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Abstract. Our main goal here is to give a short survey
of some recent results of the theory of the F-hypercentre of finite
groups.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a
finite group. Moreover p is always supposed to be a prime, P denotes the
set of all primes. π(G) denotes the set of all primes dividing |G|, π(F)
is the union ∪G∈Fπ(G). We use N and U to denote the classes of all
nilpotent and of all supersoluble groups, respectively.

Composition formations. Let F be a class of groups, that is,B ∈ F
whenever B ≃ A ∈ F . The class F is said to be hereditary (normally
hereditary) (A.I. Mal’cev [1]) if H ∈ F whenever G ∈ F and H is a
subgroup (a normal subgroup, respectively) of G. If 1 ∈ F , then we
write GF to denote the intersection of all normal subgroups N of G with
G/N ∈ F .

The class F is said to be a formation if either F = ∅ or 1 ∈ F
and every homomorphic image of G/GF belongs to F for any group G.
The formation F is said to be: (i) solubly saturated, Baer-local [2] or
composition (L.A. Shemetkov [3]) if G ∈ F whenever G/Φ(N) ∈ F for
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some soluble normal subgroup N of G; (ii) saturated or local if G ∈ F
whenever G/Φ(G) ∈ F .

Throughout all this paper, F denotes a non-empty formation.

The F-hypercentre. If H/K is a chief factor of G, then an element
x ∈ G induces the the automorphism αa on H/K, where αa : Kh → KHa.
The kernel Ker(α) of the homomorphism α : G → Aut(H/K) is called
the centralizer of H/K in G and denoted by CG(H/K). The quotient
G/CG(H/K) is called the group of automorphisms induced by G on H/K
and denoted by AutG(H/K).

At the analysis of action of G on H/K sometimes instead of the group
AutG(H/K), use of the semidirect product (H/K)⋊AutG(H/K) appears
more convenient.

Definition 1.1. A chief factorH/K ofG is called F-central in G provided
(H/K) ⋊ (G/CG(H/K)) ∈ F , otherwise it is called F-excentric.

Theorem 1.2 (D.W. Barnes and O.H. Kegel [4]) If G ∈ F , then every
chief factor of G is F-central in G.

In general, let E be the largest normal subgroup of G such that each
chief factor of G below E is F-central in G. Such subgroup is called the
F-hypercentre of G and denoted by ZF (G). A normal subgroup A of G
is said to be F-hypercentral in G provided A ≤ ZF (G).

It is clear that the N -hypercentre of G coincides with the hypercentre
Z∞(G) of G, the U -hypercentre of G is the largest normal subgroup of G
such that each chief factor of G below ZU (G) is cyclic.

The hypercentre and the U-hypercentre essentially influence on the
structure of G and they are useful for descriptions of some important
classes of groups. For example, if all subgroups of G of prime order and
order 4 are contained in the hypercentre G, then G is nilpotent (Ito). If
all these subgroups are contained in the U-hypercentre of G, then G is
supersoluble (Huppert, Doerk). In particular, if G is of odd order and
every minimal subgroup of G is normal in G, then G is supersoluble
(Buckley). If all minimal subgroups of G are normal in G, then G is
soluble (Gaschütz). A group G is quasinilpotent if and only if G/Z∞(G)
is semisimple [5, X, Theorem 13.6]. A group G is quasisupersoluble (see
Section 2) if and only if G/ZU (G) is semisimple.

The study of N -hypercentral subgroups and U -hypercentral subgroups
begins with the papers of Baer [6] and they have close relation to per-
mutable subgroups. For instance, it was proved (see Maier and Schmid [7])
that if AG = 1 and A is a quasinormal subgroup of G (i.e. AH = HA for
all subgroups H of G), then A is N -hypercentral in G; if AG = 1 and A is
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134 On the F -hypercentre of a finite group

a modular element (in sense Kurosh [8, p. 43]) of the subgroup lattice of
G, then A is U -hypercentral in G [8, Theorem 5.2.5]). Some other results,
related with the U-hypercentral subgroups are discussed in the book [9]
(see also [10, 11, 12, 13, 14, 15]).

2. Quasi-F-groups

A group G is said to be quasinilpotent if for every its chief factor H/K
and every x ∈ G, x induces an inner automorphism on H/K [5, p.124].

Note that since for every central chief factor H/K every element of
G induces trivial automorphism on H/K, one can say that a group G
is quasinilpotent if for every its non-central chief factor H/K and every
x ∈ G, x induces an inner automorphism on H/K.

