Weighted zero-sum problems over C_{3}^{r}

Hemar Godinho, Abílio Lemos, Diego Marques

Communicated by L. A. Shemetkov

AbStract. Let C_{n} be the cyclic group of order n and set $s_{A}\left(C_{n}^{r}\right)$ as the smallest integer ℓ such that every sequence \mathcal{S} in C_{n}^{r} of length at least ℓ has an A-zero-sum subsequence of length equal to $\exp \left(C_{n}^{r}\right)$, for $A=\{-1,1\}$. In this paper, among other things, we give estimates for $s_{A}\left(C_{3}^{r}\right)$, and prove that $s_{A}\left(C_{3}^{3}\right)=9, s_{A}\left(C_{3}^{4}\right)=21$ and $41 \leq s_{A}\left(C_{3}^{5}\right) \leq 45$.

Introduction

Let G be a finite abelian group (written additively), and \mathcal{S} be a finite sequence of elements of G and of length \mathfrak{m}. For simplicity we are going to write \mathcal{S} in a multiplicative form

$$
\mathcal{S}=\prod_{i=1}^{\ell} g_{i}^{v_{i}}
$$

where v_{i} represents the number of times the element g_{i} appears in this sequence. Hence $\sum_{i=1}^{\ell} v_{i}=\mathfrak{m}$.

Let $A=\{-1,1\}$. We say that a subsequence $a_{1} \cdots a_{s}$ of \mathcal{S} is an A-zero-sum subsequence, if we can find $\epsilon_{1}, \ldots, \epsilon_{s} \in A$ such that

$$
\epsilon_{1} a_{1}+\cdots+\epsilon_{s} a_{s}=0 \text { in } G .
$$

[^0]Here we are particularly interested in studying the behavior of $s_{A}(G)$ defined as the smallest integer ℓ such that every sequence \mathcal{S} of length greater than or equal to ℓ, satisfies the condition $\left(s_{A}\right)$, which states that there must exist an A-zero-sum subsequence of \mathcal{S} of length $\exp (G)$ (the exponent of G).

For this purpose, two other invariants will be defined to help us in this study. Thus, define $\eta_{A}(G)$ as the smallest integer ℓ such that every sequence \mathcal{S} of length greater than or equal to ℓ, satisfies the condition $\left(\eta_{A}\right)$, which says that there exists an A-zero-sum subsequence of \mathcal{S} of length at most $\exp (G)$. Define also $g_{A}(G)$ as the smallest integer ℓ such that every sequence \mathcal{S} of distinct elements and of length greater than or equal to ℓ, satisfies the condition $\left(g_{A}\right)$, which says that there must exist an A-zero-sum subsequence of \mathcal{S} of length $\exp (G)$.

The study of zero-sums is a classical area of additive number theory and goes back to the works of Erdös, Ginzburg and Ziv [6] and Harborth [9]. A very thorough survey up to 2006 can be found on Gao-Geroldinger [7], where applications of this theory are also given.

In [8], Grynkiewicz established a weighted version of Erdös-GinzburgZiv theorem, which introduced the idea of considering certain weighted subsequence sums, and Thangadurai [13] presented many results on a weighted Davenport's constant and its relation to s_{A}.

For the particular weight $A=\{-1,1\}$, the best results are due to Adhikari et al [1], where it is proved that $s_{A}\left(C_{n}\right)=n+\left\lfloor\log _{2} n\right\rfloor$ (here C_{n} is a cyclic group of order n) and Adhikari et al [2], where it is proved that $s_{A}\left(C_{n} \times C_{n}\right)=2 n-1$, when n is odd. Recently, Adhikari et al proved that $s_{A}(G)=\exp (G)+\log _{2}|G|+O\left(\log _{2} \log _{2}|G|\right)$ when $\exp (G)$ is even and $\exp (G) \rightarrow+\infty$ (see [3]).

The aim of this paper is to give estimates for $s_{A}\left(C_{n}^{r}\right)$, where as usual $C_{n}^{r}=C_{n} \times \cdots \times C_{n}(r$ times $)$, and here are our results.

Theorem 1. Let $A=\{-1,1\}, n>1$ odd and $r \geq 1$. If $n=3$ and $r \geq 2$, or $n \geq 5$ then

$$
2^{r-1}(n-1)+1 \leq s_{A}\left(C_{n}^{r}\right) \leq\left(n^{r}-1\right)\left(\frac{n-1}{2}\right)+1
$$

For the case of $n=3$ we present a more detailed study and prove
Theorem 2. Let $A=\{-1,1\}$ and $r \geq 5$.
(i) If r is odd then

$$
s_{A}\left(C_{3}^{r}\right) \geq 2^{r}+2\binom{r-1}{\frac{r-5}{2}}-1
$$

(ii) If r is even, with $m=\left\lfloor\frac{3 r-4}{4}\right\rfloor$, then
(a) If $r \equiv 2(\bmod 4)$, then $s_{A}\left(C_{3}^{r}\right) \geq 2 \sum_{1 \leq j \leq m}\binom{r}{j}+2\binom{r-2}{\frac{r}{2}}+1$, where j takes odd values.
(b) If $r \equiv 0(\bmod 4)$, then $s_{A}\left(C_{3}^{r}\right) \geq 2 \sum_{1 \leq j \leq m}\binom{r}{j}+\binom{r}{\frac{r}{2}}+1$, where j takes odd values.

