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Regular pairings of functors
and weak (co)monads

Robert Wisbauer

Abstract. For functors L : A → B and R : B → A between
any categories A and B, a pairing is defined by maps, natural in
A ∈ A and B ∈ B,

MorB(L(A), B)
α // MorA(A,R(B))
β

oo .

(L,R) is an adjoint pair provided α (or β) is a bijection. In this
case the composition RL defines a monad on the category A, LR
defines a comonad on the category B, and there is a well-known
correspondence between monads (or comonads) and adjoint pairs
of functors.

For various applications it was observed that the conditions for a
unit of a monad was too restrictive and weakening it still allowed for
a useful generalised notion of a monad. This led to the introduction
of weak monads and weak comonads and the definitions needed were
made without referring to this kind of adjunction. The motivation
for the present paper is to show that these notions can be naturally
derived from pairings of functors (L,R, α, β) with α = α · β · α and
β = β · α · β. Following closely the constructions known for monads
(and unital modules) and comonads (and counital comodules), we
show that any weak (co)monad on A gives rise to a regular pairing
between A and the category of compatible (co)modules.

Contents. 1. Introduction; 2. Pairings of functors; 3. Monads
and modules; 4. Comonads and comodules; 5. Entwining monads and
comonads; 6. Lifting of endofunctors to modules and comodules; 7. Mixed
entwinings and liftings.
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1. Introduction

Similar to the unit of an algebra, the existence of a unit of a monad is
essential for (most of) the interesting properties of the related structures.
Yet, there are numerous applications for which the request for a unit of a
monad is too restrictive. Dropping the unit completely makes the theory
fairly poor and the question was how to weaken the conditions on a unit
such that still an effective theory can be developed. The interest in these
questions was revived, for example, by the study of weak Hopf algebras
by G. Böhm et al. in [6] and weak entwining structures by S. Caenepeel
et al. in [9] (see also [1], [8]). To handle this situation the theory of weak
monads (and comonads) was developed and we refer to [5] for a recent
account on this.

On any category, monads are induced by a pair of adjoint functors and,
on the other hand, any monad (F, µ, η) induces an adjoint pair of functors,
the free functor φF : A → AF and the forgetful functor UF : AF → A,
where AF denotes the category of unital F -modules. This is all shown in
Eilenberg-Moore [10].

In this correspondence the unitality of the monad is substantial and the
purpose of the present paper is to exhibit a similar relationship between
weak (co)monads and generalised forms of adjunctions. To this end, for
functors L : A → B and R : B → A between categories A and B, we
consider maps

MorB(L(A), B)
α // MorA(A,R(B))
β

oo ,

required to be natural in A ∈ A and B ∈ B. We call this a pairing of
functors, or a full pairing if we want to stress that we have maps in both
directions. Such a pairing is said to be regular provided α and β are
regular maps, more precisely,

α = α · β · α and β = β · α · β.

In Section 2, regular pairings of functors are defined and some of their
general properties are described.

Motivated by substructures showing up in pairings of functor, in
Section 3.1, q-unital monads (F, µ, η) on A are defined as endofunc-
tors F : A → A with natural transformations µ : FF → F and
η : IA → F (quasi-unit) and the sole condition that µ is associative. (Non-
unital) F -modules are defined by morphisms ̺ : F (A) → A satisfying
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̺ ◦ µA = ̺ ◦ F (̺), and the category of all F -modules is denoted by A−→F .
For these data the free and forgetful functors,

φF : A → A−→F and UF : A−→F → A.

give rise to a full pairing. From this we define regularity of η and compati-
bility for the F -modules. The q-unital monad (F, µ, η) is said to be r-unital
(short for regular-unital) provided η is regular and µ is compatible as an
F -module. Now the free functor φF : A → AF with the forgetful functor
UF : AF → A form a regular pairing, where AF denotes the (sub)category
of compatible F -modules.

The dual notions for (non-counital) comonads are outlined in Section
4 and at the end of the section the comparison functors for a regular
pairing (L,R, α, β) are considered (see 4.10).

In Section 5 we study the lifting of functors between categories to the
corresponding categories of compatible modules or compatible comodules,
respectively. This is described by generalising Beck’s distributive laws (see
[2]), also called entwinings, and it turns out that most of the diagrams are
the same as for the lifting to unital modules (e.g. [22]) but to compensate
the missing unitality extra conditions are imposed on the entwining
natural transformation (e.g. Proposition 5.2). In this context we obtain
a generalisation of Applegate’s lifting theorem for (co)monads to weak
(co)monads (Theorem 5.4, 5.8).

Lifting an endofunctor T of A to an endofunctor T of AF leads to the
question when T is a weak monad (TF allows for the structure of a weak
monad) and in Section 6 we provide conditions to make this happen.

The final Section 7 is concerned with weak monads (F, µ, η) and weak
comonads (G, δ, ε) on any category A and the interplay between the
respective lifting properties. Hereby properties of the lifting G to AF
and the lifting F̂ to AG are investigated (see Theorems 7.9 and 7.10)
which generalise observations known for weak bi-algebras (and weak Hopf
algebras).

In our setting, notions like pre-units, pre-monads, weak monads, demi-
monads, pre-A-corings, weak corings, weak Hopf algebras from the litera-
ture (e.g. [1], [3], [7], [4], [21]) find their natural environment.

In the framework of 2-categories weak structures are investigated
by Böhm et al. in [3], [4], [5] and an extensive list of examples of weak
structures is given there.
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2. Pairings of functors

Throughout A and B will denote arbitrary categories. By IA, A or
just by I, we denote the identity morphism of an object A ∈ A, IF or
F stands for the identity natural transformation on the functor F , and
IA means the identity functor of a category A. We write F−,− for the
natural transformation of bifunctors determined by the maps FA,A′ :
MorA(A,A′) → MorB(F (A), F (A′)) for A,A′ ∈ A.

Before considering regularity for natural transformations we recall
basic properties of

2.1. Regular morphisms. Let A,A′ be any objects in a category A.
Then a morphism f : A → A′ is called regular provided there is a
morphism g : A′ → A with fgf = f . Clearly, in this case gf : A → A and
fg : A′ → A′ are idempotent endomorphisms.

