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On some linear groups,

having a big family of G-invariant subspaces

L. A. Kurdachenko, A. V. Sadovnichenko

Abstract. Let F be a field, A a vector space over F ,
GL(F,A) be the group of all automorphisms of the vector space
A. If B is a subspace of A, then denote by BFG the G-invariant
subspace, generated by B. A subspace B is called nearly G-invariant,
if dimF (BFG/B) is finite. In this paper we described the situation
when every subspace of A is nearly G-invariant.

Introduction

Let F be a field, A a vector space over F and GL(F,A) a group
of all F -automorphisms of A. If G is a subgroup of GL(F,A) then, as
usual, a subspace B of A is called G-invariant, if bx ∈ B for every b ∈ B
and x ∈ G. The theory of linear groups over finite dimensional space is
very well developed. This is one of the most developed group-theoretical
theories (see, for example, the books [1, 10, 11]). However, in the case when
A has infinite dimension over F , the situation became totally different.
This case is much more complicated and its consideration requires some
additional restrictions. Imposing classical finiteness conditions is one of
the most efficient and natural approaches here. The study of infinite
dimensional linear groups satisfying some finiteness conditions proved to
be very promising. Many valuable results have been obtained in this way
(see, for example, the surveys [9, 5]).

Recently began to study another approach in studying of infinite di-
mensional linear groups. This approach is based on the notion of invariance
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of action of a group G. We have the following simple fact: if every subspace
of A is G-invariant, then G must be abelian. Consequently the study of
infinite dimensional linear groups having very big family of G-invariant
subspaces could be fruitful. This has been shown in the papers [2, 3, 7, 8].
In this paper this approach continues to be implemented.

If B is a subspace of A, then BFG =
∑
g∈GBg is a G-invariant

subspace. It follows that BFG is the least G-invariant subspace of A,
including B. The dimension dimF (BFG/B) is called the upper measure
of non G-invariance. If dimF (BFG/B) = 0, then B = BFG. In other
words, every subspace of A is G-invariant. Therefore it is natural to
consider a situation, when the upper measures of non G-invariance of
all subspaces of A are finite. A subspace B of a vector space A is called
nearly G-invariant if the upper measure of non G-invariance of B is finite.

1. Preliminary results

We will need some concepts and results of modules theory.
Let R be a ring, A a module over R. Put

TorR(A) = {a ∈ A | AnnR(a) 6= 〈0〉}.

We observe that if R is an integral domain, then TorR(A) is an R-
submodule. The submodule TorR(A) is called the R-periodic part of A.
An R-module A is called R-periodic if A = TorR(A). An R-module A is
called R-torsion-free, if TorR(A) = 〈0〉.
It is easy to see that a factor-module A/TorR(A) is R-torsion-free.

Let now G be a subgroup of GL(F,A), g ∈ G. Denote by J a group
ring FX where X = 〈x〉 is an infinite cyclic group. Define the action of
x on A by the rule: ax = ag for each element a ∈ A. This action can be
continue in a natural way to the action of a ring J on A, thus A become
an J-module. For this case we will say that A is an J(g) module.

Lemma 1. Let G be a subgroup of GL(F,A) and suppose that every
subspace of A is nearly G-invariant. Then A is periodic as J(g)-module
for every element g ∈ G.

Proof. If g has finite order, say n, then gn − 1 ∈ AnnJ (A). Let now g be
an element of G, having infinite order. Suppose that the result is false;
that is, there exists some element a ∈ A such that AnnF 〈g〉(a) = {0}.
Then aF 〈g〉 ∼= F 〈g〉, so that aF 〈g〉 =

⊕
n∈N aF 〈gn〉. Put h = g2 and D =

aF 〈h〉. Then aF 〈g〉 = D⊕Dg. We remark that dimF (D) and dimF (A/D)
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are infinite. Put C = DFG. By our conditions dimF (C/D) is finite. It
follows that dimF ((C ∩ aF 〈g〉)/D) is finite, and hence dimF (aF 〈g〉/(C ∩
aF 〈g〉)) is infinite. On the other hand, C ∩ aF 〈g〉 = D ⊕ (C ∩ Dg).
Since C is G-invariant, Dg ≤ C, so that Dg = C ∩ Dg. It follows that
C = C ∩ aF 〈g〉, and we obtain a contradiction. This contradiction proves
a result.

Let R be a commutative ring, A an R-module. We define the R-
assassinator of A as the set

AssR(A) = {P | P is a prime ideal of R such that AnnA(P ) 6= 〈0〉}.

Let now D be a Dedekind domain, I be an ideal of D. Put

AI = {a ∈ A | aIn = 〈0〉 for some n ∈ N}.