This obvious observation allows us to consider the following general-
ization of quasinilpotent groups.

Definition 2.1 ([16, 17]). We say that G is a quasi-F-group if for every
F -eccentric chief factor H/K of G, every automorphism of H/K induced
by an element of G is inner.

In particular, we say that G is a quasisupersoluble group if for every
non-cyclic chief factor H/K of G, every automorphism of H/K induced
by an element of G is inner.

A group G is called a semisimple if G is either the unit group or the
direct product of non-abelian simple group. In particular any non-abelian
simple group is semisimple.

The theory of quasinilpotent groups is well represented in the book [5].
A key result of this theory is the following structure theorem.

Theorem 2.2 ( [5, Chapter X, Theorem 13.6]). A a group G is a
quasinilpotent if and only if G/Z∞(G) is semisimple.

The first question that arises when we consider the quasisupersoluble
groups or the quasi-F-groups, in general, is the following: What can we
say about the structure of the quasi-F-groups?

The following theorem gives a complete answer to this question in the
case of quasisupersoluble groups.

Theorem 2.3 ([10]). A group G is a quasisupersoluble if and only if
G/ZU (G) is semisimple.

In general, we have
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Theorem 2.4 ([16, 17]). Let F be a saturated normally hereditary for-
mation. Then a group G is a quasi-F-group if and only if G/ZF (G) is
semisimple.

Surprising similarities in the structure of the quasinilpotent groups
and the quasi-F -groups makes a real suggestion that the quasi-F -groups
inherit some other interesting properties of quasinilpotent groups. This
assumption was confirmed in the above-mentioned papers [10, 16, 17].

Our immediate goal is to discuss some of the results of these papers.
The books [2, 3, 18, 19, 20] contains numerous applications of Baer-

local formations. Nevertheless, it has long remained an open question how
wide is the class of Baer-local formations.

It is well known that the class F of all nilpotent groups is a saturated
formation. L.A. Shemetkov showed in [21] that the class N ∗ (we here
use the notation in [5]) of all quasinilpotent groups is a Baer-local forma-
tion. Perhaps, the class N ∗ is the only classic example of the Baer-local
formation which is not saturated.

Following Robinson [22], a group G is said to be an SC-group if every
chief factor of G is a simple group. SC-Groups have many interesting
properties. In particular, the class of all such groups is a new example of
the Baer-local formation. By above Theorem 2.3 we see that every qua-
sisupersoluble group is an SC-group. These observations are a motivation
for attempts to find new series of Baer-local formations among classes of
quasi-F-groups. We use F∗ to denote the class of all quasi-F-groups.

Theorem 2.5 ([10]). The class U∗ of all quasisupersoluble groups is a
normally hereditary Baer-local formation.

In general, we have

Theorem 2.7 ([16, 17]). Suppose that F is a saturated formation con-
taining all nilpotent groups. Then:

(1) F∗ is a Baer-local formation.

(2) F is normally hereditary, then F∗ is normally hereditary.

(3) If F is closed under taking products of normal subgroups (i.e. F
contains each group G = AB where A and B are normal in G and
A,B ∈ F), then F∗ is also closed under taking products of normal
subgroups.

On the base of Theorems 2.3, one can easily obtain examples of
quasisupersoluble groups. For example, let A = C7 ⋊ 〈α〉, where |C7| = 7
and α is an automorphism of C7 with |α| = 3. Let B = A×A7. Then by
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136 On the F -hypercentre of a finite group

Theorem 2.3, B is quasisupersoluble and not quasinilpotent. The group
C = B ⋊ 〈β〉, where β is an inner automorphism of A7 with |β| = 2 and
α acts trivially on A, is an SC-group but not a quasisupersoluble group.

3. On the intersections of F-maximal subgroups

Throughout this section, F denotes a hereditary saturated formation.
A group G is called F-critical if G is not in F but all proper subgroups
of G are in F .

Recall that a subgroup U of G is called F-maximal in G provided that
(a) U ∈ F , and (b) if U ≤ V ≤ G and V ∈ F , then U = V [2, p. 288].

We use IntF (G) to denote the intersection of all F -maximal subgroups
of G. It is not difficult to show that for any group G we have ZF (G) ≤
IntF (G). Moreover, for the case when F = N is the class of all nilpotent
groups,

Z∞(G) = IntN (G),

so the hypercentre of G may be characterized as the intersection of all
maximal nilpotent (i.e. N -maximal) subgroups of G (Baer [23]).