It is simple to check that $s_{A}\left(C_{3}\right)=4$, and it follows from Theorem 3 in [2] that $s_{A}\left(C_{3}^{2}\right)=5$. Our next result presents both exact values of $s_{A}\left(C_{3}^{r}\right)$, and $r=3,4$ as well as estimates for $s_{A}\left(C_{3^{a}}^{r}\right), r=3,4,5$, for all $a \geq 1$.

Theorem 3. Let $A=\{-1,1\}$. Then
(i) $s_{A}\left(C_{3}^{3}\right)=9, s_{A}\left(C_{3}^{4}\right)=21,41 \leq s_{A}\left(C_{3}^{5}\right) \leq 45$
(ii) $s_{A}\left(C_{3^{a}}^{3}\right)=4 \times 3^{a}-3$, for all $a \geq 1$
(iii) $8 \times 3^{a}-7 \leq s_{A}\left(C_{3^{a}}^{4}\right) \leq 10 \times 3^{a}-9$, for all $a \geq 1$
(iv) $16 \times 3^{a}-15 \leq s_{A}\left(C_{3^{a}}^{5}\right) \leq 22 \times 3^{a}-21$, for all $a \geq 1$

1. Relations between the invariants η_{A}, g_{A} and s_{A}

We start by proving the following result.
Lemma 1. For $A=\{-1,1\}$, we have
(i) $\eta_{A}\left(C_{3}\right)=2, \quad g_{A}\left(C_{3}\right)=3$ and $s_{A}\left(C_{3}\right)=4$, and
(ii) $\eta_{A}\left(C_{3}^{r}\right) \geq r+1$ for any $r \in \mathbb{N}$.

Proof. The proof of item (i) is very simple and will be omitted. For (ii), the proof follows from the fact that the sequence $e_{1} e_{2} \cdots e_{r}$ with $e_{j}=(0, \ldots, 1, \ldots, 0)$, has no A-zero-sum subsequence.

Proposition 1. For $A=\{-1,1\}$, we have $g_{A}\left(C_{3}^{r}\right)=2 \eta_{A}\left(C_{3}^{r}\right)-1$.
Proof. The case $r=1$ follows from Lemma 1. Let $\mathcal{S}=\prod_{i=1}^{\mathfrak{m}} g_{i}$ of length $\mathfrak{m}=\eta_{A}\left(C_{3}^{r}\right)-1$ which does not satisfy the condition $\left(\eta_{A}\right)$. In particular \mathcal{S} has no A-zero-sum subsequences of length 1 and 2 , that is, all elements of \mathcal{S} are nonzero and distinct. Now, let \mathcal{S}^{*} be the sequence $\prod_{i=1}^{\mathfrak{m}} g_{i} \prod_{i=1}^{\mathfrak{m}}\left(-g_{i}\right)$. Observe that \mathcal{S}^{*} has only distinct elements, since \mathcal{S} has no A-zero-sum subsequences of length 2 . It is easy to see that any A-zero-sum of \mathcal{S}^{*} of length 3 is also an A-zero-sum of \mathcal{S}, for $A=\{-1,1\}$. Hence $g_{A}\left(C_{3}^{r}\right) \geq$ $2 \eta_{A}\left(C_{3}^{r}\right)-1$.

Let \mathcal{S} be a sequence of distinct elements and of length $\mathfrak{m}=2 \eta_{A}\left(C_{3}^{r}\right)-1$, and write

$$
\mathcal{S}=\prod_{i=1}^{t} g_{i} \prod_{i=1}^{t}\left(-g_{i}\right) \prod_{i=2 t+1}^{\mathfrak{m}} g_{i}
$$

where $g_{r} \neq-g_{s}$ for $2 t+1 \leq r<s \leq \mathfrak{m}$. If $t=0$, then \mathcal{S} has no A-zero-sum of length 2 , and 0 can appear at most once in \mathcal{S}. Let \mathcal{S}^{*} be the subsequence of all nonzero elements of \mathcal{S}, hence $\left|\mathcal{S}^{*}\right|=2 \eta_{A}\left(C_{3}^{r}\right)-2>\eta_{A}\left(C_{3}^{r}\right)$, for $r \geq 2$ (see Lemma 1(ii)), hence it must contain an A-zero-sum of length 3.

