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Abstract. We investigate graph-theoretical properties of
Markov graphs from dynamical systems.

1. Introduction

This paper is concerned with the so-called Markov graphs which
are very useful in one-dimension dynamics. Using them we can prove
in combinatorial way the famous Sharkovsky’s theorem (see [1]). More,
considering the interval as homeomorphic image of a path-graph one can
define Markov graphs in a similar way for topological trees and then prove
an analogue of Sharkovsky’s theorem for them (see [3]). Finally, Markov
graphs can be naturally defined for special class of continuous maps on
arbitrary topological graphs (see [4]).

In this paper we investigate the properties of Markov graphs from
graph-theoretical point of view.

2. Basic definitions

Recall some basic definitions from graph theory.
An undirected graph G is a pair (V,E), where E is a collection of

two-element subsets from V . The sets V = V (G) and E = E(G) are
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called the vertex set and the edge set of a graph G. Two vertices u and v
in G are adjacent if they are joined by an edge, i.e. if uv ∈ E(G). The
edge e = uv ∈ E(G) is incident to vertices u and v. A vertex is called a
leaf if it incident exactly to one edge.

Two graphs G1 and G2 are isomorphic if there exists adjacency pre-
serving bijection between their vertex sets. Every such bijection is called
an isomorphism. We write G1 ≃ G2 if G1 and G2 are isomorphic. Au-
tomorphism is a graph isomorphism to itself. Automorphism group of
graph G is denoted by AutG.

A graph is called connected if for every pair of vertices there exists
a path joining them. A connected component of a graph is its maximal
connected subgraph. A bridge is an edge whose deletion increases the
number of connected components. Tree is a connected graph without
cycles. Forest is a disjoint union of trees.

A directed graph D is a pair D = (V,A), where A ⊂ V × V . The sets
V = V (D) and A = A(D) are called the vertex set and the arc set of D.
If (u, v) ∈ A(D) then u is a predecessor of v and v is a successor of u.
The number of predecessors of a given vertex is called its indegree and
the number of successors is its outdegree. If for a vertex v ∈ V (D) we
have (v, v) ∈ A(D) then we say that v has a loop.

Now let us precisely define what we will call by topological graph. The
closed interval [a, b] is called an edge. Its end-points are called vertices. A
topological graph is a collection of edges with the property that intersection
of two of them is empty or consists of one vertex. Topological tree is a
topological graph which is contractible to a point. A (unique) shortest
path between two vertices u and v in topological tree X will be denoted
as [u, v]X . A graph X \v is obtained from X by deletion the vertex v with
all interiors of edges incident to v. Similarly, a graph X \ e is obtained
from X by deletion only the interior of the edge e.

In this paper we consider only finite topological graphs and their maps.
More, every topological graph will be called simply as graph and obviously
it shares all the definitions above. Now we proceed to the maps.

Definition 1. Let X be a graph and f : X → X be a continuous map.

We will call f a

- vertex map if f(V (X)) ⊂ V (X);

- permutation map if f(V (X)) = V (X) (i.e. if restriction f |V (X) is a
permutation of V (X));

- cyclic permutation map if f |V (X) is a cyclic permutation.
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Definition 2. Let X be a graph and f be a vertex map on X. The
Markov graph Γ(X, f) is a directed graph with the vertex set E(X), and
there exists an arc e1 → e2, if e1 “covers” e2 under f , i.e. if e2 ⊂ f(e1).

Note that since f is continuous, then for every edge e = uv ∈ E(X)
we have P = P [f(u), f(v)] ⊂ f(e) for some f(u) − f(v) path P . In case
of X is a tree it means that [f(u), f(v)]X ⊆ f(e).

Definition 3. Let X be a tree and f be a vertex map on X. The map f
is called minimal if [f(u), f(v)]X = f(e) for every edge e = uv ∈ E(X).

It is easy to see that if f1 and f2 are two minimal maps on a tree
X with f1|V (X) = f2|V (X) then Γ(X, f1) = Γ(X, f2). So one can define a
discrete Markov graph for every map on V (X).

Definition 4. Let X be a tree and σ : V (X) → V (X) be some map.
The discrete Markov graph Γ(X,σ) is a graph Γ(X, f), where f is some
minimal map on X with f |V (X) = σ.