Some other classes F for which the equality

IntF (G) = ZF (G) (∗)

holds for each soluble groupG were found by A.V. Sidorov in the paper [24].
Nevertheless, in general, ZF (G) < IntF (G), even when F = U and G is
soluble.

L.A. Shemetkov asked in 1995 at the Gomel Algebraic seminar the
following question (the formulation of this question was also given in [24,
p. 41]): What are the non-empty hereditary saturated formations F with
the property that for each group G, the equality

IntF (G) = ZF (G) (∗)

holds?

The answer to this question was obtained on the base of the theory of
the intersections of F -maximal subgroups which was developed in [25, 26].

First of all, in the paper [25] the general studying methods of the
subgroup IntF (G) were developed. It has appeared that such subgroups
possess practically all such general properties which the F-hypercentre
has.
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Proposition 3.1 ([25]) Let H, E be subgroups of G, N a normal subgroup
of G andI = IntF (G).

(a) IntF (H)N/N ≤ IntF (HN/N).

(b) IntF (H) ∩ E ≤ IntF (H ∩ E).

(c) If H/H ∩ I ∈ F , then H ∈ F .

(d) If H ∈ F , then IH ∈ F .

(e) If N ≤ I, then I/N = IntF (G/N).

(f) IntF (G/I) = 1.

(g) If every F-critical subgroup of G is soluble and ψ0(N) ≤ I, then
N ≤ I.

(h) ZF (G) ≤ I.

It this proposition ψ0(N) denotes the subgroup of N generated by all
its cyclic subgroups of prime order and order 4 (if the Sylow 2-subgroups
of N are non-abelian).

Then for any p ∈ π(F) we write F(p) to denote the intersection of all
formations containing the set {G/Op′,p(G) | G ∈ F}, and let F (p) denote

the class of all groups G such that GF(p) is a p-group.

Definition 3.2. We say that F satisfies:

(1) The boundary condition if G ∈ F whenever G is an F (p)-critical
group, for some p ∈ π(F).

(2) The boundary condition in the class of all soluble groups if G ∈ F
whenever G is a soluble F (p)-critical group, for any p ∈ π(F).

If F is the class of all identity groups, then for any group G we have
ZF (G) = 1 = IntF (G). In the other limited case, when F = G is the class
of all groups, we have ZF (G) = G = IntF (G).

For the general case, we have the following.

Theorem 3.3 ([26]). Let F be a hereditary saturated formation with
(1) 6= F 6= G. Equality (∗) holds for each group G if and only if F satisfies
the boundary condition.

Theorem 3.4 ([26]). Let F be a hereditary saturated formation with
(1) 6= F 6= G. Equality (∗) holds for each soluble group G if and only if F
satisfies the boundary condition in the class of all soluble groups.
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Since for any concrete formation F and for any prime p the both
classes F(p) and F (p) either are well-known or can be easily found, general
Theorems 3.3 and 3.4 allow to answer to above Shemetkov’s question
respectively F .

Now we demonstrate this on some examples.

Example 3.5. Let F = N . Then F (p) is the class of all p-groups. Hence
every F (p)-critical group has prime order, so is nilpotent. Thus the above
of Baer’s result follows from Theorem 3.3.

A group G is called p-decomposable if there exists a subgroup H of G
such that G = P ×H for some (and hence the unique) Sylow p-subgroup
P of G.

Example 3.6. Let F be the class of all p-decomposable groups. Then
evidently F (p) is the class of all p-groups and F (q) is the class of all
p′-groups for all primes q 6= p. Hence for any prime r every F (r)-critical
group has prime order, so is p-decomposable. Thus by Theorem 3.3 for
any group G we have ZF (G) = IntF (G).

Example 3.7. Let F = U . Then F(7) is the class of all abelian groups
of exponent dividing 6. Hence A4 is F (7)-critical, but not supersoluble.
Hence F does not satisfy the boundary condition in the class of all
soluble groups, so by Theorem 3.4 for some soluble group G we have
ZF (G) < IntF (G).

Example 3.8. Let F be one of the following formations:

(1) the class of all p-soluble groups;

(2) the class of all p-supersoluble groups;

(3) the class of all p-nilpotent groups;

(4) the class of all soluble groups.

Then for any prime q 6= p we have F = F (q). Hence clearly F does
not satisfy the boundary condition, so by Theorem 3.3 in some group G
we have ZF (G) < IntF (G).

Some other properties of the subgroup IntF (G) were found by J. C. Bei-
dleman and H. Heineken in the paper [27].

