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Abstract. Let Λ be a connected left artinian ring with

radical square zero and with n simple modules. If Λ is not self-

injective, then we show that any module M with Exti(M, Λ) = 0

for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of

the artin algebras with radical square zero and n simple modules

which have a non-projective module M such that Exti(M, Λ) = 0

for 1 ≤ i ≤ n.

Xiao-Wu Chen [C] has recently shown: given a connected artin algebra

Λ with radical square zero then either Λ is self-injective or else any CM

module is projective. Here we extend this result by showing: If Λ is a

connected artin algebra with radical square zero and n simple modules

then either Λ is self-injective or else any module M with Exti(M, Λ) = 0

for 1 ≤ i ≤ n + 1 is projective. Actually, we will not need the assumption

on Λ to be an artin algebra; it is sufficient to assume that Λ is a left

artinian ring. And we show that for artin algebras the bound n + 1 is

optimal by determining the structure of those artin algebras with radical

square zero and n simple modules which have a non-projective module

M such that Exti(M, Λ) = 0 for 1 ≤ i ≤ n.

From now on, let Λ be a left artinian ring with radical square zero,

this means that Λ has an ideal I with I2 = 0 (the radical) such that
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Λ/I is semisimple artinian. We also assume that Λ is connected (the

only central idempotents are 0 and 1). The modules to be considered

are usually finitely generated left Λ-modules. Let n be the number of

(isomorphism classes of) simple modules.

Given a module M , we denote by PM a projective cover, by QM an

injective envelope of M . Also, we denote by ΩM a syzygy module for M ,

this is the kernel of a projective cover PM → M. Since Λ is a ring with

radical square zero, all the syzygy modules are semisimple. Inductively,

we define Ω0M = M, and Ωi+1M = Ω(ΩiM) for i ≥ 0.

Lemma 1. If M is a non-projective module with Exti(M, Λ) = 0 for

1 ≤ i ≤ d + 1 (and d ≥ 1), then there exists a simple non-projective

module S with Exti(S, Λ) = 0 for 1 ≤ i ≤ d.

Proof. The proof is obvious: We have Exti(M, Λ) ≃ Exti−1(ΩM, Λ), for

all i ≥ 2. Since M is not projective, ΩM 6= 0. Now ΩM is semisimple. If all

simple direct summands of ΩM are projective, then also ΩM is projective,

but then the condition Ext1(M, Λ) = 0 implies that Ext1(M, ΩM) = 0 in

contrast to the existence of the exact sequence 0 → ΩM → PM → M →

0. Thus, let S be a non-projective simple direct summand of ΩM.

Lemma 2. If S is a non-projective simple module with Ext1(S, Λ) = 0,

then PS is injective and ΩS is simple and not projective.

Proof. First, we show that PS has length 2. Otherwise, ΩS is of length

at least 2, thus there is a proper decomposition ΩS = U ⊕ U ′ and then

there is a canonical exact sequence

0 → PS → PS/U ⊕ PS/U ′ → S → 0,

which of course does not split. But since Ext1(S, Λ) = 0, we have

Ext1(S, P ) = 0, for any projective module P . Thus, we obtain a con-

tradiction.

This shows also that ΩS is simple. Of course, ΩS cannot be projective,

again according to the assumption that Ext1(S, P ) = 0, for any projective

module P .

Now let us consider the injective envelope Q of ΩS. It contains PS as

a submodule (since PS has ΩS as socle). Assume that Q is of length at

least 3. Take a submodule I of Q of length 2 which is different from PS
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and let V = PS + I, this is a submodule of Q of length 3. Thus, there

are the following inclusion maps u1, u2, v1, v2:

ΩS
u1

−−−−→ PS

v1





y





y

u2

I
v2

−−−−→ V

The projective cover p : PI → I has as restriction a surjective map

p′ : rad PI → ΩS. But rad PI is semisimple, thus p′ is a split epimorphism,

thus we obtain a map w : ΩS → PI such that pw = v1. We consider the

exact sequence induced from the sequence 0 → ΩS → PS → S → 0 by

the map w:

0 −−−−→ ΩS
u1

−−−−→ PS
e1

−−−−→ S −−−−→ 0

w





y





yw′

∥

∥

∥

0 −−−−→ PI
u′

1

−−−−→ N
e′

1

−−−−→ S −−−−→ 0

Here, N is the pushout of the two maps u1 and w. Since we know that

u2u1 = v2v1 = v2pw, there is a map f : N → V such that fu′

1 = v2p and

fw′ = u2. Since the map
[

v2p u2

]

: PI ⊕ PS → V is surjective, also f

is surjective.

But recall that we assume that Ext1(S, Λ) = 0, thus Ext1(S, PI) = 0.