For the case $t \geq 1$, we may assume $g_{j} \neq 0$, for every $\jmath=2 t+1, \ldots, \mathfrak{m}$ since otherwise, $g_{t}+\left(-g_{t}\right)+g_{j_{0}}$ is A-zero-sum subsequence of length 3 . But now, either $t \geq \eta_{A}\left(C_{3}^{r}\right)$, so that $\prod_{i=1}^{t} g_{i}$ has an A-zero-sum of length 3 , or $\mathfrak{m}-t \geq \eta_{A}\left(C_{3}^{r}\right)$, so that $\prod_{i=1}^{t}\left(-g_{i}\right) \prod_{i=2 t+1}^{\mathfrak{m}} g_{i}$ has an A-zero-sum subsequence of length 3 .

Here we note that by the definition of these invariants and the proposition above, we have

$$
\begin{equation*}
s_{A}\left(C_{3}^{r}\right) \geq g_{A}\left(C_{3}^{r}\right)=2 \eta_{A}\left(C_{3}^{r}\right)-1 \tag{1}
\end{equation*}
$$

Proposition 2. For $A=\{-1,1\}$, we have $s_{A}\left(C_{3}^{r}\right)=g_{A}\left(C_{3}^{r}\right)$, for $r \geq 2$. Proof. From Theorem 3 in [2] we have $s_{A}\left(C_{3}^{2}\right)=5$ and, on the other hand, the sequence $(1,0)(0,1)(2,0)(0,2)$ does not satisfy the condition $\left(g_{A}\right)$, hence $s_{A}\left(C_{3}^{2}\right)=g_{A}\left(C_{3}^{2}\right)$ (see (1)). From now on, let us consider $r \geq 3$.

Let \mathcal{S} be a sequence of length $\mathfrak{m}=s_{A}\left(C_{3}^{r}\right)-1$ which does not satisfy the condition $\left(s_{A}\right)$. In particular \mathcal{S} does not contain three equal elements, since $3 g=0$. If \mathcal{S} contains only distinct elements, then it does not satisfy also the condition $\left(g_{A}\right)$, and then $\mathfrak{m} \leq g_{A}\left(C_{3}^{r}\right)-1$, which implies $s_{A}\left(C_{3}^{r}\right)=g_{A}\left(C_{3}^{r}\right)$ (see (1)). Hence, let us assume that \mathcal{S} has repeated elements and write

$$
\begin{equation*}
\mathcal{S}=\mathcal{E}^{2} \mathcal{F}=\prod_{i=1}^{t} g_{i}^{2} \prod_{j=2 t+1}^{\mathfrak{m}} g_{j} \tag{2}
\end{equation*}
$$

where $g_{1}, \ldots, g_{t}, g_{2 t+1}, \ldots, g_{\mathfrak{m}}$ are distinct. If for some $1 \leq j \leq \mathfrak{m}$ we have $g_{j}=0$, then the subsequence of all nonzero elements of \mathcal{S} has length at least equal to $s_{A}\left(C_{3}^{r}\right)-3 \geq 2 \eta_{A}\left(C_{3}^{r}\right)-4 \geq \eta_{A}\left(C_{3}^{r}\right)$ for $r \geq 3$ (see Lemma 1 (ii)). Then it must have an A-zero-sum of length 2 or 3 . And if the A-zero-sum is of length 2 , together with $g_{j}=0$ we would have an A-zero-sum of length 3 in \mathcal{S}, contradicting the assumption that it does not satisfy the condition $\left(s_{A}\right)$.

Hence let us assume that all elements of \mathcal{S} are nonzero. Observe that we can not have g in \mathcal{E} and h in \mathcal{F} (see (2)) such that $h=-g$, for $g+g-h=3 g=0$, an A-zero-sum of length 3 . Therefore the new sequence

$$
\mathcal{R}=\prod_{i=1}^{t} g_{i} \prod_{i=1}^{t}\left(-g_{i}\right) \prod_{i=2 t+1}^{\mathfrak{m}} g_{i}
$$

has only distinct elements, length $\mathfrak{m}=s_{A}\left(C_{3}^{r}\right)-1$, and does not satisfy the condition $\left(g_{A}\right)$. Hence $\mathfrak{m} \leq g_{A}\left(C_{3}^{r}\right)-1$, and this concludes the proof according to (1).

2. Proof of Theorem 1

2.1. The lower bound for $s_{A}\left(C_{n}^{r}\right)$

Let e_{1}, \ldots, e_{r} be the elements of C_{n}^{r} defined as $e_{j}=(0, \ldots, 0,1,0, \ldots, 0)$, and for every subset $I \subset\{1, \ldots, r\}$, of odd cardinality, define $\mathfrak{e}_{I}=\sum_{i \in I} e_{i}$ (e.g., taking $I=\{1,3, r\}$, we have $\mathfrak{e}_{I}=(1,0,1,0, \ldots, 0,1)$), and let \mathscr{I}_{m} be the collection of all subsets of $\{1, \ldots, r\}$ of cardinality odd and at most equal to m.