Such a morphism g is not necessarily unique. In particular, for gfg
we also have f(gfg)f = fgf = f , and the identity (gfg)f(gfg) = gfg
shows that gfg is again a regular morphism.

If idempotents split in A, then every idempotent morphism e : A → A
determines a subobject of A, we denote it by eA.

If f is regular with fgf = f , then the restriction of fg is the identity
morphism on fgA′ and gf is the identity on gfA.

Examples for regular morphisms are retractions, coretractions, and
isomorphisms. For modules M,N over any ring, a morphism f : M → N
is regular if and only if the image and the kernel of f are direct summands
in N and M , respectively.

This notion of regularity is derived from von Neumann regularity of
rings. For modules (and in preadditive categories) it was considered by
Nicholson, Kasch, Mader and others (see [14]). We use the terminology
also for natural transformations and functors with obvious interpretations.

2.2. Pairing of functors. (e.g. [19, 2.1]) Let L : A → B and R : B → A
be covariant functors. Assume there are morphisms, natural in A ∈ A
and B ∈ B,

α : MorB(L(A), B) → MorA(A,R(B)),

β : MorA(A,R(B)) → MorB(L(A), B).

These maps correspond to two natural transformations between functors
Aop × B → Set. The quadruple (L,R, α, β) is called a (full) pairing (of
functors).

Given such a pairing, the morphisms, for A ∈ A, B ∈ B,
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ηA := αA,L(A)(I) : A → RL(A) and εB := βR(B),B(I) : LR(B) → B

correspond to natural transformations

η : IA → RL, ε : LR → IB,

which we call quasi-unit and quasi-counit of (L,R, α, β), respectively.

From these the transformations α and β are obtained by

αA,B : L(A)
f−→ B 7−→ A

ηA−→ RL(A)
R(f)−→ R(B),

βA,B : A
g−→ R(B) 7−→ L(A)

L(g)−→ LR(B)
εB−→ B.

Thus a pairing (L,R, α, β) is also described by a quadruple (L,R, η, ε).

Naturality of ε and η induces an associative product and a quasi-unit
for the endofunctor RL : A → A,

RεL : RLRL → RL, η : IA → RL,

and a coassociative coproduct and a quasi-counit for the endofunctor
LR : B → B,

LηR : LR → LRLR, ε : LR → IB.

By the Yoneda Lemma we can describe compositions of α and β by
the images of the identity transformations of the respective functors.

2.3. Composing α and β. Let (L,R, α, β) be a pairing with quasi-unit
η and quasi-counit ε. The descriptions of α and β in 2.2 yield, for the
identity transformations IL : L → L, IR : R → R,

α(IL) = IA
η−→ RL,

β · α(IL) = L
Lη−→ LRL

εL−→ L,

α · β · α(IL) = IA
η−→ RL

RLη−→ RLRL
RεL−→ RL,

β(IR) = LR
ε−→ IB,

α · β(IR) = R
ηR−→ RLR

Rε−→ R,

β · α · β(IR) = LR
LηR−→ LRLR

LRε−→ LR
ε−→ IB.

The following morphisms will play a special role in what follows.
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2.4. Natural endomorphisms. With the notions from 2.2, we define
the natural transformations

ϑ := R(βα(IL)) : RL
RLη // RLRL

RεL // RL,

ϑ := αβ(R(IL)) : RL
ηRL // RLRL

RεL // RL,

γ := L(αβ(IR)) : LR
LηR // LRLR

LRε // LR,

γ := βα(L(IR)) : LR
LηR // LRLR

εLR // LR,

which have the properties

RεL ·RLϑ = ϑ ·RεL, RεL · ϑRL = ϑ ·RεL, ϑ · ϑ = ϑ · ϑ;

LRγ · LηR = LηR · γ, γLR · LηR = LηR · γ, γ · γ = γ · γ.

2.5. Definitions. Let (L,R, α, β) be a pairing (see 2.2). We call

α regular if α · β · α = α;
α symmetric if ϑ = ϑ.

β regular if β · α · β = β;

β symmetric if γ = γ;
(L,R, α, β) regular if α = α · β · α and β = β · α · β.

The following properties are easy to verify:

(i) If α is regular, then β · α(IL), ϑ, and ϑ are idempotent and
ϑ · η = η = ϑ · η;
furthermore, for β′ := β · α · β, (L,R, α, β′) is a regular pairing.

(ii) If β is regular, then α · β(IR), γ, and γ are idempotent and
ε · γ = ε = ε · γ;
furthermore, for α′ := α · β · α, (L,R, α′, β) is a regular pairing.

Any pairing (L,R, α, β) with β · α = I or α · β = I is regular. The
second condition defines the semiadjoint functors in Medvedev [16].

With manipulations known from ring theory one can show how pair-
ings with regular components can be related with adjunctions provided
idempotents split.

2.6. Related adjunctions. Let (L,R, α, β) be a pairing (with quasi-unit
η, quasi-counit ε) and assume α to be regular.

If the idempotent h := β · α(IL) : L
Lη−→ LRL

εL−→ L splits, that is,
there are a functor L : A → B and natural transformations
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p : L → L, i : L → L with i · p = h and p · i = IL,

then the natural transformations

η : IA
η // RL

Rp // RL , ε : LR
iR // LR

ε // IB ,

as quasi-unit and quasi-counit, define a pairing (L,R, α, β) with β ·α = I.

If α · β = I, then (L̂, R, α, β) is an adjunction.

In case the natural transformation β is regular, similar constructions

apply if we assume that the idempotent α · β(IR) : R
ηR−→ RLR

Rε−→ R
splits.

The properties of the (RL,RεR, η) and (LR,LηR, ε) mentioned in
2.2 motivate the definitions in the next section.

3. Monads and modules

3.1. q-unital monads and their modules. We call (F, µ) a functor
with product (or non-unital monad) provided F : A → A is an endofunctor
on a category A and µ : FF → F is a natural transformation satisfying
the associativity condition µ · Fµ = µ · µF .

For (F, µ), a (non-unital) F -module is defined as an object A ∈ A
with a morphism ̺ : F (A) → A in A satisfying ̺ · F̺ = ̺ · µA.

Morphisms between F -modules (A, ̺), (A′, ̺′) are morphisms f : A →
A′ in A with ̺′ ·F (f) = f ·̺. The set of all these is denoted by MorF (A,A′).
With these morphisms, (non-unital) F -modules form a category which
we denote by A−→F .

