
Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 15 (2013). Number 2. pp. 201 – 212

c© Journal “Algebra and Discrete Mathematics”

Weighted zero-sum problems over Cr
3

Hemar Godinho, Abílio Lemos, Diego Marques

Communicated by L. A. Shemetkov

Abstract. Let Cn be the cyclic group of order n and set
sA(Cr

n) as the smallest integer ℓ such that every sequence S in Cr
n

of length at least ℓ has an A-zero-sum subsequence of length equal
to exp(Cr

n), for A = {−1, 1}. In this paper, among other things, we
give estimates for sA(Cr

3 ), and prove that sA(C3
3 ) = 9, sA(C4

3 ) = 21
and 41 ≤ sA(C5

3 ) ≤ 45.

Introduction

Let G be a finite abelian group (written additively), and S be a finite
sequence of elements of G and of length m. For simplicity we are going to
write S in a multiplicative form

S =
ℓ∏

i=1

gvi

i ,

where vi represents the number of times the element gi appears in this
sequence. Hence

∑ℓ
i=1 vi = m.

Let A = {−1, 1}. We say that a subsequence a1 · · · as of S is an
A-zero-sum subsequence, if we can find ǫ1, . . . , ǫs ∈ A such that

ǫ1a1 + · · · + ǫsas = 0 in G.
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Here we are particularly interested in studying the behavior of sA(G)
defined as the smallest integer ℓ such that every sequence S of length
greater than or equal to ℓ, satisfies the condition (sA), which states that
there must exist an A-zero-sum subsequence of S of length exp(G) (the
exponent of G).

For this purpose, two other invariants will be defined to help us in
this study. Thus, define ηA(G) as the smallest integer ℓ such that every
sequence S of length greater than or equal to ℓ, satisfies the condition
(ηA), which says that there exists an A-zero-sum subsequence of S of
length at most exp(G). Define also gA(G) as the smallest integer ℓ such
that every sequence S of distinct elements and of length greater than or
equal to ℓ, satisfies the condition (gA), which says that there must exist
an A-zero-sum subsequence of S of length exp(G).

The study of zero-sums is a classical area of additive number theory
and goes back to the works of Erdös, Ginzburg and Ziv [6] and Harborth [9].
A very thorough survey up to 2006 can be found on Gao-Geroldinger [7],
where applications of this theory are also given.

In [8], Grynkiewicz established a weighted version of Erdös-Ginzburg-
Ziv theorem, which introduced the idea of considering certain weighted
subsequence sums, and Thangadurai [13] presented many results on a
weighted Davenport’s constant and its relation to sA.

For the particular weight A = {−1, 1}, the best results are due to
Adhikari et al [1], where it is proved that sA(Cn) = n+ ⌊log2 n⌋ (here Cn
is a cyclic group of order n) and Adhikari et al [2], where it is proved that
sA(Cn × Cn) = 2n − 1, when n is odd. Recently, Adhikari et al proved
that sA(G) = exp(G) + log2 |G| + O(log2 log2 |G|) when exp(G) is even
and exp(G) → +∞ (see [3]).

The aim of this paper is to give estimates for sA(Crn), where as usual
Crn = Cn × · · · × Cn (r times), and here are our results.

Theorem 1. Let A = {−1, 1}, n > 1 odd and r ≥ 1. If n = 3 and r ≥ 2,
or n ≥ 5 then

2r−1(n− 1) + 1 ≤ sA(Crn) ≤ (nr − 1)

(
n− 1

2

)
+ 1.

For the case of n = 3 we present a more detailed study and prove

Theorem 2. Let A = {−1, 1} and r ≥ 5.

(i) If r is odd then

sA(Cr3) ≥ 2r + 2

(
r − 1
r−5

2

)
− 1.
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(ii) If r is even, with m =
⌊

3r−4
4

⌋
, then

(a) If r ≡ 2 (mod 4), then sA(Cr3) ≥ 2
∑

1≤j≤m

(r
j

)
+ 2

( r
r−2

2

)
+ 1,

where j takes odd values.

(b) If r ≡ 0 (mod 4), then sA(Cr3) ≥ 2
∑

1≤j≤m

(r
j

)
+
(r

r
2

)
+1, where

j takes odd values.