There is a natural isomorphism between the cyclic groups $C_{n}^{r} \cong$ $(\mathbb{Z} / n \mathbb{Z})^{r}$, and this result here will be proved for $(\mathbb{Z} / n \mathbb{Z})^{r}$. Let $\phi: \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ be the canonical group epimorphism, and define $\varphi: \mathbb{Z}^{r} \rightarrow(\mathbb{Z} / n \mathbb{Z})^{r}$ as $\varphi\left(a_{1}, \cdots, a_{r}\right)=\left(\phi\left(a_{1}\right), \cdots, \phi\left(a_{r}\right)\right)$. If $\mathcal{S}=g_{1} \cdots g_{m}$ is a sequence over the group \mathbb{Z}^{r}, let us denote by $\varphi(\mathcal{S})$ the sequence $\varphi(\mathcal{S})=\varphi\left(g_{1}\right) \cdots \varphi\left(g_{m}\right)$ of same length over the group $(\mathbb{Z} / n \mathbb{Z})^{r}$.

Let $e_{1}^{*}, \ldots, e_{r}^{*}$ be the canonical basis (i.e., $\left.e_{j}^{*}=(0, \ldots, 0,1,0, \ldots, 0)\right)$ of the group \mathbb{Z}^{r}, and define, as above

$$
\mathfrak{e}_{I}^{*}=\sum_{i \in I} e_{i}^{*}
$$

Now consider the sequence

$$
\mathcal{S}=\prod_{I \in \mathscr{I}_{r}}\left(\mathfrak{e}_{I}^{*}\right)^{n-1},
$$

of length $2^{r-1}(n-1)$. We will prove that the corresponding sequence

$$
\varphi(\mathcal{S})=\prod_{I \in \mathscr{I}_{r}} \mathfrak{e}_{I}^{n-1}
$$

has no A-zero-sum subsequences of length n, which is equivalent to prove that given $A=\{-1,1\}$ and any subsequence $\mathcal{R}=g_{1} \cdots g_{n}$ of \mathcal{S}, it is not
possible to find $\epsilon_{1}, \ldots, \epsilon_{s} \in A$ such that (with an abuse of notation)

$$
\begin{equation*}
\epsilon_{1} g_{1}+\cdots+\epsilon_{n} g_{n} \equiv(0, \ldots, 0)(\bmod n) \tag{3}
\end{equation*}
$$

Writing $g_{k}=\left(c_{1}^{(k)}, \ldots, c_{r}^{(k)}\right)$, for $1 \leq k \leq n$, it follows from (3) that, for every $j \in\{1, \ldots, r\}$, we have

$$
\begin{equation*}
\sum_{k=1}^{n} \epsilon_{k} c_{j}^{(k)} \equiv 0(\bmod n) \tag{4}
\end{equation*}
$$

For every $1 \leq j \leq r$, let us define the sets

$$
A_{j}=\left\{\ell \mid c_{j}^{(\ell)}=1\right\}
$$

Since $c_{j}^{(\ell)} \in\{0,1\}$ and $\epsilon_{j} \in\{-1,1\}$ for any j and any ℓ, we must have, according to (4), that either

$$
\begin{equation*}
\left|A_{j}\right|=n \quad \text { or } \quad\left|A_{j}\right| \text { is even. } \tag{5}
\end{equation*}
$$

Since $g_{\ell}=\mathfrak{e}_{I_{\ell}}$, for some I, by the definition we have $\sum_{j=1}^{r} c_{j}^{(\ell)}=|I|$ for all ℓ, then

$$
\sum_{j=1}^{r}\left|A_{j}\right|=\sum_{j=1}^{r} \sum_{\ell=1}^{n} c_{j}^{(\ell)}=\sum_{\ell=1}^{n} \sum_{j=1}^{r} c_{j}^{(\ell)}=\left|I_{1}\right|+\cdots+\left|I_{n}\right|
$$

an odd sum of odd numbers. Hence there exists a \jmath_{0}, such that $\left|A_{j_{0}}\right|=n$ (see (5)), but then, it follows from (4) that $\sum_{k=1}^{n} \epsilon_{k} c_{j_{0}}^{(k)}=n$ and therefore $\epsilon_{1}=\cdots=\epsilon_{n}=1$. And the important consequence is that we must have $g_{1}=\cdots=g_{n}$, which is impossible since in the sequence \mathcal{S} no element appears more than $n-1$ times.

Remark 1. If we consider the sequence $\varphi(\mathcal{S})=\prod_{I \in \mathscr{I}_{r}} \mathfrak{e}_{I}$, for $n=3$, we see that this does not satisfy the condition $\left(\eta_{A}\right)$. So $\eta_{A}\left(C_{3}^{r}\right) \geq 2^{r-1}+1$ for any $r \in \mathbb{N}$, which is an improvement of the item (ii) of the Lemma 1.