By the associativity condition on µ, for every A ∈ A, (F (A), µA) is
an F -module and this leads to the free functor and the forgetful functor,

φF : A → A−→F , A 7→ (F (A), µA), UF : A−→F → A, (A, ̺) 7→ A.

A triple (F, µ, η) is said to be a q-unital monad on A provided (F, µ)
is a functor with product and η : IA → F is any natural transformation,
called a quasi-unit (no additional properties are required). One always
can define natural transformations

ϑ : F
Fη−→ FF

µ−→ F, ϑ : F
ηF−→ FF

µ−→ F.

Note that for any A ∈ A, ϑA is an F -module morphism whereas ϑA is
not necessarily so.
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Given q-unital monads (F, µ, η), (F ′, µ′, η′) on A, a natural transfor-
mation h : F → F ′ is called a morphism of q-unital monads if

µ′ · hh = h · µ and η′ = h · η.

The existence of a quasi-unit allows the following generalisation of
the Eilenberg-Moore construction for (unital) monads.

3.2. q-unital monads and pairings. For a q-unital monad (F, µ, η) we
obtain a pairing (φF , UF , αF , βF ) with the maps, for A ∈ A, (B, ̺) ∈ A−→F ,

αF : MorF (φF (A), B) → MorA(A,UF (B)), f 7→ f · ηA,
βF : MorA(A,UF (B)) → MorF (φF (A), B), g 7→ ̺ · F (g).

The quasi-unit η is called regular if αF is regular, that is,

IA
η−→ F = IA

η−→ F
Fη−→ FF

µ−→ F,

and we say η is symmetric if αF is so, that is, ϑ = ϑ.

An F -module ̺ : F (A) → A in A−→F is said to be compatible (with η)

if βFαF (̺) = ̺, that is

F (A)
̺−→ A = F (A)

FηA−→ FF (A)
µA−→ F (A)

̺−→ A.

In particular, the natural transformation µ : FF → F is compatible if

FF
µ−→ F = FF

FηF−→ FFF
µF−→ FF

µ−→ F.

It is easy to see that this implies

FF
ϑϑ−→ FF

µ−→ F = FF
µ−→ F.

Let AF denote the full subcategory of A−→F made up by the compatible
F -modules. If µ is compatible, the image of the free functor φF lies in
AF and (by restriction or corestriction) we get the functor pair (keeping
the notation for the functors)

φF : A → AF , UF : AF → A,

and a pairing (φF , UF , αF , βF ) between A and AF .
Since for (A, ̺) in A−→F , βF (IUF (A)) = ̺, the compatibility condition

on ̺ implies that β · α · β(̺) = β(̺), i.e., β is regular in (φF , UF , αF , βF )
when restricted to AF .
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3.3. Definition. A q-unital monad (F, η, µ) is called

r-unital if η is regular and µ is compatible;
weak monad if (F, η, µ) is r-unital and η is symmetric.

Summarising the observations from 3.2 we have:

3.4. Proposition. Let (F, µ, η) be a q-unital monad.

(1) The following are equivalent:

(a) (F, µ, η) is an r-unital monad;

(b) (φF , UF , αF , βF ) is a regular pairing of functors between A
and AF .

(2) The following are equivalent:

(a) (F, µ, η) is a weak monad;

(b) (φF , UF , αF , βF ) is a regular pairing between A and AF with
αF symmetric.

A quasi-unit η that is regular and symmetric is named pre-unit in the
literature (e.g. [11, Definition 2.3]); for the notion of a weak monad (also
called demimonad) see e.g. [5]. In case η is a unit, q-unital monads, r-unital
monads and weak monads all are (unital) monads. In (non-unital) algebras
over commutative rings, r-unital monads are obtained from idempotents
while weak monads correspond to central idempotents (see 3.7).

3.5. Properties of weak monads. Let (F, µ, η) be a weak monad.

(i) ϑ : F → F is a morphism of q-unital monads;

(ii) for any (A,ϕ) ∈ AF ,

F (A)
ϕ−→ A = F (A)

ϕ−→ A
ηA−→ F (A)

ϕ−→ A

and A
ηA−→ F (A)

ϕ−→ A is an idempotent F -morphism.

In a q-unital monad (F, µ, η), if η is regular, a compatible multiplication
for F can be found. More precisely one can easily show:

3.6. Proposition. Let (F, µ, η) be a q-unital monad.

(1) If η is regular, then, for µ̃ := µ · Fµ · µFηF : FF → F , (F, µ̃, η) is
an r-unital monad.

(2) If µ is compatible, then, for η̃ := µ · Fη · η : IA → F , (F, µ, η̃) is an
r-unital monad.
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(3) If (F, µ, η) is an r-unital monad, then for

µ̂ : FF
ηFFη−→ FFFF

µFF−→ FFF
µF−→ FF

µ−→ F,

(F, µ̂, η) is a weak monad.

As a special case, we consider q-unital monads on the category RM of
modules over a commutative ring R with unit. In the terminology used
here this comes out as follows.

3.7. Non-unital algebras. A q-unital R-algebra (A,m, u) is a non-unital
R-algebra (A,m) with some R-linear map u : R → A. Put e := u(1R) ∈ A.
Then:

(1) u is regular if and only if e is an idempotent in A.

(2) u is regular and symmetric if and only if e is a central idempotent
(then Ae is a unital R-subalgebra of A).

(3) µ is compatible if and only if ab = aeb for all a, b ∈ A.

(4) If u is regular, then m̃(a⊗ b) := aeb, for a, b ∈ A, defines an r-unital
algebra (A, m̃, u) (m̃ and u are regular).

(5) If u is regular, then m̂(a ⊗ b) := eaebe, for a, b ∈ A, defines an
r-unital algebra (A, m̂, u) with u symmetric.

Clearly, the q-unital algebras (A,m, u) over R correspond to the q-
unital monads given by (A⊗R −,m⊗ −, u⊗ −) on RM.

For an A-module ̺ : A⊗M → M , writing as usual ̺(a⊗m) = am, the
compatibility condition comes out as am = aem for all a ∈ A, m ∈ M .