Thus Γ(X,σ) is a purely combinatorial object and obviously it can
be defined for graph-theoretical trees and their maps.

Example 1. Consider the following tree X:

4• 3• 5•

•
1

•
2

and the map σ =
( 1 2 3 4 5

2 4 5 2 1

)
on V (X).

Then the correspond discrete Markov graph Γ(X,σ) is following:

•
e35

�� //

��

•
e23

oo

��•
e34

OO ??

•
e12

OO

oo
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3. Results

First of all, let us formulate an analogue of Sharkovsky’s theorem
for trees. Note, that this result was proven using signed discrete Markov
graphs.

Theorem 1 ([3]). Let X be a tree with n vertices. Let f be a cyclic
permutation map on X. Then:

1) If n is not a divisor of 2k then f has a periodic point with period
2k.

2) If n = 2km, where m > 1 is odd and k > 0, then f has a periodic
point with period 2kl for every l > m.

3) If n is odd then f has a periodic point with period n− 1.

Also, using discrete Markov graphs one can easily construct an ir-
reducible representation of Sn. In what follows we denote by MG an
adjacency matrix of a graph G.

Theorem 2 ([3, 6]). Let X be a tree with n vertices. Then M : Sn →
Gl(n− 1, 2), where M(σ) := MΓ(X,σ) is an irreducible representation of
Sn.

Remark 1. Since X is arbitrary tree, we have a family of monomorphisms
from Sn into GL(n− 1, 2).

Corollary 1. Let X be a forest with n vertices and X1, . . . , Xm be its
trees. Consider the set Π of all permutations σ of V (X) with σ(V (Xi)) ⊂
V (Xi) for every i ∈ {1, . . . ,m}. Then M : Sn → Gl(n − m, 2), where
M(σ) := MΓ(X,σ) is a representation of a group Π.

Proof. We can apply Theorem 2 for each of the Xi.

Corollary 2. Let X be a tree and σ1, σ2 be two permutations of V (X).
1) M−1

Γ(X,σ1) = MΓ(X,σ−1
1 ).

2) If Γ(X,σ1) ≃ Γ(X,σ2) then Γ(X,σk1 ) ≃ Γ(X,σk2 ) for every k ∈ N.
3) AutΓ(X,σ1) ≃ AutΓ(X,σ−1

1 ).

Proof. 1) Denote that as I is an identity matrix and as id is identity
permutation. So, we have I = MΓ(X,id) = MΓ(X,σ1)MΓ(X,σ−1

1 ). Whence,

M−1
Γ(X,σ1) = MΓ(X,σ−1

1 ).

2) Let Γ(X,σ1) ≃ Γ(X,σ2). Then there exists a permutation matrix
T such that

TMΓ(X,σ1) = MΓ(X,σ2)T. (1)
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Now we prove by induction that equality TMΓ(X,σk1 ) = MΓ(X,σk2 )T
holds for every k ∈ N.

Equality (1) gives us a basis. Induction step:

TMΓ(X,σk+1
1 ) = TMΓ(X,σ1)MΓ(X,σk1 ) = MΓ(X,σ2)TMΓ(X,σk1 )

= MΓ(X,σ2)MΓ(X,σk2 )T = MΓ(X,σk+1
2 )T.

3) Immediately follows from 1).

Proposition 1. Let X be a connected graph and f be a permutation map
on V (X). Then

1) Every vertex from Γ(X, f) has non-zero outdegree.
2) If edge e ∈ E(X) is a bridge, then the correspond vertex in Γ(X, f)

has a non-zero indegree.

Proof. 1) Let e = uv ∈ E(X). Since f is a bijection on V (X), we have
σ(u) 6= σ(v) for every u, v ∈ V (X). But X is connected. Thus the
collection of all f(u) − f(v) paths in X is nonempty, which means that e
has a non-zero outdegree in Γ(X, f).

2) Now let e ∈ E(X) be a bridge. Deleting the edge e from X we
obtain a graph X \ e with two connected components:

X \ e = X1 ∪X2, X1 ∩X2 = ∅.