It is simple to check that sA(C3) = 4, and it follows from Theorem
3 in [2] that sA(C2

3) = 5. Our next result presents both exact values of
sA(Cr3), and r = 3, 4 as well as estimates for sA(Cr3a), r = 3, 4, 5, for all
a ≥ 1.

Theorem 3. Let A = {−1, 1}. Then

(i) sA(C3
3 ) = 9, sA(C4

3 ) = 21, 41 ≤ sA(C5
3 ) ≤ 45

(ii) sA(C3
3a) = 4 × 3a − 3, for all a ≥ 1

(iii) 8 × 3a − 7 ≤ sA(C4
3a) ≤ 10 × 3a − 9, for all a ≥ 1

(iv) 16 × 3a − 15 ≤ sA(C5
3a) ≤ 22 × 3a − 21, for all a ≥ 1

1. Relations between the invariants ηA, gA and sA

We start by proving the following result.

Lemma 1. For A = {−1, 1}, we have

(i) ηA(C3) = 2, gA(C3) = 3 and sA(C3) = 4, and

(ii) ηA(Cr3) ≥ r + 1 for any r ∈ N.

Proof. The proof of item (i) is very simple and will be omitted. For
(ii), the proof follows from the fact that the sequence e1e2 · · · er with
ej = (0, . . . , 1, . . . , 0), has no A-zero-sum subsequence.

Proposition 1. For A = {−1, 1}, we have gA(Cr3) = 2ηA(Cr3) − 1.

Proof. The case r = 1 follows from Lemma 1. Let S =
∏m
i=1 gi of length

m = ηA(Cr3) − 1 which does not satisfy the condition (ηA). In particular S
has no A-zero-sum subsequences of length 1 and 2, that is, all elements of
S are nonzero and distinct. Now, let S∗ be the sequence

∏m
i=1 gi

∏m
i=1(−gi).

Observe that S∗ has only distinct elements, since S has no A-zero-sum
subsequences of length 2. It is easy to see that any A-zero-sum of S∗ of
length 3 is also an A-zero-sum of S, for A = {−1, 1}. Hence gA(Cr3) ≥
2ηA(Cr3) − 1.
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Let S be a sequence of distinct elements and of length m = 2ηA(Cr3)−1,
and write

S =
t∏

i=1

gi

t∏

i=1

(−gi)
m∏

i=2t+1

gi

where gr 6= −gs for 2t+1 ≤ r < s ≤ m. If t = 0, then S has no A-zero-sum
of length 2, and 0 can appear at most once in S. Let S∗ be the subsequence
of all nonzero elements of S, hence |S∗| = 2ηA(Cr3) − 2 > ηA(Cr3), for
r ≥ 2 (see Lemma 1(ii)), hence it must contain an A-zero-sum of length
3.

For the case t ≥ 1, we may assume gj 6= 0, for every  = 2t+ 1, . . . ,m
since otherwise, gt + (−gt) + gj0 is A-zero-sum subsequence of length 3.
But now, either t ≥ ηA(Cr3), so that

∏t
i=1 gi has an A−zero-sum of length

3, or m − t ≥ ηA(Cr3), so that
∏t
i=1(−gi)

∏m
i=2t+1 gi has an A−zero-sum

subsequence of length 3.

Here we note that by the definition of these invariants and the propo-
sition above, we have

sA(Cr3) ≥ gA(Cr3) = 2ηA(Cr3) − 1. (1)

Proposition 2. For A = {−1, 1}, we have sA(Cr3) = gA(Cr3), for r ≥ 2.