Clearly, AI is a D-submodule of A. The D-submodule AI is called the
I-component of A. If A = AI , then A is called an I-module. If P is a
prime ideal, then instead I-submodule we will say sometimes primary
submodule.
If A is D-periodic D-module, then A =

⊕
P∈π AP where π = AssD(A)

(see, for example, [6, Corollary 3.8]). Put

ΩI, k(A) = {a ∈ A | aIk = 〈0〉}.

It is easy to see that ΩI, k(A) is a D-submodule and

ΩI, 1(A) ≤ ΩI, 2(A) ≤ . . . ≤ ΩI, k(A) ≤ . . .

AI =
⋃

k∈N

ΩI, k(A).

Further put A[1] =
⊕

P∈π ΩP, 1(Ap), where π = AssD(A). If A
is a D-periodic module and B is a non-zero D-submodule of A, then
B ∩A[1] 6= {0}.

Lemma 2. Let G be a subgroup of GL(F,A) and suppose that every
subspace of A is nearly G-invariant. Let g be an element of G and consider
A as J(g)-module. Then A = A[1] + C where C satisfies the following
conditions:

(i) C is an FG-submodule of A;

(ii) C is artinian as an J(g)-submodule.
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Proof. Put L = A[1]. We have A = L ⊕ B for some subspace B. Put
C = BFG. Since B is nearly G-invariant, dimF (C/B) is finite. We have
C = B⊕ (C ∩L). The finiteness of dimF (C/B) implies that dimF (C ∩L)
is finite. Clearly C ∩ L = C[1]. The finiteness of dimF (C[1]) implies that
C is artinian J(g)-module (see, for example, [6, Corollary 7.12]).

Let D be a Dedekind domain, A be a simple D-module. Then A ∼=
D/P for some maximal ideal P . We noted that D/P k and P/P k+1 are
isomorphic as D-modules for any k ∈ N (see, for example, [6, Corollary
1.28]). In particular, the D-module D/P k is embedded in the D-module
D/P k+1, k ∈ N . Therefore we can consider the injective limit of the
family of D-modules {D/P k | k ∈ N}. Put

CP∞ = liminj{D/P k | k ∈ N}.

The D-module CP∞ is called the Prüfer P-module. It follows from the
construction that CP∞ is a P -module, moreover,

ΩP, k(CP∞) ∼=D D/P k, k ∈ N.

Furthermore,

ΩP, k+1(CP∞)/ΩP, k(CP∞) ∼= (D/P k+1)/(P/P k+1) ∼= D/P.

Hence, if C is a D-submodule of CP∞ and C 6= CP∞, then C =
ΩP, k(CP∞) for some k ∈ N . Similarly, if b /∈ ΩP, k−1(CP∞), then
C = bD.

Observe also that a Prüfer P -module is monolithic and its monolith
coincides with ΩP, 1(CP∞).

Lemma 3. Let F be a field, J = F 〈x〉 be a group ring of infinite cyclic
group 〈x〉 over F and A be an artinian J-module. If dimF (A) is infinite,
then A includes a F -subspace B, which is not nearly 〈x〉-invariant.

Proof. Since dimF (A) is infinite, A includes a Prüfer P -submodule C for
some maximal ideal P of J . Then C generated by elements {cn | n ∈ N}
such that cnJ = Cn ≤ Cn+1 = cn+1J, n ∈ N and C =

⋃
n∈N Cn.

Furthermore, cn+1 /∈ Cn, n ∈ N , so that the elements cn, n ∈ N , are
linearly independent. It follows that an F -subspace E, generated by
cn, n ∈ N , is

⊕
n∈N cnF . Put B =

⊕
k∈N c2kF , then dimF (E/B) is

infinite, therefore dimF (C/B) is infinite. Assume that B is nearly 〈x〉-
invariant. Then B has a finite codimension in D = BF 〈x〉 = B〈x〉. It
follows that dimF (C/D) is infinite. On the other hand, the equations

c2k−1F 〈x〉 = C2k−1 ≤ C2k = c2kF 〈x〉 = (c2kF )〈x〉, k ∈ N,
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shows that Cn ≤ D for all n ∈ N , so that C = D. This contradiction
proves a result.

Corollary 1. Let G be a subgroup of GL(F,A) and suppose that every
subspace of A is nearly G-invariant. Let g be an element of G and consider
A as J(g)-module. Then A = A[1] + C where dimF (C) is finite.

Proof. Lemma 2 implies that A = A[1] + C where an FG-submodule
C is artinian as an J(g)-submodule. Lemma 3 shows that in this case
dimF (C) must be finite.

In the next Proposition we describe the local structure of vector space,
whose subspaces are nearly G-invariant.

Proposition 1. Let G be a subgroup of GL(F,A) and suppose that every
subspace of A is nearly G-invariant. Let g be an arbitrary element of G.
Then A includes an F 〈g〉-submodule D satisfying the following conditions:

(i) dimF (A/D) is finite;

(ii) every subspace of D is 〈g〉-invariant.

