Prethick subsets in partitions of groups

Igor Protasov and Sergiy Slobodianiuk

Abstract. A subset S of a group G is called thick if, for any finite subset F of G, there exists $g \in G$ such that $F g \subseteq S$, and k-prethick, $k \in \mathbb{N}$ if there exists a subset K of G such that $|K|=k$ and $K S$ is thick. For every finite partition \mathcal{P} of G, at least one cell of \mathcal{P} is k-prethick for some $k \in \mathbb{N}$. We show that if an infinite group G is either Abelian, or countable locally finite, or countable residually finite then, for each $k \in \mathbb{N}, G$ can be partitioned in two not k-prethick subsets.

Introduction

For a group G and a natural number k, we use the standard notations $[G]^{k}$ and $[G]^{<\omega}$ for the set of all k-subsets of G and the set of all finite subsets of G.

A subset S of G is called

- large if $G=K S$ for some $K \in[G]^{<\omega}$;
- thick if $G \backslash S$ is not large;
- k-prethick if there exists $K \in[G]^{k}$ such that $K S$ is thick;
- prethick if S is k-prethick for some $k \in \mathbb{N}$;
- small if $L \backslash S$ is large for each large subset L of G;
- P-small if there exists an injective sequence $\left(g_{n}\right)_{n \in \omega}$ in G such that the subsets $\left\{g_{n} S: n \in \omega\right\}$ are pairwise disjoint;
- thin if $S \cap g S$ is finite for each $g \in G \backslash\{e\}, e$ is the identity of G.

[^0]To be precise we should add the adjective "left" to each of above definitions because each of them has the "right" counterpart, for example, S is right large if $G=S F$ for some $F \in[G]^{<\omega}$. But in this paper we deal only with left-side versions, so we omit the adjective "left". In the dynamical terminology [6, p. 85], a large subset is called syndetic. A subset S is prethick if and only if there exists $K \in[G]<\omega$ such that, for each $F \in[G]<\omega, F g \subseteq K S$ for some $g \in G$, so a prethick subset is exactly a piecewise syndetic set in the terminology of [6, p. 85]. We note also that large, small, thick and thin subsets can be defined in much more general context of balleans [14], [16], [17].

Every infinite group G can be partitioned in \aleph_{0} large subsets [11] and in \aleph_{0} small subsets [12]. If G is amenable then G can not be partitioned in $>\aleph_{0}$ large subsets. If H is a countable subgroup of G and $G=H R$ is a decomposition of G into right cosets then $\{h R: h \in H\}$ is a partition of G in $\aleph_{0} P$-small subsets. P-small subsets were introduced by I. Prodanov [10] and studied systematically by T. Banakh and N. Lyaskovska [1], [2], [8].

Every infinite group G can be partitioned in $|G|$ thick subsets [9]. For generalizations and applications of this statement see [4], [13]. For an infinite group $G, \mu(G)$ denotes the minimal cardinal k such that G can be partitioned in k thin subsets. By [15], $\mu(G)=|G|$ if $|G|$ is a limit cardinal and $\mu(G)=\kappa$ if $|G|=\kappa^{+}$.

Let G be a group and let $A_{1}, \cup \ldots \cup A_{n}$ be a partition of G. By [6, Corollary 4.41], at least one cell of the partition is prethick, for an elementary proof of much more general statement see [16, Theorem 11.2]. By [7, Theorem 12.7], there exists a cell A_{i} and $K \in[G]<\omega$ such that $G=K A_{i} A_{i}^{-1}$ and $|K| \leqslant 2^{2^{n-1}-1}$. It is an open problem [7, Problem 13.4.4] whether K can be chosen so that $|K| \leqslant n$. This is so if G is amenable [16, Theorem 12.8]. Comparing these results, we run into the following question.

Given an infinite group G, does there exist a natural number $k=k(G)$ such that, for any partition $G=A_{1} \cup A_{2}$, at least one cell of the partition is k-prethick?

We give a negative answer to this question if G is either Abelian, or countable locally finite, or countable residually finite.

Recall that a group G is locally finite if every finite subset of G generates a finite subgroup and residually finite if for every $g \in G \backslash\{e\}$ there is a normal subgroup N of finite index such that $g \notin N$.