Proof. From Theorem 3 in [2] we have sA(C2
3) = 5 and, on the other

hand, the sequence (1, 0)(0, 1)(2, 0)(0, 2) does not satisfy the condition
(gA), hence sA(C2

3) = gA(C2
3) (see (1)). From now on, let us consider

r ≥ 3.
Let S be a sequence of length m = sA(Cr3) − 1 which does not satisfy

the condition (sA). In particular S does not contain three equal elements,
since 3g = 0. If S contains only distinct elements, then it does not
satisfy also the condition (gA), and then m ≤ gA(Cr3) − 1, which implies
sA(Cr3) = gA(Cr3) (see (1)). Hence, let us assume that S has repeated
elements and write

S = E2F =
t∏

i=1

g2
i

m∏

j=2t+1

gj (2)

where g1, . . . , gt, g2t+1, . . . , gm are distinct. If for some 1 ≤ j ≤ m we have
gj = 0, then the subsequence of all nonzero elements of S has length
at least equal to sA(Cr3) − 3 ≥ 2ηA(Cr3) − 4 ≥ ηA(Cr3) for r ≥ 3 (see
Lemma 1 (ii)). Then it must have an A-zero-sum of length 2 or 3. And
if the A-zero-sum is of length 2, together with gj = 0 we would have an
A-zero-sum of length 3 in S, contradicting the assumption that it does
not satisfy the condition (sA).
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Hence let us assume that all elements of S are nonzero. Observe
that we can not have g in E and h in F (see (2)) such that h = −g, for
g+g−h = 3g = 0, an A-zero-sum of length 3. Therefore the new sequence

R =
t∏

i=1

gi

t∏

i=1

(−gi)
m∏

i=2t+1

gi

has only distinct elements, length m = sA(Cr3) − 1, and does not satisfy
the condition (gA). Hence m ≤ gA(Cr3) − 1, and this concludes the proof
according to (1).

2. Proof of Theorem 1

2.1. The lower bound for sA(Crn)

Let e1, . . . , er be the elements ofCrn defined as ej = (0, . . . , 0, 1, 0, . . . , 0),
and for every subset I ⊂ {1, . . . , r}, of odd cardinality, define eI =

∑
i∈I ei

(e.g., taking I = {1, 3, r}, we have eI = (1, 0, 1, 0, . . . , 0, 1)), and let Im

be the collection of all subsets of {1, . . . , r} of cardinality odd and at most
equal to m.

There is a natural isomorphism between the cyclic groups Crn
∼=

(Z/nZ)r, and this result here will be proved for (Z/nZ)r. Let φ : Z → Z/nZ
be the canonical group epimorphism, and define ϕ : Zr → (Z/nZ)r as
ϕ(a1, · · · , ar) = (φ(a1), · · · , φ(ar)). If S = g1 · · · gm is a sequence over the
group Zr, let us denote by ϕ(S) the sequence ϕ(S) = ϕ(g1) · · ·ϕ(gm) of
same length over the group (Z/nZ)r.

Let e∗
1, . . . , e

∗
r be the canonical basis (i.e.,e∗

j = (0, . . . , 0, 1, 0, . . . , 0)) of
the group Zr, and define, as above

e∗
I =

∑

i∈I

e∗
i

Now consider the sequence

S =
∏

I∈Ir

(e∗
I)
n−1,

of length 2r−1(n− 1). We will prove that the corresponding sequence

ϕ(S) =
∏

I∈Ir

en−1
I ,

has no A-zero-sum subsequences of length n, which is equivalent to prove
that given A = {−1, 1} and any subsequence R = g1 · · · gn of S, it is not
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possible to find ǫ1, . . . , ǫs ∈ A such that (with an abuse of notation)

ǫ1g1 + · · · + ǫngn ≡ (0, . . . , 0) (modn). (3)

Writing gk = (c
(k)
1 , . . . , c

(k)
r ), for 1 ≤ k ≤ n, it follows from (3) that, for

every j ∈ {1, . . . , r}, we have

n∑

k=1

ǫkc
(k)
j ≡ 0 ( mod n). (4)

For every 1 ≤ j ≤ r, let us define the sets

Aj = {ℓ | c
(ℓ)
j = 1}.