2.2. The upper bound for $s_{A}\left(C_{n}^{r}\right)$

Let us consider the set of elements of the group C_{n}^{r} as the union $\{0\} \cup G^{+} \cup G^{-}$, where if $g \in G^{+}$then $-g \in G^{-}$. And write the sequence \mathcal{S} as

$$
\mathcal{S}=0^{m} \prod_{g \in G^{+}}\left(g^{v_{g}(\mathcal{S})}(-g)^{v_{-g}(\mathcal{S})}\right)
$$

First observe that if for some $g, v_{g}(\mathcal{S})+v_{-g}(\mathcal{S}) \geq n$, then we can find a subsequence $\mathcal{R}=c_{1} \cdots c_{n}$ of \mathcal{S}, which is an A-zero-sum, for $A=\{-1,1\}$, and any sum of n equal elements is equal to zero in C_{n}^{r}. Now consider $m \geq 1$ and $m+v_{g}(\mathcal{S})+v_{-g}(\mathcal{S})>n$, then we can find a subsequence $\mathcal{R}=h_{1} \cdots h_{t}$ of \mathcal{S} of even length $t \geq n-m$ with $h_{j} \in\{-g, g\}$. Since $A=\{-1,1\}$, this is an A-zero-sum. Hence, the subsequence $T=0^{m^{*}} \mathcal{R}$ ($m^{*} \leq m$) of \mathcal{S} is an A-zero-sum of length n.

Thus assume that, for every g in \mathcal{S} we have $v_{g}(\mathcal{S})+v_{-g}(\mathcal{S}) \leq n-m$, which gives

$$
|\mathcal{S}| \leq\left\{\begin{array}{cc}
m+\frac{n^{r}-1}{2}(n-m) & \text { if } m>0 \text { even } \\
m-1+\frac{n^{r}-1}{2}(n-m) & \text { if } m>0 \text { odd } \\
\frac{n^{r}-1}{2}(n-1) & \text { if } m=0
\end{array}\right.
$$

for $\left|G^{+}\right|=\frac{n^{r}-1}{2}$. We observe than in the case m even $m+\frac{n^{r}-1}{2}(n-m) \leq$ $2+\frac{n^{r}-1}{2}(n-2) \leq 2+\frac{n^{r}-1}{2}(n-2)+\frac{n^{r}-1}{2}-1$ and the equality only happens when $n=3$ and $r=1$. In any case, if $|\mathcal{S}| \geq \frac{n^{r}-1}{2}(n-1)+1$, it has a subsequence of length n which is an A-zero-sum.

Remark 2. For $n=3$, the upper bound for $s_{A}\left(C_{3}^{r}\right)$ can be improved using the result of Meshulam[12] as follows. According to Proposition 2, $s_{A}\left(C_{3}^{r}\right)=g_{A}\left(C_{3}^{r}\right)$ for $r \geq 2$, and it follows from the definition that $g_{A}\left(C_{3}^{r}\right) \leq g\left(C_{3}^{r}\right)$, where $g\left(C_{3}^{r}\right)$ is the invariant $g_{A}\left(C_{3}^{r}\right)$ with $A=\{1\}$. Now we use the Theorem 1.2 of [12] to obtain $s_{A}\left(C_{3}^{r}\right)=g_{A}\left(C_{3}^{r}\right) \leq g\left(C_{3}^{r}\right) \leq$ $2 \times 3^{r} / r$.

3. Proof of Theorem 2

Now we turn our attention to prove the following proposition.
Proposition 3. If $r>3$ is odd and $A=\{-1,1\}$ then $\eta_{A}\left(C_{3}^{r}\right) \geq 2^{r-1}+$ $\binom{r-1}{\delta}$, where

$$
\delta=\delta(r)=\left\{\begin{array}{lll}
\frac{(r-3)}{2} & \text { if } r \equiv 1 \quad(\bmod 4) \tag{6}\\
\frac{(r-5)}{2} & \text { if } r \equiv 3 \quad(\bmod 4)
\end{array}\right.
$$

Proof. We will prove this proposition by presenting an example of a sequence of length $2^{r-1}+\binom{r-1}{\delta}-1$ with no A-zero-sum subsequences of length smaller or equal to 3 . Let $\ell=\binom{r-1}{\delta}$, and consider the sequence

$$
\mathcal{S}=\mathcal{E} . \mathcal{G}=\left(\prod_{I \in \mathscr{I}_{r-2}} \mathfrak{e}_{I}\right) \cdot g_{1} \cdots g_{\ell}
$$

with

$$
\begin{aligned}
g_{1} & =(-1, \underbrace{-1, \ldots,-1}_{\delta}, 1,1, \ldots, 1) \\
& \vdots \\
g_{\ell} & =(-1,1, \ldots, 1, \underbrace{-1, \ldots,-1}_{\delta})
\end{aligned}
$$

where \mathfrak{e}_{I} and \mathscr{I}_{r-2} are defined in the beginning of section 2 . Clearly \mathcal{S} has no A-zero-sum subsequences of length 1 or 2 and also sum or difference of two elements of \mathcal{G} will never give another element of \mathcal{G}, for no element of \mathcal{G} has zero as one of its coordinates. Now we will consider $\mathfrak{e}_{s}-\mathfrak{e}_{t}$, where \mathfrak{e}_{s} and \mathfrak{e}_{t} represent the \mathfrak{e}_{I} 's for which s coordinates are equal to 1 and t coordinates are equal to 1 respectively. Thus, we see that $\mathfrak{e}_{s}-\mathfrak{e}_{t}$ will never be an element of \mathcal{G} since it necessarily has either a zero coordinate or it has an odd number of 1 's and -1 's (and $\delta+1$ is even).