3.8. Monads acting on functors. Let T : A → B be a functor and
(G,µ′, η′) a q-unital monad on B. We call T a left G-module if there exists
a natural transformation ̺ : GT → T such that

GGT
G̺−→ GT

̺−→ T = GGT
µ′T−→ GT

̺−→ T,

and we call it a compatible G-module if in addition

GT
̺−→ T = GT

Gη′

−→ GGT
µ′T−→ GT

̺−→ T.

3.9. Proposition. Let T : A → B be a functor and (G,µ′, η′) a weak
monad on B. Then the following are equivalent:

(a) there is a functor T : A → BG with T = UGT ;

(b) T is a compatible G-module.
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Proof. (b)⇒(a) Given T as a compatible G-module with ̺ : GT → T , a
functor with the required properties is

T : A → BG, A 7→ (T (A), ̺A : GT (A) → T (A)).

(a)⇒(b) For any A ∈ A, there are morphisms ρA : GT (A) → T (A)
and we claim that these define a natural transformation ρ : GT → T .
For this we have to show that, for any morphism f : A → Â, the middle
rectangle is commutative in the diagram

GGT (A)
µ′
T

(A)
// GT (A)

GT (f)

��

ρA

zz
GT (A)

Gη′TA

OO

GT (f)
��

ρA // T (A)

T (f)
��

GT (Â)

Gη′T
Â
��

ρ
Â // T (Â)

GGT (Â)
µ′

T (Â) // GT (Â).

ρ
Â

dd

The top and bottom diagrams are commutative by compatibility of the
G-modules, the right trapezium is commutative since T (f) is a G-mor-
phism, and the outer paths commute by symmetry of η′. Thus the inner
diagram is commutative showing naturality of ρ. ⊔⊓

4. Comonads and comodules

In this section we sketch the transfer of the constructions for monads
to comonads.

4.1. q-counital comonads and their comodules. A functor with
coproduct (or non-counital comonad) is a pair (G, δ) where G : A → A is
an endofunctor and δ : G → GG is a natural transformation subject to
the coassociativity condition Gδ · δ = δG · δ.

For (G, δ), a (non-counital) G-comodule is defined as an object A ∈ A
with a morphism υ : A → G(A) in A such that Gυ · υ = δA · υ.

Morphisms between G-comodules (A, υ), (A′, υ′) are morphisms g :
A → A′ in A satisfying υ′ · g = G(g) ·υ, and the set of all these is denoted
by MorG(A,A′). With these morphisms, (non-counital) G-comodules form
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a category which we denote by A−→
G. For this there are the obvious free

and forgetful functors

φG : A → A−→
G, UG : A−→

G → A.

A triple (G, δ, ε) is said to be a q-counital comonad provided (G, δ) is
a functor with coproduct and ε : G → IA is any natural transformation,
called a quasi-counit. One can always define natural transformations

γ : G
δ−→ GG

Gε−→ G, γ : G
δ−→ GG

εG−→ G.

Morphisms of q-counital comonads are defined in an obvious way (dual
to 3.1).

4.2. q-counital comonads and pairings. For (G, δ, ε) as above, the
functors φG and UG allow for a pairing (UG, φG, αG, βG) where, for A ∈ A
and (B, υ) ∈ A−→

G,

αG : MorA(UG(B), A) → MorG(B,φG(A)), f 7→ G(f) · υ,
βG : MorG(B,φG(A)) → MorA(UG(B), A), g 7→ εA · g.

The quasi-counit ε is called regular if βG is regular, that is,

G
ε−→ IA = G

δ−→ GG
Gε−→ G

ε−→ IA,

and we say η is symmetric provided φG is so, that is γ = γ.

A (non-counital) G-comodule (B, υ) is said to be compatible (with ε)
provided αGβG(υ) = υ, that is

B
υ−→ G(B) = B

υ−→ G(B)
δB−→ GG(B)

GεB−→ G(B).

In particular, δ is compatible if

G
δ−→ GG = G

δ−→ GG
δG−→ GGG

GεG−→ GG.

This obviously implies

G
δ−→ GG = G

δ−→ GG
γγ

−→ GG.

By AG we denote the full subcategory of A−→
G whose objects are compatible

G-comodules.
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If δ is compatible, the image of the free functor φG lies in AG and (by
restriction and corestriction) we obtain the functor pairing (keeping the
notation for the functors)

φG : A → AG, UG : AG → A,

leading to a pairing (UG, φG, αG, βG) between A and AG.

Since for (B, υ) in A−→
G,αG(IUG(B)) = υ, the compatibility condition on

υ implies that αG ·βG ·αG(υ) = αG(υ), i.e., α is regular in (UG, φG, αG, βG)
when restricted to AG.

4.3. Definition. A q-counital comonad (G, δ, ε) is called

r-counital if ε is regular and δ is compatible;
weak comonad if it is r-counital and ε is symmetric.

From the constructions above we obtain:

4.4. Proposition. Let (G, δ, ε) be a q-counital comonad.

(1) The following are equivalent:

(a) (G, δ, ε) is an r-counital comonad;

(b) (UG, φG, αG, βG) is a regular pairing of functors between A
and AG.

(2) The following are equivalent:

(a) (G, δ, ε) is a weak comonad;

(b) (UG, φG, αG, βG) is a regular pairing of functors between A
and AG with βG symmetric.

Similar to the situation for modules, for any (counital) comonad
(G, δ, ε), all non-counital G-comodules are compatible (i.e., A−→

G = AG).

4.5. Properties of weak comonads. Let (G, δ, ε) be a weak comonad.

(i) γ : G → G is an idempotent morphism of q-counital comonads;

(ii) for any (B, υ) ∈ AG,

B
υ−→ G(B) = B

υ−→ G(B)
εB−→ B

υ−→ G(B)

and B
υ−→ G(B)

εB−→ B is an idempotent G-morphism.

Properties of pairings can improved in the following sense.
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4.6. Proposition. Let (G, δ, ε) be a q-counital comonad.

(1) If ε is regular, then, for δ̃ : G
δ−→ GG

Gδ−→ GGG
GεG−→ GG, (G, δ̃, ε)

is an r-counital comonad.

(2) If δ is compatible, then, for ε̃ : G
δ−→ GG

Gε−→ G
ε−→ IA, (G, δ, ε̃) is

an r-counital comonad.