4. On two questions of L.A. Shemetkov concerning of U-
hypercentral subgroups

Recall that a subgroup A of a group G is said to be S-quasinormal,
S-permutable, or π(G)-permutable in G (Kegel [28]) if AP = PA for all
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Sylow subgroups P of G; the subgroup A of G is said to be c-normal
in G (Wang [29]) if G has a normal subgroup T such that AT = G and
A ∩ T ≤ AG. A is said to be c-supplemented in G (Ballester-Bolinches,
Wang and Guo [30]) if G has a subgroup T such that AT = G and
A ∩ T ≤ AG, the largest normal subgroup of G contained in A.

If F is a saturated formation containing all supersoluble groups and
G is a group with a normal subgroup E, then the following results are
true.

(1) If G/E ∈ F and every cyclic subgroup of E of prime order and
order 4 is either S-quasinormal (Ballester-Bolinches and Pedraza-
Aguilera [31], Asaad and Csörgő [32]) or c-normal (Ballester-Bolinches
and Wang [33]) or c-supplemented (Ballester-Bolinches, Wang and
Guo [30], Wang and Li [34]) in G, then G ∈ F .

(2) If G/E ∈ F and every cyclic subgroup of every Sylow subgroup of
F ∗(E) of prime order and order 4 is either S-quasinormal (Li and
Wang [35]) or c-normal (Wei, Wang and Li [36]) or c-supplemented
(Wang, Wei and Li [39], Wei, Wang and Li [38]) in G, then G ∈ F .

(3) If G/E ∈ F and every maximal subgroup of every Sylow subgroup
of E is either S-quasinormal (Asaad [40]) or c-normal (Wei [41])
or c-supplemented (Ballester-Bolinches and Guo [42]) in G, then
G/E ∈ F .

(4) If G/E ∈ F and every maximal subgroup of every Sylow subgroup
of F ∗(E) is either S-quasinormal (Li and Wang [38]) or c-normal
(Wei, Wang and Li [36]) or c-supplemented (Wei, Wang and Li [37])
in G, then G ∈ F .

In these results F ∗(E) denotes the generalized Fitting subgroup of E,
that is, the product of all normal quasinilpotent subgroups of E.

Bearing in mind the above results L.A. Shemetkov asked in 2004 at
Gomel Algebraic Seminar the following two questions:

(I) Is it true that all the abovementioned results can be strengthened by
proving that every G-chief factor below E is cyclic?

(II) Is it true that the conclusion about the cyclic character of the G-chief
factors below E still holds if we omit the condition "G/E ∈ F "?

A partial solution of these problems has been obtained in [43, Theo-
rem 1.4]. A complete answer to the above questions was obtained in [11].

Our main ingredient is the S-quasinormal embedding introduced
in [44]: a subgroup H of a group G is said to be S-supplemented in G if
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G has a subgroup T such that G = HT and T ∩H ≤ HsG, where HsG is
the subgroup generated by all subgroups of H which are S-quasinormal
in G. We prove:

Theorem 4.1 ([11]). Let E be a normal subgroup of a group G. Suppose
that for every non-cyclic Sylow subgroup P of E, every maximal subgroup
of P or every cyclic subgroup of P of prime order and order 4 is S-
supplemented in G. Then E ≤ ZU (G).

Theorem 4.2 ([11]). Let F be any formation and G a group. If E is a
normal subgroup of G and F ∗(E) ≤ ZF (G), then E ≤ ZF (G).

Corollary 4.3 ([11]). Let E be a normal subgroup of a group G. If
F ∗(E) ≤ ZU (G), then E ≤ ZU (G).

It is rather clear that if F is a saturated formation containing all
supersoluble groups and G is a group with a cyclic normal subgroup E
such that G/E ∈ F , then G ∈ F . Hence Theorem 4.1 and Corollary 4.3
allow us to give affirmative answers to both Questions I and II. Finally,
note that in view of Theorem 4.1 and Corollary 4.3 not only generalize
all the results in [31]- [42] mentioned above but also gives new methods
for proofs of them.

5. On factorizations of groups with F-hypercentral inter-
sections of the factors

One of the highlights of the proof of the above Theorem 4.1 is the
following result is allowing to carry out inductive reasonings

Theorem 5.1 ([15, Corollary 3.2] ) Let A, B and E be normal subgroups
of a group G. Suppose that G = AB and E ≤ ZU (A) ∩ ZU (B). If either
(|G : A|, |G : B|) = 1 or G′ ≤ F (G), then E ≤ ZU (G).

But in fact this theorem is a generalization of the following well-known
results of the theory of supersolvable groups.