Now, if for some s, t we would have

$$
\mathfrak{e}_{s}+\mathfrak{e}_{t}=g_{i},
$$

Then $\mathfrak{e}_{t}, \mathfrak{e}_{s}$ would have $\delta+1$ nonzero coordinates at the same positions (to obtain $\delta+1$ coordinates -1 's). Hence we would need to have

$$
r+(\delta+1)=s+t
$$

Which is impossible since $s+t$ is even and $r+(\delta+1)$ is odd, for δ is odd in any of the two cases.

Thus, the only possible A-zero-sum subsequence of length 3 would necessarily include one element of \mathcal{E} and two elements of \mathcal{G}.

Let v, w be elements of \mathcal{G}. Now it simple to verify that (the calculations are modulo 3) either $v+w$ or $v-w$ have two of their entries with opposite signs (for $\delta(r)<(r-1) / 2)$ and hence either of them can not be added to an $\pm \mathfrak{e}_{I}$ to obtain an A-zero-sum, since all its nonzero entries have the same sign.

Proposition 4. Let $r>4$ be even, $m=\left\lfloor\frac{3 r-4}{4}\right\rfloor$ and $A=\{-1,1\}$. Then

$$
\eta_{A}\left(C_{3}^{r}\right) \geq \sum_{\substack{j=1 \\ j \text { odd }}}^{m}\binom{r}{j}+\ell(r)+1
$$

where

Proof. Consider the sequence $\mathcal{K}=g_{1} \cdots g_{\tau}$ with

$$
\begin{aligned}
g_{1} & =(\underbrace{-1, \ldots,-1}_{\delta}, 1,1, \ldots, 1) \\
& \vdots \\
g_{\tau} & =(1,1, \ldots, 1, \underbrace{-1, \ldots,-1}_{\delta})
\end{aligned}
$$

where

$$
\tau=\left\{\begin{array}{cll}
\ell(r) & \text { if } r \equiv 2 \quad(\bmod 4) \\
2 \ell(r) & \text { if } r \equiv 0 & (\bmod 4),
\end{array} \quad \text { and } \delta=\left\{\begin{array}{cll}
\frac{r-2}{2} & \text { if } r \equiv 2 & (\bmod 4) \\
\frac{r}{2} & \text { if } r \equiv 0 & (\bmod 4)
\end{array}\right.\right.
$$

and rearrange the elements of the sequence \mathcal{K}, and write it as

$$
\mathcal{K}=\prod_{i=1}^{\tau / 2} g_{i} \prod_{i=1}^{\tau / 2}\left(-g_{i}\right)=\mathcal{K}^{+} \mathcal{K}^{-}
$$

It is simple to observe that if $r \equiv 2(\bmod 4)$, then $\tau=\ell$ and $\mathcal{K}^{-}=\emptyset$.
Now define the sequence

$$
\mathcal{S}=\left(\prod_{I \in \mathscr{I}_{m}} \mathfrak{e}_{I}\right) \mathcal{G}
$$

where $\mathcal{G}=\mathcal{K}$ if $r \equiv 2(\bmod 4)$ or $\mathcal{G}=\mathcal{K}^{+}$if $r \equiv 0(\bmod 4)$, and $m=\left\lfloor\frac{3 r-4}{4}\right\rfloor$, a sequence of length $|\mathcal{S}|=\sum_{\substack{j=1 \\ j \text { odd }}}^{m}\binom{r}{j}+\ell(r)+1$.

The first important observation is that \mathcal{S} has no A-zero-sum subsequences of length 1 or 2 . And also sum or difference of two elements of \mathcal{G} will never be another element of \mathcal{G}, for it necessarily will have a zero as coordinate. Also $\mathfrak{e}_{I}-\mathfrak{e}_{J}$ will never be an element of \mathcal{G} since it necessarily has either a zero coordinate or it has an odd number of 1's and -1 's (and δ is even). Now, if for some s, t (both defined as in the proof of the Proposition 3) we would have

$$
\mathfrak{e}_{s}+\mathfrak{e}_{t}= \pm g_{j}, \text { for some } \jmath
$$

then $\mathfrak{e}_{t}, \mathfrak{e}_{s}$ would necessarily have δ nonzero coordinates at the same positions (to obtain δ coordinates -1 's). But then

$$
s+t=r+\delta \geq \frac{3 r-2}{2}, \text { for any value of } \delta
$$

which is impossible since

$$
s+t \leq 2 m \leq \frac{3 r-4}{2}
$$

Thus the only A-zero-sum subsequence of length 3 possible necessarily includes an element \mathfrak{e}_{t} and two elements of \mathcal{G}.