(3) If (G, δ, ε) is a regular quasi-comonad, then, for

δ̂ : G
δ−→ GG

Gδ−→ GGG
GGδ−→ GGGG

εGGε−→ GG,

(G, δ̂, ε) is a weak comonad.

As a special case, consider non-counital comonads on the category

RM of modules over a commutative ring R with unit. In our terminology
this comes out as follows.

4.7. Non-counital coalgebras. A q-counital coalgebra (C,∆, ε) is a
non-counital R-coalgebra (C,∆) with some R-linear map ε : C → R.
Writing ∆(c) =

∑
c1 ⊗ c2 for c ∈ C, we have:

(1) ε is regular if and only if for any c ∈ C, ε(c) =
∑
ε(c1)ε(c2).

(2) ε is symmetric if and only if
∑
c1ε(c2) =

∑
ε(c1)c2.

(3) ∆ is compatible if and only if ∆(c) =
∑
c1 ⊗ c2ε(c3).

(4) If ε is regular, then ∆̃(c) :=
∑
c1 ⊗ ε(c2)c3 defines an r-counital

coalgebra (C, ∆̃, ε).

(5) If (C,∆, ε) is an r-counital comonad, then ∆̂(c) :=
∑
ε(c1)c2 ⊗

c3ε(c4) defines an r-counital coalgebra (C, ∆̂, ε) with ε symmetric.

Clearly, the q-counital coalgebras (C,∆, ε) over R correspond to the
q-counital comonads given by (C ⊗R −,∆ ⊗ −, ε⊗ −) on RM. From this
the compatibility conditions for C-comodules are derived (see 4.2).

4.8. Weak corings and pre-A-corings. Let A be a ring with unit 1A
and C a non-unital (A,A)-bimodule which is unital as right A-module.
Assume there are (A,A)-bilinear maps

∆ : C → C ⊗A C, ε : C → A,

where ∆ is coassociative. (C,∆, ε) is called a right unital weak A-coring
in [21], provided for all c ∈ C,

(ε⊗ IC) · ∆(c) = 1A · c = (IC ⊗ ε) · ∆(c),
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which reads in (obvious) Sweedler notation as
∑
ε(c1)c2 = 1A · c =∑

c1ε(c2). From the equations

(IC ⊗ ε⊗ IC) · (IC ⊗ ∆) · ∆(c) =
∑
c1 ⊗ 1A · c2 =

∑
c1 ⊗ c2 = ∆(c),

(IC ⊗ ε⊗ IC) · (∆ ⊗ IC) · ∆(c) =
∑

1A · c1 ⊗ c2 = 1A · ∆(c),

it follows by coassociativity that 1A · ∆(c) = ∆(c). Summarising we see
that, in this case, (C,∆, ε) induces a weak comonad on the category AM−→
of left non-unital A-modules (=AM since A has a unit).

(C,∆, ε) is called an A-pre-coring in [7, Section 6], if

(ε⊗ IC) · ∆(c) = c, (IC ⊗ ε) · ∆(c) = 1A · c,

which reads (in Sweedler notation) as c =
∑
ε(c1)c2, 1A ·c =

∑
c1ε(c2).

Similar to the computation above we obtain that 1A·∆(c) = ∆(c). Now
(C,∆, ε) induces an r-counital comonad on AM−→ but ε is not symmetric.

Notice that in both cases considered above, restriction and corestriction
of ∆ and ε yield an A-coring (AC,∆, ε) (e.g. [21, Proposition 1.3]).

4.9. Comonads acting on functors. Let T : A → B be a functor and
(G, δ, ε) a weak comonad on B. We call T a left (non-counital) G-comodule
if there exists a natural transformation υ : T → GT such that

T
υ−→ GT

υG−→ GGT = T
υT−→ GT

δ−→ GGT,

and we call it a compatible G-comodule if, in addition,

T
υ−→ GT = T

υ−→ GT
δ−→ GGT

Gε−→ GT.

Dual to Proposition 3.9, given a weak comonad (G, δ, ε) on B, a functor
T : A → B is a compatible G-comodule if and only if there is a functor
T : A → BG with T = UGT .

The motivation for considering generalised monads and comonads
came from structures observed while handling full pairings of functors
(see end of Section 2). Now we want to reconsider the pairings in view of
these constructions.

For any pairing (L,R, α, β) between categories A and B, (RL,RεL, η)
is a q-unital monad and (LR,LηR, ε) is a q-counital comonad. It is easy
to see that

(i) if β is regular, then for any B ∈ B, Rε : RLR(B) → R(B) is a
compatible RL-module.
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(ii) if α is regular, then for any A ∈ A, L(A), Lη : L(A) → LRL(A) is
a compatible LR-comodules.

4.10. Comparison functors. For a regular pairing (L,R, α, β) between
A and B,

(RL,RεL, η) is an r-unital monad on A with a (comparison) functor

R̂ : B → ARL, B 7→ (R(B), Rε : RLR(B) → R(B)),

(LR,LηR, ε) is an r-counital comonad on B with a (comparison)
functor

L̃ : A → B−→
LR, A 7→ (L(A), Lη : L(A) → LRL(A)),

inducing commutativity of the diagrams

A L //

φRL !!

B

R̂
��

R // A

ARL
URL

==

,

B R //

φLR   

A

L̃
��

L // B

BLR
ULR

>>

.

It follows from 3.2 that for the r-unital monad (RL,RεL, η), we have
a regular pairing (φRL, URL, αRL, βRL) between A and ARL. Similarly, by
4.2, for the R-counital comonad (LR,LηR, ε), (ULR, φLR, αLR, βLR) is a
regular pairing between B and BLR.

4.11. Relating (L,R) with (φRL, URL) and (ULR, φLR). With the
above notions we form the diagram

MorB(L(A), B)

R̂
−,−

��

α // MorA(A,R(B))
β // MorB(L(A), B)

R̂
−,−

��
MorRL(φRL(A), R(B))

αRL // MorA(A,URLR(B))
βRL // MorRL(φRL(A), R(B)).

This diagram is commutative if and only if α is symmetric (see Defi-
nitions 2.5).

Similar constructions apply for (L,R), (ULR, φLR) and L̃−,−, and β

is symmetric if and only if K̃−,− · α · β = αLR · βLR · L̃−,−.
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4.12. Corollary. Consider a pairing (L,R, α, β) (see 2.2).