Since c
(ℓ)
j ∈ {0, 1} and ǫj ∈ {−1, 1} for any j and any ℓ, we must have,

according to (4), that either

|Aj | = n or |Aj | is even. (5)

Since gℓ = eIℓ
, for some I, by the definition we have

∑r
j=1 c

(ℓ)
j = |I| for

all ℓ, then

r∑

j=1

|Aj | =
r∑

j=1

n∑

ℓ=1

c
(ℓ)
j =

n∑

ℓ=1

r∑

j=1

c
(ℓ)
j = |I1| + · · · + |In|,

an odd sum of odd numbers. Hence there exists a 0, such that |Aj0 | = n

(see (5)), but then, it follows from (4) that
∑n
k=1 ǫkc

(k)
j0

= n and therefore
ǫ1 = · · · = ǫn = 1. And the important consequence is that we must have
g1 = · · · = gn, which is impossible since in the sequence S no element
appears more than n− 1 times.

Remark 1. If we consider the sequence ϕ(S) =
∏
I∈Ir

eI , for n = 3, we

see that this does not satisfy the condition (ηA). So ηA(Cr3) ≥ 2r−1 + 1
for any r ∈ N, which is an improvement of the item (ii) of the Lemma 1.

2.2. The upper bound for sA(Crn)

Let us consider the set of elements of the group Crn as the union
{0} ∪G+ ∪G−, where if g ∈ G+ then −g ∈ G−. And write the sequence
S as

S = 0m
∏

g∈G+

(gvg(S)(−g)v−g(S)).
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First observe that if for some g, vg(S) + v−g(S) ≥ n, then we can find a
subsequence R = c1 · · · cn of S, which is an A-zero-sum, for A = {−1, 1},
and any sum of n equal elements is equal to zero in Crn. Now consider
m ≥ 1 and m + vg(S) + v−g(S) > n, then we can find a subsequence
R = h1 · · ·ht of S of even length t ≥ n − m with hj ∈ {−g, g}. Since

A = {−1, 1}, this is an A-zero-sum. Hence, the subsequence T = 0m
∗

R
(m∗ ≤ m) of S is an A-zero-sum of length n.

Thus assume that, for every g in S we have vg(S) + v−g(S) ≤ n−m,
which gives

|S| ≤





m+ nr−1
2 (n−m) if m > 0 even

m− 1 + nr−1
2 (n−m) if m > 0 odd

nr−1
2 (n− 1) if m = 0,

for |G+| = nr−1
2 . We observe than in the case m even m+ nr−1

2 (n−m) ≤

2 + nr−1
2 (n − 2) ≤ 2 + nr−1

2 (n − 2) + nr−1
2 − 1 and the equality only

happens when n = 3 and r = 1. In any case, if |S| ≥ nr−1
2 (n− 1) + 1, it

has a subsequence of length n which is an A-zero-sum.

Remark 2. For n = 3, the upper bound for sA(Cr3) can be improved
using the result of Meshulam[12] as follows. According to Proposition 2,
sA(Cr3) = gA(Cr3) for r ≥ 2, and it follows from the definition that
gA(Cr3) ≤ g(Cr3), where g(Cr3) is the invariant gA(Cr3) with A = {1}. Now
we use the Theorem 1.2 of [12] to obtain sA(Cr3) = gA(Cr3) ≤ g(Cr3) ≤
2 × 3r/r.

3. Proof of Theorem 2

Now we turn our attention to prove the following proposition.

Proposition 3. If r > 3 is odd and A = {−1, 1} then ηA(Cr3) ≥ 2r−1 +(r−1
δ

)
, where

δ = δ(r) =

{
(r−3)

2 if r ≡ 1 (mod 4)
(r−5)

2 if r ≡ 3 (mod 4).
(6)

Proof. We will prove this proposition by presenting an example of a
sequence of length 2r−1 +

(r−1
δ

)
− 1 with no A-zero-sum subsequences of

length smaller or equal to 3. Let ℓ =
(r−1
δ

)
, and consider the sequence

S = E .G =




∏

I∈Ir−2

eI


 · g1 · · · gℓ,
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with
g1 = (−1,−1, . . . ,−1︸ ︷︷ ︸

δ

, 1, 1, . . . , 1)

...
gℓ = (−1, 1, . . . , 1,−1, . . . ,−1︸ ︷︷ ︸

δ

),

where eI and Ir−2 are defined in the beginning of section 2. Clearly S has
no A-zero-sum subsequences of length 1 or 2 and also sum or difference of
two elements of G will never give another element of G, for no element of
G has zero as one of its coordinates. Now we will consider es − et, where
es and et represent the eI ’s for which s coordinates are equal to 1 and
t coordinates are equal to 1 respectively. Thus, we see that es − et will
never be an element of G since it necessarily has either a zero coordinate
or it has an odd number of 1’s and -1’s (and δ + 1 is even).