Corollary 5.2 (Baer [45]). Let G = AB where A, B are normal super-
soluble subgroups of G. If G′ ≤ F (G), then G is supersoluble.

Corollary 5.3 (Friesen [46]). Let G = AB where A, B are normal super-
soluble subgroups of G. If (|G : A|, |G : B|) = 1, then G is supersoluble.

These important observations have led to the following general problem:

Problem. Let G = AB be the product of two subgroups A and B of G.
What we can say about the structure of G if A∩B ≤ ZF (A) ∩ZF (B) for
some class of groups F ?
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The paper [15] is devoted to the analysis of this topic. In particular
the following facts were proved.

Theorem 5.4 ([15, Theorem 3.5]). Suppose that G has three subgroups
A1, A2 and A3 whose indices |G : A1|, |G : A2|, |G : A3| are pairwise
coprime. If Ai ∩Aj ≤ ZS(Ai) ∩ ZS(Aj) for all i 6= j, then G is soluble.

In this theorem S denotes the class of all soluble groups.

Corollary 5.5 (H. Wielandt [47]). If G has three soluble subgroups A1,
A2 and A3 whose indices |G : A1|, |G : A2|, |G : A3| are pairwise coprime,
then G is itself soluble.

In the following theorem, c(G) denotes the nilpotent class of a nilpotent
group G.

Theorem 5.6 [15, Theorem 3.7]. Suppose that G has three subgroups A1,
A2 and A3 whose indices |G : A1|, |G : A2|, |G : A3| are pairwise coprime.
Let p be a prime. Then:

(1) If Ai ∩Aj ≤ ZF (Ai) ∩ZF (Aj) for all i 6= j, where F is the class of
all p-closed groups, then G is p-closed.

(2) If Ai ∩Aj ≤ ZF (Ai) ∩ZF (Aj) for all i 6= j, where F is the class of
all p-decomposable groups, then G is p-decomposable.

(3) If Ai ∩ Aj ≤ Zn(Z∞(Ai)) ∩ Zn(Z∞(Aj)) for all i 6= j, then G is
nilpotent and c(G) ≤ n.

The following corollaries are well known.

Corollary 5.7 (O. Kegel). If G has three nilpotent subgroups A1, A2 and
A3 whose indices |G : A1|, |G : A2|, |G : A3| are pairwise coprime, then
G is itself nilpotent.

Corollary 5.8 (K. Doerk). If G has three abelian subgroups A1, A2 and
A3 whose indices |G : A1|, |G : A2|, |G : A3| are pairwise coprime, then
G is itself abelian.

Theorem 5.9 ([15, Theorem 3.11]). Suppose that G has four subgroups
A1, A2, A3 and A4 whose indices |G : A1|, |G : A2|, |G : A3|, |G : A4|
are pairwise coprime. If Ai ∩Aj ≤ ZU (Ai) ∩ZU (Aj) for all i 6= j, then G
is supersoluble.

Corollary 5.10 (K. Doerk). If G has four supersoluble subgroups A1,
A2, A3 and A4 whose indices |G : A1|, |G : A2|, |G : A3|, |G : A4| are
pairwise coprime, then G is supersoluble.
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Recall that a subgroup H of G is said to be abnormal if x ∈ 〈H,Hx〉.
It is clear that if H is a abnormal in G, then NG(H) = H.

Theorem 5.11 ([15, Theorem 3.13]). Suppose that G has three abnormal
subgroups A1, A2 and A3 whose indices |G : A1|, |G : A2|, |G : A3| are
pairwise coprime.

(1) If Ai ∩Aj ≤ ZF (Ai) ∩ZF (Aj) for all i 6= j, where F is the class of
all metanilpotent groups, then G is metanilpotent.

(2) If Ai ∩Aj ≤ ZU (Ai) ∩ ZU (Aj) for all i 6= j, then G is supersoluble.

Corollary 5.12 (A.F. Vasilyev and T.I. Vasilyeva [48]). If G has three
abnormal supersoluble subgroups A1, A2 and A3 whose indices |G : A1|,
|G : A2|, |G : A3| are pairwise coprime, then G is itself supersoluble.

Finally, we mention the following result.

Theorem 5.13. A group G is supersoluble if and only if every maximal
subgroup V of every Sylow subgroup of G either is normal or has a
supplement T in G such that V ∩ T ≤ ZU (T ).

Corollary 5.14 ( W. Guo, K. P. Shum and A. N. Skiba [49]). A group
G is supersoluble if and only if every maximal subgroup of every Sylow
subgroup of G either is normal or has a supersoluble supplement in G.
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