For convenience of formulations, we say that a partition \mathcal{P} of a group G is k-meager if each cell of \mathcal{P} is not k-prethick, equivalently, $G \backslash K P$ is large for all $P \in \mathcal{P}$ and $K \in[G]^{k}$.

1. Results

Theorem 1. For every countable residually finite group G and every $k \in \mathbb{N}$, there exists a k-meager 2 -partition of G.

Proof. We enumerate the family $[G]^{k}$ as $\left\{K_{n}: n \in \omega\right\}$ and choose a decreasing chain $\left\{N_{n}: n \in \omega\right\}$ of subgroups of finite index of G such that $\bigcap_{n \in \omega} N_{n}=\{e\}, e$ is the identity of G. Suppose that there exist two injective sequences $\left\langle a_{n}\right\rangle_{n \in \omega},\left(b_{n}\right)_{n \in \omega}$ in G such that

$$
K_{i} a_{i} N_{i} \cap K_{j} b_{j} N_{j}=\varnothing
$$

for all $i, j \in \omega$. We put

$$
A=\bigcup_{i \in \omega} K_{i} a_{i} N_{i}, \quad B=G \backslash A
$$

and show that A is not k-prethick. On the contrary, assume that $K A$ is thick for some $K \in[G]^{k}$ and pick $n \in \omega$ such that $K=K_{n}^{-1}$. Let L_{n} be a set of representatives of left cosets of G by N_{n}. Since $K_{n}^{-1} A$ is thick and L_{n} is finite, there exists $g \in G$ such that $L_{n} g \subset K_{n}^{-1} A$. Clearly, $L_{n} g N_{n}=L_{n} N_{n}=G$ so $b_{n} \in K_{n}^{-1} A N_{n}$ and $K_{n} b_{n} N_{n} \cap A=\varnothing$, a contradiction. The same arguments show that B is not k-prethick.

To construct the sequences $\left\langle a_{n}\right\rangle_{n \in \omega},\left(b_{n}\right)_{n \in \omega}$ we need some special choice of $\left\{N_{n}: n \in \omega\right\}$:

$$
(2 k)^{2} \sum_{i=0}^{n} \frac{1}{\left|G: N_{i}\right|}<1
$$

Since $\left|G: N_{0}\right|>(2 k)^{2}>k^{2}$, there is $g_{0} \in G \backslash K_{0}^{-1} K_{0} N_{0}$. We put $a_{0}=e, b_{0}=g_{0}$, so $K_{0} a_{0} N_{0} \cap K_{0} b_{0} N_{0}=\varnothing$. Suppose we have chosen a_{0}, \ldots, a_{n} and b_{0}, \ldots, b_{n} such that

$$
K_{i} a_{i} N_{i} \cap K_{j} b_{j} N_{j}=\varnothing, i, j \in\{0, \ldots, n\}
$$

Since $\left|G: N_{n+1}\right|>k^{2}$, there is g_{n+1} such that

$$
K_{n+1} N_{n+1} \cap K_{n+1} g_{n+1} N_{n+1}=\varnothing
$$

Let us consider the set

$$
S=\bigcup_{i=0}^{n}\left(K_{i} a_{i} N_{i} \cup K_{i} b_{i} N_{i}\right)
$$

denote by $p r$ the canonical projection $G \rightarrow G / N_{n+1}$ and observe that

$$
\begin{gathered}
\left|\operatorname{pr}\left(K_{n+1} \cup K_{n+1} g_{n+1}\right)^{-1} S\right| \leqslant(2 k)^{2} \sum_{i=0}^{n}\left|N_{i}: N_{n+1}\right|= \\
(2 k)^{2} \sum_{i=0}^{n} \frac{\left|G: N_{n+1}\right|}{\left|G: N_{i}\right|}<\left|G: N_{n+1}\right|
\end{gathered}
$$

We take $h \in G$ such that $\operatorname{pr}(h) \notin \operatorname{pr}\left(K_{n+1} \cup K_{n+1} g_{n+1}\right)^{-1} S$. Then $\left.\left(K_{n+1} h N_{n+1}\right) \cup K_{n+1} g_{n+1} h N_{n+1}\right) \cap S=\varnothing$. We put $a_{n+1}=h, b_{n+1}=$ $g_{n+1} h$.