This means that the lower exact sequence splits and therefore the socle

of N = PI ⊕ S is a maximal submodule of N (since I is a local module,

also PI is a local module). Now f maps the socle of N into the socle of

V , thus it maps a maximal submodule of N into a simple submodule of

V . This implies that the image of f has length at most 2, thus f cannot

be surjective. This contradiction shows that Q has to be of length 2, thus

Q = PS and therefore PS is injective.

Lemma 3. If S is a non-projective simple module with Exti(S, Λ) = 0

for 1 ≤ i ≤ d, then the modules Si = ΩiS with 0 ≤ i ≤ d are simple and

not projective, and the modules P (Si) are injective for 0 ≤ i < d.

Proof. The proof is again is obvious, we use induction. If d ≥ 2, we know

by induction that the modules Si with 0 ≤ i ≤ d − 1 are simple and not

projective, and that the modules P (Si) are injective for 0 ≤ i < d − 1.
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But Ext1(Ωd−1S, Λ) ≃ Extd(S, Λ) = 0, thus Lemma 2 asserts that also

Sd is simple and not projective and that P (Sd−1) is injective.

Lemma 4. Let S0, S1, . . . , Sb be simple modules with Si = Ωi(S0) for

1 ≤ i ≤ b. Assume that there is an integer 0 ≤ a < b such that the

modules Si with a ≤ i < b are pairwise non-isomorphic, whereas Sb is

isomorphic to Sa. In addition, we asssume that the modules P (Si) for

a ≤ i < b are injective. Then Sa, . . . , Sb−1 is the list of all the simple

modules and Λ is self-injective.

Proof. Let S be the subcategory of all modules with composition factors

of the form Si, where a ≤ i < b. We claim that this subcategory is closed

under projective covers and injective envelopes. Indeed, the projective

cover of Si for a ≤ i < b has the composition factors Si and Si+1 (and

Sb = Sa), thus is in S. Similarly, the injective envelope for Si with

a < i < b is Q(Si) = P (Si−1), thus it has the composition factors Si−1

and Si, and Q(Sa) = Q(Sb) = P (Sb−1) has the composition factors Sb−1

and Sa. Since we assume that Λ is connected, we know that the only non-

trivial subcategory closed under composition factors, extensions, projective

covers and injective envelopes is the module category itself. This shows

that Sa, . . . , Sb−1 are all the simple modules. Since the projective cover

of any simple module is injective, Λ is self-injective.

Theorem 1. Let Λ be a connected left artinian ring with radical square

zero. Assume that Λ is not self-injective. If S is a non-projective simple

module such that Exti(S, Λ) = 0 for 1 ≤ i ≤ d, then the modules Si = ΩiS

with 0 ≤ i ≤ d are pairwise non-isomorphic simple and non-projective

modules and the modules P (Si) are injective for 0 ≤ i < d.

Proof. According to Lemma 3, the modules Si (with 0 ≤ i ≤ d) are simple

and non-projective, and the modules P (Si) are injective for 0 ≤ i < d.

If at least two of the modules S0, . . . , Sd are isomorphic, then Lemma 4

asserts that Λ is self-injective, but this we have excluded.

Theorem 2. Let Λ be a connected left artinian ring with radical square

zero and with n simple modules. The following conditions are equivalent:

(i) Λ is self-injective, but not a simple ring.
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(ii) There exists a non-projective module M with Exti(M, Λ) = 0 for

1 ≤ i ≤ n + 1.

(iii) There exists a non-projective simple module S with Exti(S, Λ) = 0

for 1 ≤ i ≤ n.

Proof. First, assume that Λ is self-injective, but not simple. Since Λ is not

semisimple, there is a non-projective module M . Since Λ is self-injective,

Exti(M, Λ) = 0 for all i ≥ 1. This shows the implication (i) =⇒ (ii).

The implication (ii) =⇒ (iii) follows from Lemma 1. Finally, for the

implication (iii) =⇒ (i) we use Theorem 1. Namely, if Λ is not self-

injective, then Theorem 1 asserts that the simple modules Si = ΩiS with

0 ≤ i ≤ n are pairwise non-isomorphic. However, these are n + 1 simple

modules, and we assume that the number of isomorphism classes of simple

modules is n. This completes the proof of Theorem 2.

Note that the implication (ii) =⇒ (i) in Theorem 2 asserts in

particular that either Λ is self-injective or else that any CM module is

projective, as shown by Chen [C]. Let us recall that a module M is said to

be a CM module provided Exti(M, Λ) = 0 and Exti(Tr M, Λ) = 0, for all

i ≥ 1 (here Tr denotes the transpose of the module); these modules are

also called Gorenstein-projective modules, or totally reflexive modules, or

modules of G-dimension equal to 0. Note that in general there do exist

modules M with Exti(M, Λ) = 0 for all i ≥ 1 which are not CM modules,

see [JS].