Proof. Put L = A[1]. Using Corollary 1 we obtain that L has finite
codimension. For an F 〈g〉-submodule L we have a direct decomposition
L =

⊕
λ∈ΛAλ, where Aλ is a simple F 〈g〉-submodule for every λ ∈ Λ.

Put M = {λ ∈ Λ | dimF (Aλ) > 1} and B =
⊕

λ∈M Aλ. Since every
subspace of A is nearly G-invariant, it is likewise nearly 〈g〉-invariant. An
application of Lemma 2.1 of paper [7] shows that dimF (B) is finite. Put
∆ = Λ \ M . Since dimF (Aλ) = 1 for each λ ∈ ∆, Aλ = aλF for some
elements aλ ∈ Aλ, λ ∈ ∆. It follows that aλg = αλaλ for some elements
αλ ∈ F , λ ∈ ∆. Repeating almost word to word the arguments from a
proof of Proposition 2.2 of paper [7], we obtain that there exists a subset
Γ ⊆ ∆ such that αλ = αµ = α for all λ, µ ∈ Γ, and a subset ∆ \ Γ is
finite. It follows that a subspace D =

⊕
λ∈ΓAλ has finite codimension. If

a ∈ D, then a =
∑

1≤j≤n βλ(j)aλ(j), where βλ(j) ∈ F , λ(j) ∈ Γ, 1 ≤ j ≤ n.
We have

ag =
∑

1≤j≤n

(βλ(j)aλ(j))g =
∑

1≤j≤n

βλ(j)(aλ(j)g) =
∑

1≤j≤n

βλ(j)(αaλ(j)) =

∑

1≤j≤n

αβλ(j)aλ(j) = α
∑

1≤j≤n

βλ(j)aλ(j) = αa.

This equation shows that every subspace of D is 〈g〉-invariant.
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Lemma 4. Let G be a subgroup of GL(F,A) and suppose that every
subspace of A is nearly G-invariant. Then dimF (aFG) is finite for each
element a ∈ A.

Proof. Let g1 ∈ G and consider A1 = aF 〈g1〉. By Lemma 1 an J(g1)-
module A is periodic, so that AnnJ(a1) 6= {0}. Recall that every non-
zero ideal of J has finite F -dimension. Hence A1

∼= F 〈x〉/AnnJ(a1) has
finite F -dimension. If ag ∈ A1 for each element g ∈ G, then aFG =
A1 and all is proved. Therefore suppose that there exists an element
g2 ∈ G such that ag2 /∈ A1. Again a subspace aF 〈g2〉 has finite F -
dimension, therefore and A2 = A1 + aF 〈g2〉 also has finite F -dimension.
By ag2 /∈ A1 we obtain that ag1F + ag2F = ag1F ⊕ ag2F . Suppose
that aFG has infinite F -dimension. Then using the above arguments
we can find an infinite subset {gn | n ∈ N} of elements of G such
that ag1F + . . . + agnF = ag1F ⊕ . . . ⊕ agnF for all n ∈ N . It follows
that an F -subspace B, generated by agnF, n ∈ N , is

⊕
n∈N agnF . Put

C =
⊕

k∈N ag2kF, D =
⊕

k∈N ag2k−1F , then B = C ⊕ D and both
dimF (B/C) and dimF (B/D) are infinite. Let E = CFG. Since C is
nearly G-invariant, dimF (E/C) is finite and hence dimF ((E ∩B)/C) is
finite. It follows that dimF (B/(E ∩ B)) is infinite. On the other hand,
since E is G-invariant, a = (ag1)g−1

1 ∈ E. Then ag2k−1 ∈ E for all k ∈ N ,
so that D ≤ E and hence B ≤ E. This contradiction proves a result.

2. Proof of the main results

Now we can prove the following main results of this paper.

Theorem 1. Let G be a subgroup of GL(F,A) and suppose that every
subspace of A is nearly G-invariant. Then A includes an FG-submodule
C satisfying the following conditions:

(i) dimF (C) is finite;

(ii) every subspace of A/C is G-invariant.