After ω steps, we get the required sequences $\left\langle a_{n}\right\rangle_{n \in \omega},\left(b_{n}\right)_{n \in \omega}$.
Theorem 2. For every countable locally finite group G and every $k \in \mathbb{N}$, there exists a k-meager 2 -partition of G.
Proof. We enumerate the family $[G]^{k}$ as $\left\{K_{n}: n \in \omega\right\}$ and write G as a union of an increasing chain of finite subgroups $\left\{G_{n}: n \in \omega\right\}$ and, for each $n \in \omega$, pick a system R_{n} of representatives of right cosets of G by G_{n} and note that $R_{n} \cap G_{n}=\{e\}$. Suppose there exist two injective sequences in G such that

$$
a_{i} \in G_{i}, b_{i} \in G_{i}, \quad K_{i} a_{i} R_{i} \cap K_{j} b_{j} R_{j}=\varnothing
$$

for all $i, j \in \omega$. We put

$$
A=\bigcup_{i \in \omega} K_{i} a_{i} R_{i}, B=G \backslash A
$$

and show that A is not k-prethick. On the contrary, assume that $K A$ is thick for some $K \in[G]^{k}$ and pick $n \in \omega$ such that $K=K_{n}^{-1}$. Since $K_{n}^{-1} A$ is thick and G_{n} is finite, there exists $g \in R_{n}$ such $G_{n} g \subset K_{n}^{-1} A$. Then $b_{n} g \in K_{n}^{-1} A$ but $K_{n} b_{n} R_{n} \cap A=\varnothing$, a contradiction. The same arguments show that B is not k-prethick.

To construct the sequences $\left\langle a_{n}\right\rangle_{n \in \omega}$, $\left(b_{n}\right)_{n \in \omega}$ we need a special choice of $\left\{G_{n}: n \in \omega\right\}$ and $\left\{R_{n}: n \in \omega\right\}$. For each $n \in \omega$, we pick $g_{n} \in G$ such that $K_{n} \cap K_{n} g_{n}=\varnothing$. We choose $\left\{G_{n}: n \in \omega\right\}$ so that, for each $n \in \omega$:

$$
K_{n} \cup K_{n} g_{n} \subset G_{n}, \quad K_{n} \cap K_{n} g_{n}=\varnothing, \quad(2 k)^{2} \sum_{i=0}^{n} \frac{1}{\left|G_{i}\right|}<1
$$

For each $n \in \omega$, we take an arbitrary system X_{n} of representatives of right cosets of G_{n+1} by $G_{n}, X_{n} \cap G_{n}=\{e\}$ and put

$$
R_{n, m}=X_{n} X_{n+1} \ldots X_{m}, \quad R_{n}=\bigcup_{m \geqslant n} R_{n, m}
$$

We put $a_{0}=e, b_{0}=g_{0}$, so $a_{0}, b_{0} \in G_{0}, K_{0} a_{0} \cup K_{0} b_{0} \subset G_{0}, K_{0} a_{0} R_{0} \cap$ $K_{0} b_{0} R_{0}=\varnothing$. Suppose we have chosen a_{0}, \ldots, a_{n} and b_{0}, \ldots, b_{n} such that $a_{i} \in G_{i}, b_{i} \in G_{i}$ and

$$
K_{i} a_{i} \cup K_{i} b_{i} \subset G_{i}, \quad K_{i} a_{i} R_{i} \cap K_{j} b_{j} R_{j}=\varnothing
$$

for all $i, j \in\{0, \ldots, n\}$. We denote

$$
S=\bigcup_{i=0}^{n}\left(K_{i} a_{i} R_{i, n+1} \cup K_{i} b_{i} R_{i, n+1}\right)
$$

observe that $S \subset G_{n+1}$ and

$$
\left|\left(K_{n+1} \cup K_{n+1} g_{n+1}\right)^{-1} S\right| \leqslant(2 k)^{2} \sum_{i=0}^{n} \frac{\left|G_{n+1}\right|}{\left|G_{n}\right|}<\left|G_{n+1}\right|
$$

We take $h \in G_{n+1} \backslash\left(K_{n+1} \cup K_{n+1} g_{n+1}\right)^{-1} S$, put $a_{n+1}=h, b_{n+1}=g_{n+1} h$. Then $\left(K_{n+1} a_{n+1} \cup K_{n+1} b_{n+1}\right) \cap S=\varnothing$. It follows that $K_{i} a_{i} R_{i} \cap K_{j} b_{j} R_{j}=$ \varnothing for all $i, j \in\{0, \ldots, n+1\}$.