We also draw the attention to the generalized Nakayama conjecture

formulated by Auslander-Reiten [AR]. It asserts that for any artin algebra

Λ and any simple Λ-module S there should exist an integer i ≥ 0 such that

Exti(S, Λ) 6= 0. It is known that this conjecture holds true for algebras

with radical square zero. The implication (iii) =⇒ (i) of Theorem 2

provides an effective bound: If n is the number of simple Λ-modules, and

S is simple, then Exti(S, Λ) 6= 0 for some 0 ≤ i ≤ n. Namely, in case S

is projective or Λ is self-injective, then Ext0(S, Λ) 6= 0. Now assume that

S is simple and not projective and that Λ is not self-injective. Then there

must exist some integer 1 ≤ i ≤ n with Exti(S, Λ) 6= 0, since otherwise

the condition (iii) would be satisfied and therefore condition (i).

Theorem 1 may be interpreted as a statement concerning the Ext-

quiver of Λ. Recall that the Ext-quiver Γ(R) of a left artinian ring R has

as vertices the (isomorphism classes of the) simple R-modules, and if S, T
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are simple R-modules, there is an arrow T → S provided Ext1(T, S) 6= 0,

thus provided that there exists an indecomposable R-module M of length

2 with socle S and top T . We may add to the arrow α : T → S the

number l(α) = ab, where a is the length of soc PT and b is the length

of QS/ soc (note that b may be infinite). The properties of Γ(R) which

are relevant for this note are the following: the vertex S is a sink if and

only if S is projective; the vertex S is a source if and only if S is injective;

finally, if R is a radical square zero ring and S, T are simple R-modules

then PT = QS if and only if there is an arrow α : T → S with l(α) = 1

and this is the only arrow starting at T and the only arrow ending in S.

Theorem 1 assert the following: Let Λ be a connected left artinian

ring with radical square zero. Assume that Λ is not self-injective. Let S

be a non-projective simple module such that Exti(S, Λ) = 0 for 1 ≤ i ≤ d,

and let Si = ΩiS with 0 ≤ i ≤ d. Then the local structure of Γ(Λ) is as

follows:
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such that there is at least one arrow starting in Sd (but maybe no arrow

ending in S0). To be precise: the picture is supposed to show all the

arrows starting or ending in the vertices S0, . . . , Sd (and to assert that

the vertices S0, . . . , Sd are pairwise different).

Let us introduce the quivers ∆(n, t), where n, t are positive integers.

The quiver ∆(n, t) has n vertices and also n arrows, namely the vertices

labeled 0, 1, . . . , n − 1, and arrows i → i+1 for 0 ≤ i ≤ n − 1 (modulo n)

(thus, we deal with an oriented cycle); in addition, let l(α) = t for the

arrow α : n − 1 → 0 and let l(β) = 1 for the remaining arrows β:
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Note that the Ext-quiver of a connected self-injective left artinian ring

with radical square zero and n vertices is just ∆(n, 1). Our further interest

lies in the cases t > 1.

Theorem 3. Let Λ be a connected left artinian ring with radical square

zero and with n simple modules.

(a) If there exists a non-projective simple modules S with Exti(S, Λ) = 0

for 1 ≤ i ≤ n − 1, or if there exists a non-projective module M with

Exti(M, Λ) = 0 for 1 ≤ i ≤ n, then Γ(Λ) is of the form ∆(n, t) with

t > 1.

(b) Conversely, if Γ(Λ) = ∆(n, t) and t > 1, then there exists a unique

simple module S with Exti(S, Λ) = 0 for 1 ≤ i ≤ n − 1, namely the

module S = S(0) (and it satisfies Extn(S, Λ) 6= 0).

(c) If Γ(Λ) = ∆(n, t) and t > 1, and if we assume in addition that Λ is

an artin algebra, then there exists a unique indecomposable module

M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n, namely M = Tr D(S(0))

(and it satisfies Extn+1(M, Λ) 6= 0).

Here, for Λ an artin algebra, D denotes the k-duality, where k is the center

of Λ (thus D = Homk(−, E), where E is a minimal injective cogenerator in

the category of k-modules); thus D Tr is the Auslander-Reiten translation

and Tr D the reverse.

Proof of Theorem 3. Part (a) is a direct consequence of Theorem 1, using

the interpretation in terms of the Ext-quiver as outlined above. Note that

we must have t > 1, since otherwise Λ would be self-injective.