Let v, w elements of \mathcal{G}. First, observe that if they do not have -1 's in common positions, then $v+w$ has an even amount of zeros and an even amount of -1 's (since r and δ are both even), i.e., $v+w \neq \pm \mathfrak{e}_{I}$. If we make $v-w$ also have an even amount of nonzero coordinates, i.e., we haven't $\pm \mathfrak{e}_{I}$. Now, assuming that v, w have at last a -1 in same position, it simple to verify that (the calculations are modulo 3) either $v+w$ or $v-w$ have two or more of their entries with opposite signs and hence either of them can not be added to an $\pm \mathfrak{e}_{I}$ to obtain an A-zero-sum, since all its nonzero entries have the same sign.

Theorem 2 now follows from propositions 1, 2, 3 and 4.

4. Proof of Theorem 3

We start by proving the following proposition.
Proposition 5. For $A=\{-1,1\}$, we have
(i) $\eta_{A}\left(C_{3}^{2}\right)=3$;
(ii) $\eta_{A}\left(C_{3}^{3}\right)=5$;
(iii) $\eta_{A}\left(C_{3}^{4}\right)=11$;
(iv) $21 \leq \eta_{A}\left(C_{3}^{5}\right) \leq 23$.

Proof. By Propositions 1 and 2, we have that $s_{A}\left(C_{3}^{r}\right)=g_{A}\left(C_{3}^{r}\right)=$ $2 \eta_{A}\left(C_{3}^{r}\right)-1$, for $r>1$, and by definition, we have $g_{A}\left(C_{3}^{r}\right) \leq g\left(C_{3}^{r}\right)$ resulting in $\eta_{A}\left(C_{3}^{r}\right) \leq \frac{g\left(C_{3}^{r}\right)+1}{2}$, for $r>1$. It follows from

$$
g\left(C_{3}^{2}\right)=5([10]), g\left(C_{3}^{3}\right)=10, g\left(C_{3}^{4}\right)=21([11]), g\left(C_{3}^{5}\right)=46([5])
$$

that $\eta_{A}\left(C_{3}^{2}\right) \leq 3, \eta_{A}\left(C_{3}^{3}\right) \leq 5, \eta_{A}\left(C_{3}^{4}\right) \leq 11$ and $\eta_{A}\left(C_{3}^{5}\right) \leq 23$. It is easy to see that the sequences $(1,0)(0,1)$ and $(1,0,0)(0,1,0)(0,0,1)(1,1,1)$ has no A-zero-sum of length at most three, so $\eta_{A}\left(C_{3}^{2}\right)=3$ and $\eta_{A}\left(C_{3}^{3}\right)=5$. It is also simple to check that following sequences of lengths 10 and 20 respectively do not satisfy the condition $\left(\eta_{A}\right)$:

$$
\begin{gather*}
(1,1,0,0) \cdots(0,0,1,1)(1,1,1,0) \cdots(0,1,1,1) \\
\text { and } \tag{7}\\
(1,1,0,0,0) \cdots(0,0,0,1,1)(1,1,1,0,0) \cdots(0,0,1,1,1)
\end{gather*}
$$

hence $\eta_{A}\left(C_{3}^{4}\right)=11$ and $\eta_{A}\left(C_{3}^{5}\right) \geq 21$.
Proposition 5 together with propositions 1 and 2 gives the proof of item (i) of Theorem 3. The proof of the remaining three items is given in Proposition 7 below.

Before going further, we need a slight modification of a result due to Gao et al for $A=\{1\}$ in [4]. Here we shall use it in the case $A=\{-1,1\}$. The proof in this case is analogous to the original one, and shall be omit it.

Proposition 6. Let G be a finite abelian group, $A=\{-1,1\}$ and $H \leq G$. Let \mathcal{S} be a sequence in G of length

$$
\mathfrak{m} \geq\left(s_{A}(H)-1\right) \exp (G / H)+s_{A}(G / H)
$$

Then \mathcal{S} has an A-zero-sum subsequence of length $\exp (H) \exp (G / H)$. In particular, if $\exp (G)=\exp (H) \exp (G / H)$, then

$$
s_{A}(G) \leq\left(s_{A}(H)-1\right) \exp (G / H)+s_{A}(G / H)
$$

Proposition 7. For $A=\{-1,1\}$, we have
(i) $s_{A}\left(C_{3^{a}}^{3}\right)=4 \times 3^{a}-3$, for all $a \geq 1$;
(ii) $8 \times 3^{a}-7 \leq s_{A}\left(C_{3^{a}}^{4}\right) \leq 10 \times 3^{a}-9$, for all $a \geq 1$;
(iii) $16 \times 3^{a}-15 \leq s_{A}\left(C_{3^{a}}^{5}\right) \leq 22 \times 3^{a}-21$, for all $a \geq 1$.