(1) The following are equivalent:

(a) (L,R, α, β) is a regular pairing;

(b) (RL,RεL, η) is an r-unital monad on A and
(LR,LηR, ε) is an r-counital comonad on B.

(2) The following are equivalent:

(a) (L,R, α, β) is a regular pairing with α and β symmetric;

(b) (RL,RεL, η) is a weak monad on A and
(LR,LηR, ε) is a weak comonad on B.

5. Entwining monads and comonads

5.1. Lifting of functors to module categories. Let (F, µ, η) and
(L, µ′, η′) be r-unital monads on the categories A and B, respectively, and
AF , BL the categories of the corresponding compatible modules (see 3.2).
Given functors T : A → B and T : AF → BL, we say that T is a lifting
of T provided the diagram

AF
T //

UF
��

BL
UL
��

A T // B

(5.1)

is commutative, where the U ’s denote the forgetful functors.

5.2. Proposition. With the data given in 5.1, consider the functors
TF, LT : A → B and a natural transformation λ : LT → TF . The
non-unital F -module (F, µ) induces an L-action on TF ,

χ : LTF
λF−→ TFF

Tµ−→ TF.

(1) If (TF, χ) is a (non-unital) L-module, then we get the commutative
diagram

LLT
Lλ //

µ′T
��

LTF
LTϑ // LTF

λF // TFF

Tµ
��

LT
λ // TF

Tϑ // TF.

(5.2)
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(2) If (TF, χ) is a compatible L-module, then (with ϑ′ = µ′ · Fη′)

LT
ϑ′T // LT

λ // TF
Tϑ // TF = LT

λ // TF
Tϑ // TF.

(5.3)

(3) If η is symmetric in (F, µ, η) and (A,ϕ) is a compatible F -module,
then

Tϕ · λA = Tϕ · λA · LTϕ · LTηA. (5.4)

Proof. The proof follows essentially as in the monad case replacing the
identity on F at some places by ϑ = µ · Fη (see 3.1).

To show (3), Proposition 3.5 is needed. ⊔⊓

5.3. Proposition. Let (F, µ, η) and (L, µ′, η′) be r-unital monads on
A and B, respectively, and T : A → B any functor. Then a natural
transformation λ : LT → TF induces a lifting to the compatible modules,

T : AF → BL, (A,ϕ) 7→ (T (A), Tϕ · λA : LT (A) → T (A)),

if and only if the diagram (5.2) is commutative and equation (5.3) holds.

Proof. One direction follows from Proposition 5.2, the other one by a
slight modification of the proof in the monad case. ⊔⊓

To show that the lifting property implies the existence of a natural
transformation λ : LT → TF we need the symmetry of the units, that is,
we require the r-unital monads to be weak monads. Then we can extend
Applegate’s lifting theorem for monads (and unital modules) (e.g. [13,
Lemma 1], [22, 3.3]) to weak monads (and compatible modules).

5.4. Theorem. Let (F, µ, η) and (L, µ′, η′) be weak monads on A and B,
respectively. For any functor T : A → B, there are bijective correspon-
dences between

(i) liftings of T to T : AF → BL;

(ii) compatible L-module structures ̺ on TUF : AF → B;

(iii) natural transformations λ : LT → TF with commuting diagrams

LLT
Lλ //

µ′T
��

LTF
λF // TFF

Tµ
��

LT
λ // TF,

LT
ϑ′T //

λ
��

λ

""

LT

λ
��

TF
Tϑ

// TF.

(5.5)
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Proof. (i)⇔(ii) follows by Proposition 3.9.

(ii)⇒(iii) Given the compatible L-module structure map ̺, put

λ := ̺F · LTη : LT
LTη−→ LTF

̺F−→ TF.

Notice that for λ we can take Tϑ · λ from Proposition 5.2.
(iii)⇒(i) Given λ with the commutative diagram in (iii), it follows by

Propositions 5.3 that ̺A := Tϕ · λA induces a lifting. ⊔⊓

5.5. Lifting of functors to comodules. Let (G, δ, ε) and (H, δ′, ε′) be
r-unital comonads on the categories A and B, respectively, and AG, BH

the corresponding categories of the compatible comodules (see 4.2). Given
a functor T : A → B, a functor T̂ : AG → BH , is said to be a lifting of T
if the diagram

AG T̂ //

UG

��

BH

UH

��
A T // B

(5.6)

is commutative where the U ’s denote the forgetful functors.

5.6. Proposition. With the data given in 5.5, consider the functors
TG, HT : A → B and a natural transformation ψ : TG → HT . The
(non-counital) G-comodule (G, δ) induces an H-coaction on TG,

ζ : TG
Tδ−→ TGG

ψG−→ HTG.

(1) If (TG, ζ) is a (non-counital) H-comodule, we get the commutative
diagram

TG
Tγ //

Tδ
��

TG
ψ // HT

δ′T
��

TGG
ψG // HTG

HTγ // HTG
Hψ // HHT.

(5.7)

(2) If H (TG, ζ) is a compatible H-module, then

TG
Tγ // TG

ψ // HT
γ′T // HT = TG

Tγ // TG
ψ // HT.

(5.8)

(3) If ε is symmetric and (A, υ) is a compatible G-comodule, then

ψ · Tυ = HTε ·HTυ · ψ · Tυ.
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Proof. The situation is dual to that of Proposition 5.2. ⊔⊓

5.7. Proposition. Let (G, δ, ε) and (H, δ′, ε′) be r-counital comonads
on the categories A and B, respectively, and T : A → B any functor. A
natural transformation ψ : TG → HT induces a lifting

T̂ : AG → BH , (A, υ) 7→ (T (A), ψ · Tυ : T (A) → HT (A)),

if and only if the diagram (5.7) is commutative and equation (5.8) holds.

Proof. The proof is dual to that of Proposition 5.3. ⊔⊓
Dualising Theorem 5.4, we obtain an extension of Applegate’s lifting

theorem for comonads (and comodules) (e.g. [22, 3.5]) to weak comonads
(and compatible comodules).

