1996).
[5] X. G. Fang, C. H. Li, J. Wang, and M. Y. Xu, On cubic Cayley graphs of finite simple groups, Discrete Math. 244 (2002) 67-75.
[6] Y. Q. Feng, J. H. Kwak, and R. J. Wang, Automorphism groups of 4-valent connected Cayley graphs of p-groups, Chinese Ann. Math. 22 B (2001) 281-286.
[7] Y. Q. Feng, and M. Y. Xu, Automorphism groups of tetravalent Cayley graphs on regular p-groups, Discrete Math. 305 (2005) 345-360
[8] C. D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981) 243-256.
[9] C. D. Godsil, The automorphism group of some cubic Cayley graphs, Europ. J. Combin. 4 (1983), 25-32.
[10] C. H. Li, The solution of a problem of Godsil on cubic Cayley graphs, J. Combin. Theory Ser. B 72 (1998), 140-142.
[11] C. H. Li, and H. S. Sim, The graphical regular representations of metacyclic p-groups, Europ. J. Combin. 21 (2000), 917-925.
[12] G. A. Miller, and H. C. Moreno, Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc. 4 (1903), 398-404.
[13] C. E. Preager, Finite normal edge-transitive Cayley graphs, Bull. Austral. Math. Soc. 60 (1999), 207-220.
[14] M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998), 309-319.

Contact information

$\begin{array}{ll}\text { M. Ghasemi } & \text { Department of Mathematics, Urmia University, } \\ & \text { Urmia 57135, Iran } \\ & \text { E-Mail: } \mathrm{m} . \text { ghasemi@urmia.ac.ir }\end{array}$
Received by the editors: 13.10.2011
and in final form 27.11.2011.