Proof. If every subspace of A is G-invariant, then all is proved. Suppose
now that there are the elements a1 ∈ A and g1 ∈ G such that a1g1 /∈ a1F .
Put d1 = a1(g1 − 1). It readily follows that dimF (a1F + d1F ) = 2, that
is a1F + d1F = a1F ⊕ d1F . By Lemma 4 an FG-submodule A1 = a1FG
has finite dimension and d1 ∈ A1. Proposition 1 shows that A includes an
F 〈g1〉-submodule D1 such that dimF (A/D1) is finite and every subspace
of D1 is 〈g1〉-invariant. Let Y1 be a complement to D1, that is Y1 is an
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F -subspace with a property A = D1 ⊕ Y1. Then dimF (Y1) is finite. If
ag ∈ aF + A1 for each element a ∈ D1, then put C = A1 + Y1FG. By
Lemma 4 dimF (Y1FG) is finite, so that an FG-submodule C has finite
dimension. Furthermore, by ag ∈ aF +A1 we can see that every subspace
of A/C is G-invariant. Therefore assume that there exist the elements
a2 ∈ D1, g2 ∈ G such that a2g2 /∈ a2F + A1. Put d2 = a2(g2 − 1), then
dimF ((a2F + d2F +A1)/A1) = 2. It follows that a2F + d2F ∩A1 = {0}.
In particular, (a2F +d2F )∩(a1F +d1F ) = {0}. Put A2 = A1 +a2FG. By
Lemma 4 dimF (a2FG) is finite, so that and dimF (A2) is finite. By this
choice a2, d2, a1, d1 ∈ A2. Proposition 1 shows that A includes an F 〈g2〉-
submodule D2 such that dimF (A/D2) is finite and every subspace of D2 is
〈g2〉-invariant. Then the intersection D1 ∩D2 has finite codimension. Let
Y2 be a complement to D1 ∩D2, then dimF (Y2) is finite. If ag ∈ aF +A2

for each element a ∈ D1 ∩D2, then put C = A2 + Y2FG. By Lemma 4
dimF (Y2FG) is finite, so that an FG-submodule C has finite dimension.
Furthermore, by ag ∈ aF +A2 we can see that every subspace of A/C is
G-invariant. If not, then there exist the elements a3 ∈ D1 ∩D2, g3 ∈ G
such that a3g3 /∈ a3F + A2. Again put d3 = a3(g3 − 1) and repeat the
above arguments. Using these arguments, we come to the two possibilities:

(1) this process will finish after finitely many steps, that is we find an
FG-submodule C, having finite dimension, such that every subspace
of A/C is G-invariant;

(2) For every positive integer n we find the elements a1, . . . , an ∈ A
and g1, . . . , gn ∈ G such that the following conditions hold:

(a) ajF + djF = ajF ⊕ djF , where dj = aj(gj − 1), 1 ≤ j ≤ n;

(b) (anF ⊕ dnF )
⋂

(
⊕

1≤k≤n−1(akF ⊕ dkF )) = {0}, 1 ≤ j ≤ n.

Consider the second possibility more detail. Put B =
⊕

j∈N ajF , K =⊕
j∈N djF , E = B +K. Then B ∩K = 〈0〉. It follows that dimF (E/B)

and dimF (E/K) are infinite. Since B is nearly G-invariant, B has finite
codimension in V = BFG. It follows that dimF ((V ∩E)/B) is finite, and
hence dimF (E/(V ∩E)) is infinite. An equation V ∩E = B⊕ (V ∩E∩K)
shows that dimF (V ∩E ∩K) is finite. Then there exists a positive integer
t such that dt /∈ V ∩ E. On the other hand, dt = at(gt − 1). Then from
at ∈ B ≤ V and the fact that V is G-invariant we obtain an inclusion
dt ∈ V and hence dt ∈ V ∩ E. This contradiction shows that second
possibility can not appear really, which proves a result.

As corollary we can obtain a description of a structure of a group G.
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Theorem 2. Let G be a subgroup of GL(F,A) and suppose that every
subspace of A is nearly G-invariant. Then the following assertions hold:

(i) if char(F ) = 0, then G includes a normal abelian torsion-free
subgroup Z such that G/Z is isomorphic to subgroup of L × V ,
where V is a subgroup of multiplicative group of F and L is a
subgroup of GLn(F ) for some positive integer n.

(ii) if char(F ) = p is a prime, then G includes a normal abelian ele-
mentary p-subgroup Z such that G/Z is isomorphic to subgroup of
L× V , where V is a subgroup of multiplicative group of F and L is
a subgroup of GLn(F ) for some positive integer n.

Proof. Theorem 1 shows that A includes an FG-submodule C, having
finite dimension, such that every subspace of A/C is G-invariant. Put
K = CG(A/C). By Lemma 3.4 of paper [7] V = G/K is isomorphic to
a subgroup of a multiplicative group of a field F . Put now T = CG(C).
Since dimF (C) = n is finite, L = G/T is isomorphic to a subgroup of
finite dimensional linear group GLn(F ). Finally, let Z = T ∩K, then Z
stabilizes the series of

{0} ≤ C ≤ A.

By a classical result due to Kaluznin (see, for example, [4, Theorem 1.C.1
and Proposition 1.C.3]) Z is either an elementary abelian p-subgroup
if char(F ) = p > 0, or a torsion-free abelian subgroup if char(F ) = 0.
Finally, by the Remak’s Theorem, we obtain a new embedding of G/Z in
the direct product G/K ×G/T = V × L and the result is proved.
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