After ω steps, we get the required sequences $\left\langle a_{n}\right\rangle_{n \in \omega},\left(b_{n}\right)_{n \in \omega}$.
Lemma 1. Let G_{1}, G_{2} be groups, G be a direct product of G_{1} and G_{2}, $k \in \mathbb{N}$. If there exists a k-meager 2-partition of G_{1} then G also admits such a partition.

Proof. If $A \cup B$ is a k-meager partition of G_{1} then $\left(A \otimes G_{2}\right) \cup\left(B \otimes G_{2}\right)$ is a k-meager partition of G.

Lemma 2. Let an infinite group G be a subgroup of a direct product $H=\otimes_{\alpha<\kappa} H_{\alpha}$ of countable groups, S be a countable subset of G. Then there exists a countable subgroup S^{\prime} of G and a subgroup T of G such that $S \subseteq S^{\prime}$ and $G=S^{\prime} \otimes T$.

Proof. We denote by S_{0} the subgroup of G generated by S and choose a countabe subset $I_{0} \subseteq \kappa$ such that $S \subseteq \otimes_{\alpha \in I_{0}} H_{\alpha}$. If $p r_{I_{0}} G=S_{0}$ then $G=S_{0} \otimes p r_{\kappa \backslash I_{0}} G$. Otherwise, we choose a countable subgroup S_{1} of G such that $p r_{I_{0}} G=S_{1}$ and a countable subset $I_{1} \subseteq \kappa$ such that $S_{1} \subseteq \otimes_{\alpha \in I_{1}} H_{\alpha}$. If $p r_{I_{1}} G=S_{1}$ then S_{1} is a direct factor of G. Otherwise, we choose a countable subgroup S_{2} of G such that $p r_{I_{1}} G=p r_{I_{1}} S_{2}$ and a countable subset $I_{2} \subseteq \kappa$ such that $S_{2} \subseteq \otimes_{\alpha \in I_{2}} H_{\alpha}$. Proceeding by this way, we either get a direct factor S_{n} on some step $n \in \omega$ or a direct factor $S^{\prime}=\bigcup_{n \in \omega} S_{n}$.

Lemma 3. Each countable subset S of an Abelian group G is contained in some countable direct factor S^{\prime} of G.

Proof. Apply Lemma 2 and Theorems 23.1 and 24.1 from [5].
Theorem 3. For every infinite Abelian group G and every $k \in \mathbb{N}$, there exists a k-meager 2-partition of G.

Proof. Applying Lemma 1 and Lemma 3, we may suppose that G is countable. We use [5, Theorem 21.3] to write G as a direct sum $G=$ $D \oplus R$ of the divisible part D of G and some reduced group R. Since $\bigcap_{n \in \mathbb{N}} n R=\{0\}$ and $R / n R$ is a direct sum of cyclic groups, R is residually finite. If R is infinite, we apply Theorem 1 and Lemma 1, so we may suppose that D is infinite. If D contains a Prüffer p-group, we apply Theorem 2 and Lemma 1. In view of [5, Theorem 23.1] and Lemma 1, it remains to prove theorem for the group \mathbb{Q} of rational numbers.