(b) We assume that Γ(Λ) = ∆(n, t) with t > 1. For 0 ≤ i < n, let

S(i) be the simple module corresponding to the vertex i, let P (i) be its

projective cover, I(i) its injective envelope. We see from the quiver that

all the projective modules P (i) with 0 ≤ i ≤ n − 2 are injective, thus

Extj(−, Λ) = Extj(−, P (n−1)) for all j ≥ 1. In addition, the quiver shows

that ΩS(i) = S(i+1) for 0 ≤ i ≤ n−2. Finally, we have ΩS(n−1) = S(0)a

for some positive integer a dividing t and the injective envelope of P (n−1)

yields an exact sequence

0 → P (n − 1) → I(P (n − 1)) → S(n − 1)t−1 → 0 (*)

(namely, I(P (n − 1)) = I(soc P (n − 1)) = I(S(0)a) = I(S(0))a and

I(S(0))/ soc is the direct sum of b copies of S(n − 1), where ab = t; thus
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the cokernel of the inclusion map P (n − 1) → I(P (n − 1)) consists of t − 1

copies of S(n − 1)).

Since t > 1, the exact sequence (∗) shows that Ext1(S(n − 1),

P (n − 1)) 6= 0. It also implies that Ext1(S(i), P (n − 1)) = 0

for 0 ≤ i ≤ n − 2, and therefore that

Exti(S(0), P (n − 1)) = Ext1(Ωi−1S(0), P (n − 1))

= Ext1(S(i − 1), P (n − 1))

= 0

for 1 ≤ i ≤ n − 1.

Since Ωn−i−1S(i) = S(n − 1) for 0 ≤ i ≤ n − 1, we see that

Extn−i(S(i), P (n − 1)) = Ext1(Ωn−i−1S(i), P (n − 1))

= Ext1(S(n − 1), P (n − 1))

6= 0

for 0 ≤ i ≤ n − 1. Thus, on the one hand, we have Extn(S(0), Λ) 6= 0,

this concludes the proof that S(0) has the required properties. On the

other hand, we also see that S = S(0) is the only simple module with

Exti(S, Λ) = 0 for 1 ≤ i ≤ n − 1. This completes the proof of (b).

(c) Assume now in addition that Λ is an artin algebra. As usual, we

denote the Auslander-Reiten translation D Tr by τ. Let M be a non-

projective indecomposable module with Exti(M, Λ) = 0 for 1 ≤ i ≤ n.

The shape of Γ(Λ) shows that ΩM = Sc for some simple module S (and

we have c ≥ 1), also it shows that no simple module is projective. Now

Exti(S, Λ) = 0 for 1 ≤ i < n, thus according to (b) we must have S = S(0).

It follows that PM has to be a direct sum of copies of P (n − 1), say of d

copies. Thus a minimal projective presentation of M is of the form

P (0)c → P (n − 1)d → M → 0,

and therefore a minimal injective copresentation of τM is of the form

0 → τM → I(0)c → I(n − 1)d.

In particular, soc τM = S(0)c and (τM)/ soc is a direct sum of copies of

S(n − 1).
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Assume that τM 6= S(0), thus it has at least one composition factor of

the form S(n−1) and therefore there exists a non-zero map f : P (n−1) →

τM. Since τM is indecomposable and not injective, any map from an

injective module to τM maps into the socle of τM . But the image of f is

not contained in the socle of τM , therefore f cannot be factored through

an injective module. It follows that

Ext1(M, P (n − 1)) ≃ DHom(P (n − 1), τM) 6= 0,

which contradicts the assumption that Ext1(M, Λ) = 0. This shows that

τM = S(0) and therefore M = Tr DS(0).

Of course, conversely we see that M = Tr DS(0) satisfies

Exti(M, P (n − 1)) = 0 for 1 ≤ i ≤ n, and Extn+1(M, P (n − 1)) 6= 0.

Remarks.

(1) The module M = Tr DS(0) considered in (c) has length t2 + t − 1,

thus the number t (and therefore ∆(n, t)) is determined by M .

(2) If Λ is an artin algebra with Ext-quiver ∆(n, t), the number t has

to be the square of an integer, say t = m2. A typical example of

such an artin algebra is the path algebra of the following quiver

◦

◦

◦

◦

◦

◦

.....................................................................
.
..
.
..
..
.
.

..
..
...
.....

.....................................................................
...
....
...

..

..

.

..

..

.

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.............

.....
..
..
.
..

................................................................

.....
...
..
..

..
..
..
...
...
....
......
................................

....................................
.....
...
...
..
...
..

....

..
..
..
.
..
.

.....
.......

..............

..........
..

.

.

.

.

.

.

.

.

.

.

.

.

with altogether n + m − 1 arrows, modulo the ideal generated by all

paths of length 2. Of course, if Λ is a finite-dimensional k-algebra

with radical square zero and Ext-quiver ∆(n, m2), and k is an

algebraically closed field, then Λ is Morita-equivalent to such an

algebra.

Also the following artin algebras with radical square zero and Ext-

quiver ∆(1, m2) may be of interest: the factor rings of the polynomial

ring Z[T1, . . . , Tm−1] modulo the square of the ideal generated by

some prime number p and the variables T1, . . . , Tm−1.
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