Now, if for some s, t we would have

es + et = gi,

Then et, es would have δ + 1 nonzero coordinates at the same positions
(to obtain δ + 1 coordinates -1’s). Hence we would need to have

r + (δ + 1) = s+ t

Which is impossible since s+ t is even and r+ (δ + 1) is odd, for δ is odd
in any of the two cases.

Thus, the only possible A-zero-sum subsequence of length 3 would
necessarily include one element of E and two elements of G.

Let v, w be elements of G. Now it simple to verify that (the calculations
are modulo 3) either v+w or v−w have two of their entries with opposite
signs (for δ(r) < (r− 1)/2) and hence either of them can not be added to
an ±eI to obtain an A-zero-sum, since all its nonzero entries have the
same sign.

Proposition 4. Let r > 4 be even, m =
⌊

3r−4
4

⌋
and A = {−1, 1}. Then

ηA(Cr3) ≥
m∑

j=1
j odd

(
r

j

)
+ ℓ(r) + 1,

where

ℓ(r) =

{ ( r
r−2

2

)
if r ≡ 2 (mod 4),

(r
r
2

)
/2 if r ≡ 0 (mod 4).
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Proof. Consider the sequence K = g1 · · · gτ with

g1 = (−1, . . . ,−1︸ ︷︷ ︸
δ

, 1, 1, . . . , 1)

...
gτ = (1, 1, . . . , 1,−1, . . . ,−1︸ ︷︷ ︸

δ

)

where

τ =

{
ℓ(r) if r ≡ 2 (mod 4)
2ℓ(r) if r ≡ 0 (mod 4),

and δ =

{ r−2
2 if r ≡ 2 (mod 4)
r
2 if r ≡ 0 (mod 4),

and rearrange the elements of the sequence K, and write it as

K =

τ/2∏

i=1

gi

τ/2∏

i=1

(−gi) = K+K−.

It is simple to observe that if r ≡ 2 (mod 4), then τ = ℓ and K− = ∅.

Now define the sequence

S =



∏

I∈Im

eI


G,

where G = K if r ≡ 2 (mod 4) or G = K+ if r ≡ 0 (mod 4), and

m =
⌊

3r−4
4

⌋
, a sequence of length |S| =

m∑

j=1
j odd

(
r

j

)
+ ℓ(r) + 1.

The first important observation is that S has no A-zero-sum subse-
quences of length 1 or 2. And also sum or difference of two elements
of G will never be another element of G, for it necessarily will have a
zero as coordinate. Also eI − eJ will never be an element of G since it
necessarily has either a zero coordinate or it has an odd number of 1’s
and -1’s (and δ is even). Now, if for some s, t (both defined as in the proof
of the Proposition 3) we would have

es + et = ±gj , for some 

then et, es would necessarily have δ nonzero coordinates at the same
positions (to obtain δ coordinates -1’s). But then

s+ t = r + δ ≥
3r − 2

2
, for any value of δ
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which is impossible since

s+ t ≤ 2m ≤
3r − 4

2
.

Thus the only A-zero-sum subsequence of length 3 possible necessarily
includes an element et and two elements of G.

Let v, w elements of G. First, observe that if they do not have −1’s
in common positions, then v + w has an even amount of zeros and an
even amount of −1’s (since r and δ are both even), i.e., v + w 6= ±eI . If
we make v − w also have an even amount of nonzero coordinates, i.e., we
haven’t ±eI . Now, assuming that v, w have at last a −1 in same position,
it simple to verify that (the calculations are modulo 3) either v + w or
v − w have two or more of their entries with opposite signs and hence
either of them can not be added to an ±eI to obtain an A-zero-sum, since
all its nonzero entries have the same sign.

Theorem 2 now follows from propositions 1, 2, 3 and 4.