We put $I=\{x \in \mathbb{Q}: 0 \leqslant x<1\}$ and write \mathbb{Q} as a sum $\mathbb{Z}+I$. By Theorem 1, there exists a $3 k$-meager partition $\mathbb{Z}=A_{0} \cup B_{0}$. We put

$$
A=A_{0}+I, B=B_{0}+I
$$

and show that A, B are not k-prethick in \mathbb{Q}. On the contrary, assume that one cell, say A, is k-prethick and choose $K \in[\mathbb{Q}]^{k}$ such that $K+A$ is thick. Take an arbitrary $C \in[\mathbb{Z}]^{k}$ and pick $q \in \mathbb{Q}$ such that $q+C \subset K+A$. We write $q=\lfloor q\rfloor+x, x \in I,\lfloor K\rfloor=\{\lfloor x\rfloor: x \in K\}$. Then

$$
\lfloor q\rfloor+x+C \subset\lfloor K\rfloor+I+A_{0}+I
$$

so $\lfloor q\rfloor+C \subset\lfloor K\rfloor+A_{0}+I+I-I$ and

$$
\lfloor q\rfloor+C \subseteq(\{-1,0,1\}+\lfloor K\rfloor)+A_{0}
$$

which is impossible because A_{0} is not $3 k$-thick.

2. Comments

We do not know whether every infinite group G admits a k-meager 2-partition for each $k \in \mathbb{N}$, so we formulate some partial questions in this direction.

Question 1. Does an infinite group G admit a k-meager 2-partition, $k \in \mathbb{N}$ provided that G is finitely generated? G is amenable? G is a free group of uncountable rank? G is the group of all permutations of ω ?

By [16, Theorem 3.9], an infinite group G can be partitioned in two large subsets $G=A_{1} \cup A_{2}$. Clearly, A_{1}, A_{2} are not thick, so $A_{1} \cup A_{2}$ is a a 1-meager 2-partition.

Question 2. Does an infinite group G admit a 2-meager 2-partition?
Let G be a finite group, A be a non-empty subset of $G,|G|=n$, $|A|=m$. By [18], there exists a subset B of G such that $G=B A$ and $|B|<\frac{n}{m}(\log m+2)$, so A is k-prethick for $k \geqslant \frac{n}{m}(\log m+2)$. Hence, any 2-partition of G is not k-meager for $k \geqslant 2(\log n+2)$.

For $k, m \in \mathbb{N}$, we say that a subset S of G is

- m-thick if, for every $F \in[G]^{m}$, there exists $g \in G$ such that $F g \subseteq S$;
- (k, m)-prethick if there exists $K \in[G]^{k}$ such that $K S$ is m-thick.

Question 3. Given a group G, does there exist $k=k(G, m)$ such that, for every 2-partition of G, at least one cell is (k, m)-prethick? For $m=2$, this is so: $k=2$.

In what follows all group topologies are supposed to be Hausdorff.
Recall that a topological group G is totally bounded if each neighbourhood of e is large (equivalently, G is a subgroup of some compact topological group). If A is a thick subset of G then $A \cap g U \neq \varnothing$ for every $g \in G$ and every neighbourhood U of e, so A is dense in G. The converse statement does not hold: every countable totally bounded group has a small dense subset [3].

Question 4. Let G be an infinite totally bounded group, $k \in \mathbb{N}$. Does there exist a partition $G=A_{1} \cup A_{2}$ such that $K A_{1}$ and $K A_{2}$ are not dense for each $K \in[G]^{k}$?

If G is countable, this is so. We take a sequence $\left(U_{n}\right)_{n \in \omega}$ of compact neighbourhoods of the identity in the completion H of G such that, for each $n \in \omega$,

$$
(2 k)^{2} \sum_{i=0}^{n} \mu\left(U_{i}\right)<1
$$

where μ is the Haar measure on H. Following the proof of Theorem 1 with U_{n} instead of N_{n}, we can choose two injective sequences $\left\langle a_{n}\right\rangle_{n \in \omega},\left(b_{n}\right)_{n \in \omega}$ and a sequence of compact neighbourhoods $\left(V_{n}\right)_{n \in \omega}$ of the identity in H such that $V_{i} \subset U_{i}$ and $K_{i} a_{i} V_{i} \cap K_{j} b_{j} V_{j}=\varnothing$ for all $i, j \in \omega$. We put

$$
A=\bigcup_{i \in \omega} K_{i} a_{i}\left(V_{i} \cap G\right), \quad B=G \backslash A
$$

and note that $K A, K B$ are not dense in G for each $K \in[G]^{k}$.
Thus, Theorem 1 remains true if a countable group G is a subgroup of a compact topological group. Since each Abelian group admits a totally bounded topology, we get a proof of Theorem 3 with usage of Lemmas 1 and 3 but no reference to Theorem 2.