5.8. Theorem. Let (G, δ, ε) and (H, δ′, ε′) be weak comonads on A and
B, respectively. For any functor T : A → B, there are bijective correspon-
dences between

(i) liftings of T to T̂ : AG → BH ;

(ii) compatible H-comodule structures υ : TUG → HTUG;

(iii) natural transformations ψ : TG → HT with commutative diagrams

TG

Tδ
��

ψ // HT

δ′T
��

TGG
ψG // HTG

Hψ // HHT,

TG
Tγ //

ψ
��

ψ

##

TG

ψ
��

HT
γ′T

// HT.

Proof. In view of 5.6 and 5.7, the proof is dual to that of Theorem 5.4.
Here we take ψ as the composition ψ · Tγ (with ψ from 5.6). ⊔⊓

6. Lifting of endofunctors to modules and comodules

Given a weak monad (F, µ, η), or a weak comonad (Gδ, ε), and any
endofunctor T on the category A, we have learned in the preceding sections
when T can be lifted to an endofunctor of the compatible modules or
comodules, respectively. Now, one may also ask if the lifting is again a
weak monad or a weak comonad, respectively.

6.1. Entwining r-unital monads. For weak monads (F, µ, η) and (T, µ̌, η̌)
on A and a natural transformation λ : FT → TF , the following are equiv-
alent:
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(a) defining product and quasi-unit on TF by

µ : TFTF
TλF−→ TTFF

TTµ−→ TTF
µ̌F−→ TF,

η : IA
η−→ F

F η̌−→ FT
λ−→ TF,

yields a weak monad (TF, µ, η) on A;

(b) λ induces commutativity of the diagrams

FFT
Fλ //

µT
��

FTF
λF // TFF

Tµ
��

FT
λ // TF,

FT
ϑT //

λ
��

λ

""

FT

λ
��

TF
Tϑ

// TF,

(6.1)

FTT

Fµ̌
��

λT // TFT
Tλ // TTF

µ̌F
��

FT
λ // TF,

FT
Fϑ̌ //

λ
��

λ

""

FT

λ
��

TF
ϑ̌F

// TF ;

(6.2)

(c) λ induces commutativity of the diagrams in (6.1) and the square in
(6.2), and there are natural transformations

µ̌F : TTF → TF and λ · F η̌ : F → TF

where µ̌F is a left and right F -module morphism and λ · F η̌ is an
F -module morphism.

If these conditions hold, we obtain morphisms of q-unital monads,

λ · F η̌ : F → TF and λ · ηT : T → TF .

Proof. The assertions follow from the general results in Section 5 and
some routine computations. ⊔⊓

6.2. Weak crossed products. Given (F, µ, η) and T : A → A, the
composition TF may have a weak monad structure without requiring
such a structure on T . For example, replacing the natural transformations
µ̌F and λ · F η̌ in 6.1(c) by some natural transformations

ν : TTF → TF, ξ : F → TF,

similar to 6.1(a), a multiplication and a quasi-unit can be defined on TF .
To make this a weak monad on A, special conditions are to be imposed
on ν and ξ which can be obtained by routine computations.
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Having ν and ξ, one also has natural transformations

ν̄ : TT
TTη // TTF

ν // TF, η : IA
η // F

ξ // TF,

and it is easy to see that ν̄ leads to the same product on TF as ν does.
Thus ν̄ and η may be used to define a weak monad structure on TF and
the conditions required come out as cocycle and twisted conditions. For
more details we refer, e.g., to [1], [11, Section 3].

For a weak comonad (G, δ, ε) and an endofunctor T : A → A, we now
consider liftings to the category of compatible G-comodules, T̂ : AG → AG.
The case when T has a weak comonad structure is dual to 6.1:

6.3. Entwining weak comonads. For weak comonads (F, δ, ε), (T, δ̌, ε̌),
and a natural transformation ψ : TG → GT , the following are equivalent:

(a) defining coproduct and quasi-counit on TG by

δ̂ : TG
δ̌G−→ TTG

TTδ−→ TTGG
TψG−→ TGTG,

ε̂ : TG
ψ−→ GT

Gε̌−→ G
ε−→ IA,

yields a weak comonad (TG, δ̂, ε̂) on A;

(b) ψ induces commutativity of the diagrams, where γ = Tε·δ, γ̌ = T ε̌·δ̌,

TG

Tδ
��

ψ // GT

δT
��

TGG
ψG // GTG

Gψ // GGT,

TG
Tγ //

ψ
��

ψ

""

TG

ψ
��

GT
γT

// GT,

(6.3)

TG
ψ //

δ̌G
��

GT

Gδ̌
��

TTG
Tψ // TGT

ψT // GTT,

TG
γ̌G //

ψ
��

ψ

""

TG

ψ
��

GT
Gγ̌

// GT,

(6.4)

(c) ψ induces commutativity of the diagrams (6.3) and the square in
(6.4) and we have natural transformations

δ̌G : TG → TTG, Gε̌ · ψ : TG → G,

where δ̌G is a left and right G-comodule morphism and Gε̌ · ψ is a
left G-comodule morphism.
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If these conditions hold, we obtain morphisms of q-unital comonads,

Gε̌ · ψ : TG → G and εT · ψ : TG → T .

6.4. Weak crossed coproducts. In the situation of 6.3, the coproduct
on TG can also be expressed by replacing the natural transformations
δ̌G and Gε̌ · ψ by any natural transformations

ν : TG → TTG and ζ : TG → G,

subject to certain conditions to obtain a weak comonad structure on TG.
Given ν and ζ as above, one may form

ν̂ : TG
ν // TTG

TTε // TT , ζ̂ : TG
ζ // G

ε // IA ,

and it is easy to see that these induce a weak comonad structure on TG.
This leads to the weak crossed coproduct as considered (for coalgebras) in
[11] and [12], for example.

7. Mixed entwinings and liftings

Throughout this section let (F, µ, η) denote a weak monad and (G, δ, ε)
a weak comonad on any category A. In this section we investigate the
lifting properties to compatible F -modules and compatible G-comodules,
respectively.

7.1. Liftings of monads and comonads. Consider the diagrams

AF
G //

UF
��

AF
UF
��

A G // A,

AG F̂ //

UG

��

AG

UG

��
A F // A.

In both cases the lifting properties are related to a natural transformation

ω : FG → GF.