4. Proof of Theorem 3

We start by proving the following proposition.

Proposition 5. For A = {−1, 1}, we have

(i) ηA(C2
3 ) = 3;

(ii) ηA(C3
3 ) = 5;

(iii) ηA(C4
3 ) = 11;

(iv) 21 ≤ ηA(C5
3 ) ≤ 23.

Proof. By Propositions 1 and 2, we have that sA(Cr3) = gA(Cr3) =
2ηA(Cr3) − 1, for r > 1, and by definition, we have gA(Cr3) ≤ g(Cr3)

resulting in ηA(Cr3) ≤
g(Cr

3 )+1
2 , for r > 1. It follows from

g(C2
3 ) = 5 ([10]), g(C3

3 ) = 10, g(C4
3 ) = 21 ([11]), g(C5

3 ) = 46 ( [5]),

that ηA(C2
3 ) ≤ 3, ηA(C3

3 ) ≤ 5, ηA(C4
3 ) ≤ 11 and ηA(C5

3 ) ≤ 23. It is easy to
see that the sequences (1, 0)(0, 1) and (1, 0, 0)(0, 1, 0)(0, 0, 1)(1, 1, 1) has
no A-zero-sum of length at most three, so ηA(C2

3) = 3 and ηA(C3
3) = 5.

It is also simple to check that following sequences of lengths 10 and 20
respectively do not satisfy the condition (ηA):

(1, 1, 0, 0) · · · (0, 0, 1, 1)(1, 1, 1, 0) · · · (0, 1, 1, 1)
and

(1, 1, 0, 0, 0) · · · (0, 0, 0, 1, 1)(1, 1, 1, 0, 0) · · · (0, 0, 1, 1, 1),
(7)
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hence ηA(C4
3 ) = 11 and ηA(C5

3 ) ≥ 21.

Proposition 5 together with propositions 1 and 2 gives the proof of
item (i) of Theorem 3. The proof of the remaining three items is given in
Proposition 7 below.

Before going further, we need a slight modification of a result due to
Gao et al for A = {1} in [4]. Here we shall use it in the case A = {−1, 1}.
The proof in this case is analogous to the original one, and shall be omit it.

Proposition 6. Let G be a finite abelian group, A = {−1, 1} and H ≤ G.
Let S be a sequence in G of length

m ≥ (sA(H) − 1) exp(G/H) + sA(G/H).

Then S has an A-zero-sum subsequence of length exp(H) exp(G/H). In
particular, if exp(G) = exp(H) exp(G/H), then

sA(G) ≤ (sA(H) − 1) exp(G/H) + sA(G/H).

Proposition 7. For A = {−1, 1}, we have

(i) sA(C3
3a) = 4 × 3a − 3, for all a ≥ 1;

(ii) 8 × 3a − 7 ≤ sA(C4
3a) ≤ 10 × 3a − 9, for all a ≥ 1;

(iii) 16 × 3a − 15 ≤ sA(C5
3a) ≤ 22 × 3a − 21, for all a ≥ 1.

Proof. It follows of (i) from Theorem 3 that sA(C3
3 ) = 4 × 3 − 3 = 9. Now

assume that sA(C3
3a−1) = 4 · 3a−1 − 3. Thus, Proposition 6 yields

sA(C3
3a) ≤ 3 × (sA(C3

3a−1) − 1) + sA(C3
3 )

≤ 4 × 3a − 3.

On the other hand, Theorem 1 gives sA(C3
3a) ≥ 4 × 3a − 3, concluding

the proof of (i).
Again by (i) from Theorem 3, we have that sA(C4

3 ) = 10 × 3 − 9 = 21.
Now, assume that sA(C4

3a−1) ≤ 10 · 3a−1 − 9. It follows from Proposition 6
that

sA(C4
3a) ≤ 3 × (sA(C4

3a−1) − 1) + sA(C4
3 )

≤ 10 × 3a − 9.

On the other hand, Theorem 1 gives the lower bound sA(C4
3a) ≥

8×3a−7, concluding the proof of (ii). The proof of item (iii) is analogous to
the proof of item (ii), again using (i) of the Theorem 3 and Theorem 1.
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