If a countable topological group G is not totally bounded then G can be easily partitioned $G=A \cup B$ so that $K A, K B$ are not dense for each $K \in[G]^{<\omega}$. We choose a neighbourhood U of e such that $G \neq F U$ for each $F \in[G]^{<\omega}$, enumerate $\left\{K_{n}: n \in \omega\right\}$ the family $[G]^{<\omega}$ and choose inductively two injective sequences $\left\langle a_{n}\right\rangle_{n \in \omega},\left(b_{n}\right)_{n \in \omega}$ in G such that

$$
K_{i} a_{i} W \cap K_{j} b_{j} W=\varnothing
$$

for all $i, j \in \omega$. Put $A=\bigcup_{i \in \omega} K_{i} a_{i} W, B=G \backslash A$.
Given a countable non-discrete topological group with countable base of topology, it is easy to find a thin dense subset.

Question 5. Let G be a countable totally bounded group. Has G a thin dense subset? What about $G=\mathbb{Z}^{\#}$, the group \mathbb{Z} endowed with the maximal totally bounded topology?

Question 6. How can one detect whether a given subset A of \mathbb{Z} is dense in $\mathbb{Z}^{\#}$?

References

[1] T. Banakh, N. Lyaskovska, Weakly P-small not P-small subsets in groups, Intern. J. Algebra Computation, 18(2008), 1-6.
[2] T. Banakh, N. Lyaskovska, D. Repovš, Packing index of subsets in Polish groups, Notre Dame J. Formal Logic, 50(2009), 453-468.
[3] A. Bella, V. Malykhin, Certain subsets of a group, Questions Answers General Topology, 17 (1999), 183-187.
[4] T. Carlson, N. Hindman, J. Mcleod, D. Strauss, Almost disjoint large subsets of a semigroups, Topology Appl., 155(2008), 433-444.
[5] L. Fuchs, Infinite Abelian Groups, Vol. 1, Academic Press, New York and London, 1970.
[6] N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification: Theory and Applications, Walter de Grueter, Berlin, New York, 1998.
[7] The Kourovka Notebook, Novosibirsk, 1995.
[8] N. Lyaskovska, Constructing subsets of given packing index in Abelian groups, Acta Universitatis Carolinae, Mathematica et Phisica, 48 (2007), 69-80.
[9] V. Malykhin, I. Protasov, Maximal resolvability of bounded groups, Topology Appl., 20 (1996), 1-6.
[10] I. Prodanov, Some minimal topologies are precompact, Math. Ann., 227 (1977), 117-125.
[11] I. Protasov, Partition of groups into large subsets, Math. Notes, 73 (2003), 271-281.
[12] I. Protasov, Small systems of generators of groups, Math. Notes, 76 (2004), 420426.
[13] I. Protasov, Cellularity and density of balleans, Appl. General Topology, 8 (2007), 283-291.
[14] I. Protasov, Selective survey on Subset Combinatorics of Groups, Ukr. Math. Bull., 7(2010), 220-257.
[15] I. Protasov, Partition of groups into thin subsets, Algebra and Discrete Math, 11(2011), 88-92.
[16] I. Protasov, T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser., Vol. 11, VNTL Publishers, Lviv, 2003.
[17] I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL Publishers, Lviv, 2007
[18] G. Weinstein, Minimal complementary sets, Trans. AMS, 212(1975), 131-137.

Contact information

I. V. Protasov	Department of Cybernetics, Kyiv National Uni-
	versity, Volodymirska 64, 01033, Kyiv, Ukraine
	E-Mail: i.v.protasov@gmail.com

S. Slobodianiuk Department of Mathematics, Kyiv National University, Volodymirska 64, 01033, Kyiv, Ukraine E-Mail: slobodianiuk@gmail.com

Received by the editors: 11.09.2012
and in final form 11.09.2012.

[^0]: 2010 MSC: 05B40, 20A05.
 Key words and phrases: thick and k-prethick subsets of groups, k-meager partition of a group.