The lifting in the left hand case requires commutativity of the diagrams
(Proposition 5.3)

FFG
Fω //

µG
��

FGF
ωF // GFF

Gµ
��

FG
ω // GF,

FG
ω //

ϑG
��

ω

""

GF

Gϑ
��

FG
ω // GF,

(7.1)
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whereas the lifting to AG needs commutativity of the diagrams (Proposi-
tion 5.7)

FG

Fδ
��

ω // GF

δF
��

FGG
ωG // GFG

Gω // GGF,

FG
ω //

Fγ
��

ω

##

GF

γF
��

FG
ω // GF.

(7.2)

To make G a non-counital comonad with coproduct δ, the latter has
to be an F -module morphism, in particular, δF : GF → GGF has to be
an F -morphism and this follows by commutativity of the rectangle in
(7.2) provided the square in (7.1) is commutative.

To make the lifting F̂ a non-unital monad with multiplication µ, the
latter has to be a G-comodule morphism, in particular, µG : FFG → FG
has to be a G-module morphism and this follows by commutativity of
the rectangle in (7.1) provided the square in (7.2) is commutative.

7.2. Natural transformations. The data given in 7.1 allow for natural
transformations

ξ : G
ηG // FG

ω // GF
εF // F ,

κ̂ : GF
ηGF // FGF

ωF // GFF
Gµ // GF ,

τ̂ : FG
Fδ // FGG

ωG // GFG
εFG // FG,

with the properties

Gµ · κ̂F = κ̂ ·Gµ, τ̂G · Fδ = Fδ · τ̂ ,
µ · ξF = εF · κ̂, ξG · δ = τ̂ · ηG.

(i) If the rectangle in (7.1) is commutative, then κ̂ is idempotent.

(ii) If the rectangle in (7.2) is commutative, then τ̂ is idempotent.

To make the liftings weak comonads or weak monads, respectively,
we have to find pre-units or pre-counits, respectively. In what follows we
consider these questions.

7.3. Lemma. (Pre-counits for G) Assume the diagrams in (7.1) to be
commutative. Then the following are equivalent:

(a) for any (A,ϕ) ∈ AF , εA : G(A) → A is an F -module morphism;

(b) εF : GF → F is an F -morphism;
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(c) ϑ = µ · Fη induces commutativity of the diagram

FG
Fε //

ω
��

F

ϑ
��

GF
εF // F.

(7.3)

If these conditions are satisfied, then (with γ = Gε · ϑ)

µG · F τ̂ = τ̂ · µG and τ̂ = ϑγ.

Proof. This is shown by straightforward verification. ⊔⊓

7.4. Proposition. Assume the diagrams in (7.1), (7.2) and (7.3) to be
commutative. Then (G, δ, ε) is a weak comonad on AF .

Proof. This follows from the preceding observations. ⊔⊓
Dual to Lemma 7.3 and 7.4 we obtain for the quasi-units for F̂ :

7.5. Lemma. (Pre-units for F̂ ) Assume the diagrams in (7.2) to be
commutative. Then the following are equivalent:

(a) for any (A, υ) ∈ AG, ηA : A → F (A) is a G-comodule morphism;

(b) ηG : G → FG is G-colinear;

(c) γ = Gε · δ induces commutativity of the diagram

G

γ

��

ηG // FG

ω
��

G
Gη // GF.

(7.4)

If these conditions are satisfied, then

Gκ̂ · δF = δF · κ̂ and κ̂ = γϑ.

Summing up the above observations yields the

7.6. Proposition. Assume the diagrams in (7.1), (7.2) and (7.4) to be
commutative. Then (F̂ , µ, η) is a weak monad on AG.

One may consider alternative choices for a pre-counit for G or a
pre-unit for F̂ .
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7.7. Lemma. Assume the diagrams in (7.1) to be commutative. With the
notations from 7.2, the following are equivalent:

(a) for any (A,ϕ) ∈ AF , εA : G(A)
ξA−→ F (A)

ϕ−→ A is an F -module
morphism;

(b) εF : GF
ξF−→ FF

µ−→ F (= GF
κ̂−→ GF

εF−→ F ) is an F -morphism;

(c) commutativity of the diagram

FFG
Fω // FGF

FεF // FF

µ

��
FG

FηG

OO

ω // GF
εF // F.

(7.5)

If these conditions are satisfied, then

τ̂ = µG · F τ̂ · FηG.

Proof. The proof is obtained by some diagram constructions. ⊔⊓
Notice that commutativity of (7.3) implies commutativity of (7.5).

7.8. Lemma. Assume the diagrams in (7.2) to be commutative. Then
the following are equivalent:

(a) for any (A, υ) ∈ AG, η̂ : A
υ−→ G(A)

ξA−→ F (A) is a G-comodule
morphism;

(b) η̂G : G
ηG−→ FG

τ̂−→ FG (= G
δ−→ GG

ξG−→ FG) is G-colinear;

(c) commutativity of the diagram

G

δ
��

ηG // FG
ω // GF

GG
GηG // GFG

Gω // GGF.

GεF

OO (7.6)

If these conditions are satisfied, then

κ̂ = GεF ·Gκ̂ · δF.

Proof. The situation is dual to Lemma 7.7. ⊔⊓
Notice that commutativity of (7.4) implies commutativity of (7.6).

7.9. Proposition. With the data given in 7.1, assume the diagrams in
(7.1), (7.2) and (7.5) to be commutative.
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(1) If (7.6) is commutative, then ε from 7.7 is regular for δ, and for
δ : G → GG with

δF : GF
δF // GGF

Gκ̂ // GGF,

(G, δ, ε) is an r-counital comonad on AF .

(2) If (7.4) is commutative, then δF = δF · κ̂ and (G, δ, ε) is a weak
comonad on AF .

Proof. This can be shown by suitable diagram constructions. ⊔⊓

7.10. Proposition. With the data given in 7.1, assume the diagrams in
(7.1), (7.2), and (7.6) to be commutative.

(1) If (7.5) is commutative, then η̂ in 7.8 is regular for µ, and for
µ̂ : FF → F with

µ̂G : FFG
F τ̂ // FFG

µG // FG,

(F̂ , µ̂, η̂) is an r-unital monad on AG.

(2) If (7.3) is commutative, then µ̂G = τ̂ · µG and (F̂ , µ̂, η̂) is a weak
monad on AG.

Proof. This is dual to Proposition 7.9. ⊔⊓
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