Proof. It follows of (i) from Theorem 3 that $s_{A}\left(C_{3}^{3}\right)=4 \times 3-3=9$. Now assume that $s_{A}\left(C_{3^{a-1}}^{3}\right)=4 \cdot 3^{a-1}-3$. Thus, Proposition 6 yields

$$
\begin{aligned}
s_{A}\left(C_{3^{a}}^{3}\right) & \leq 3 \times\left(s_{A}\left(C_{3^{a-1}}^{3}\right)-1\right)+s_{A}\left(C_{3}^{3}\right) \\
& \leq 4 \times 3^{a}-3
\end{aligned}
$$

On the other hand, Theorem 1 gives $s_{A}\left(C_{3^{a}}^{3}\right) \geq 4 \times 3^{a}-3$, concluding the proof of (i).

Again by (i) from Theorem 3, we have that $s_{A}\left(C_{3}^{4}\right)=10 \times 3-9=21$. Now, assume that $s_{A}\left(C_{3^{a-1}}^{4}\right) \leq 10 \cdot 3^{a-1}-9$. It follows from Proposition 6 that

$$
\begin{aligned}
s_{A}\left(C_{3^{a}}^{4}\right) & \leq 3 \times\left(s_{A}\left(C_{3^{a-1}}^{4}\right)-1\right)+s_{A}\left(C_{3}^{4}\right) \\
& \leq 10 \times 3^{a}-9
\end{aligned}
$$

On the other hand, Theorem 1 gives the lower bound $s_{A}\left(C_{3^{a}}^{4}\right) \geq$ $8 \times 3^{a}-7$, concluding the proof of (ii). The proof of item (iii) is analogous to the proof of item (ii), again using (i) of the Theorem 3 and Theorem 1.

References

[1] S. D. Adhikari, Y. G. Chen, J. B. Friedlander, S. V. Konyagin, F. Pappalardi. Contributions to zero-sum problems. Discrete Math., 306:1-10, 2006.
[2] S. D. Adhikari, R. Balasubramanian, F. Pappalardi, P. Rath. Some zero-sum constants with weights. Proc. Indian Acad. Sci. (Math. Sci.), 128 (2):183-188, 2008.
[3] S. D. Adhikari, D. J. Grynkiewicz, Zhi-Wei Sun. On weighted zero-sum sequences. arXiv:1003.2186v1 [math.CO] 10 Mar 2010.
[4] R. Chi, S. Ding, W. Gao, A. Geroldinger, W. A. Schmid. On zero-sum subsequence of restricted size. IV. Acta Math. Hungar., 107(4):337-344, 2005.
[5] Y. Edel, S. Ferret, I. Landjev, L. Storme. The classification of the largest caps in $A G(5,3)$. J. Comb. Theory, 99:95-110, 2002.
[6] P. Erdös, A. Ginzburg and A. Ziv. Theorem in the additive number theory. Bulletim Research Council Israel 10F, 41-43, 1961.
[7] W. Gao, A. Geroldinger. Zero-sum problem in finite abelian groups: A survey. Expo. Math., 24(6): 337-369, 2006.
[8] D. J. Grynkiewicz. A weighted Erdös-Ginzburg-Ziv theorem. Combinatorica 26, no. 4, 445-453, 2006.
[9] H. Harborth. Ein Extremal Problem für Gitterpunkte. J. Reine Angew. Math., 262: 356-360, 1973.
[10] A. Kemnitz. On a lattice point problem. Ars Combinatoria, 16: 151-160, 1983.
[11] D. E. Knuth, Computerprogramme, http://www-cs-faculty.stanford.edu/~knuth/programs/setset-all.w.
[12] R. Meshulam. On subsets of finite abelian groups with no 3-term arithmetic progressions. J. Comb. Theory, Ser. A, 71: 168-172, 1995.
[13] R. Thangadurai. A variant of Davenport's constant. Proc. Indian Acad. Sci. (Math. Sci.), 117: 147-158, 2007.

Contact information

H. Godinho,	Departamento de Matemática, Universidade de
D. Marques	Brasília, Brasília-DF, Brazil
	E-Mail: hemar@mat.unb.br,
	diego@mat.unb.br

A. Lemos

Departamento de Matemática, Universidade Federal de Viçosa, Viçosa-MG, Brazil E-Mail: abiliolemos@ufv.br

Received by the editors: 13.12.2011
and in final form 26.06.2012.

[^0]: The first two authors were partially supported by a grant from CNPq-Brazil. The third author is partially supported by FAP-DF, FEMAT and CNPq-Brazil

 2010 MSC: 20D60, 20K01.
 Key words and phrases: Weighted zero-sum, abelian groups.