Therefore, since f is a bijection on V (X), we have a partition V (X) =
f−1(V (X1)) ∪ f−1(V (X2)). Again, X is connected, so there exists an
edge e′ = u′v′ ∈ E(X) such that u′ ∈ f−1(V (X1)), v′ ∈ f−1(V (X2)).
Obviously, e′ “covers” e under f .

Corollary 3. Let X be a tree and σ be a permutation of V (X). Then
every vertex from Γ(X,σ) has a non-zero both indegree and outdegree.

Proof. Tree is a connected graph in which every edge is a bridge.

Denote the set of all leaf vertices of X as L(X).

Lemma 1. Let X be a graph with L(X) 6= ∅ and f be a vertex map on X.
Let us fix a vertex v ∈ L(X) and the (unique) edge ev = vv0 ∈ E(X).
Define a new map fv : X \ v → X \ v as follows

fv(x) =

{
f(x), if x /∈ f−1(ev)
v0, if x ∈ f−1(ev).

Then fv is a vertex map on X \ v and

Γ(X, f) \ ev = Γ(X \ v, fv).
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Proof. It is obvious that fv is a vertex map on X \ v.

Now put Γ1 = Γ(X, f) \ ev and Γ2 = Γ(X \ v, fv). Since v is a leaf
vertex, then V (Γ1) = E(G) \ {ev} = E(X \ v) = V (Γ2) =: Y . Also,
directly from the definition of fv it follows that for every e ∈ Y we have
f(e) ∩ (X \ v) = fv(e). Thus A(Γ1) = A(Γ2).

Further, the symbol fix σ denotes the set of all fixed points of σ.

Theorem 3. Let X be a tree and σ be a permutation of V (X) with
fix σ = ∅. Then Γ(X,σ) has a vertex with a loop.

Proof. Since X is a tree, it is sufficient to find two adjacent vertices u
and v, such that the edge uv lies on σ(u) − σ(v) path. If so, then the
vertex in Γ(X,σ) which corresponds to uv has a loop.

Fix a root v0 ∈ V (X) and define a partial order on V (X) as follows:

v1 6 v2, if v1 ∈ [v0, v2]X .

Consider the set

M = {v ∈ V (X)|σ(v) > v}.

Since fix σ = ∅, then v0 ∈ M . Therefore M is nonempty, which
means that M has maximal elements. Let v′ be some maximal element
in M . Consider the upper cone of v′

N = {v ∈ V (X)|v > v′}.

Analogously, σ(v′) ∈ N . Therefore N is nonempty, which means that N
has minimal elements. Let u′ be some minimal element in N . Then v′ and
u′ are adjacent in X and σ(v′) > v′, σ(u′) 6 u′. Again, from fix σ = ∅ it
follows that σ(u′) < u′. So, we obtain the next path:

σ(u′) 6 v′ < u′
6 σ(v′).

Now, from the definition of partial order 6 it follows that u′v′ lies on
σ(u′) − σ(v′) path.

Proposition 2. Let X be a tree and σ : V (X) → V (X) be some map with
fix σ = ∅. Also, let u ∈ L(X). Then the vertex in Γ(X,σ), correspond
to the edge e = uv has a loop if and only if σ(v) = u.
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Proof. If σ(v) 6= u, then, since fix σ = ∅, we have that σ(u) 6= u. But
the vertex u is a leaf. Therefore u /∈ [σ(v), σ(u)]X . It means that the
vertex in Γ(X,σ), correspond to e = uv doesn’t have a loop. Conversely,
let σ(v) = u. But σ(u) 6= u. Thus, u, v ∈ [u, σ(u)]X = [σ(v), σ(u)]X .

Corollary 4. Let X be a tree and σ be a permutation of V (X) with
fix σ = ∅. Also, let there exists two leaves in X with the distance 2
between them. Then Γ(X,σ) has a vertex without loop.

Proof. Let u1, u2 ∈ L(X) and u1v, u2v ∈ E(X) for some v ∈ V (X). If
the vertex in Γ(X,σ), corresponds to u1v has a loop, then σ(v) = u1. So,
we have σ(v) 6= u2 and thus the vertex in Γ(X,σ) which corresponds to
u2v doesn’t have a loop.
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