Algebra and Discrete Mathematics Volume 16 (2013). Number 2. pp. 233 – 241 © Journal "Algebra and Discrete Mathematics"

On derived π -length of a finite π -solvable group with supersolvable π -Hall subgroup

V.S. Monakhov, D.V. Gritsuk

Communicated by L. A. Kurdachenko

To memory of L.A. Shemetkov

ABSTRACT. It is proved that if π -Hall subgroup is a supersolvable group then the derived π -length of a π -solvable group G is at most $1 + \max_{r \in \pi} l_r^a(G)$, where $l_r^a(G)$ is the derived r-length of a π -solvable group G.

Introduction

All groups considered in this paper will be finite. All notation and definitions correspond to [1], [2].

Let \mathbb{P} be the set of all prime numbers, and let π be the set of primes. In this paper, π' is the set of all primes not contained in π , i. e. $\pi = \mathbb{P} \setminus \pi'$. By π also denotes a function defined on the set of natural numbers \mathbb{N} as follows: $\pi(a)$ is the set of primes dividing a positive integer a. For a group G and a subgroup H of G we believe that $\pi(G) = \pi(|G|)$ and $\pi(G:H) = \pi(|G:H|)$.

Fix a set of prime numbers π . If $\pi(m) \subseteq \pi$, then a positive integer m is called a π -number. The group G is called a π -group if $\pi(G) \subseteq \pi$, and a π' -group if $\pi(G) \subseteq \pi'$. If G is a π' -group, then $\pi(G) \cap \pi = \emptyset$. The chain of subgroups

$$G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \ldots \supseteq G_{n-1} \supseteq G_n = 1, \tag{1}$$

²⁰¹⁰ MSC: 20D10, 20D20, 20F16.

Key words and phrases: finite group, π -soluble group, supersolvable group, π -Hall subgroup, derived π -length.

is called subnormal series of a group G, if subgroup G_{i+1} is normal subgroup of G_i for every *i*. The quotient groups G_i/G_{i+1} are called factors of the series (1).

The group is called a π -solvable group if it has a subnormal series (1) whose factors are solvable π -groups or π' -groups. The least number of π -factors of all such subnormal series of a group G is called the π length of a π -solvable group G and is denoted by $l_{\pi}(G)$. Since π -factors of subnormal series (1) of a π -solvable group G are solvable, then every π -solvable group has subnormal series in which all π -factors are nilpotent. The least number of nilpotent π -factors of all such subnormal series of a group G is called the nilpotent π -length of a π -solvable group G and is denoted by $l_{\pi}^{n}(G)$. In case when π consists of a single prime $\{p\}$, i.e. $\pi = \{p\}$, we will obtain $l_{\pi}(G) = l_{\pi}^{n}(G) = l_{p}(G)$ for every π -solvable group. The equality $l_{\pi}(G) = l_{\pi}^{n}(G)$ is cleared to be a true for a π -solvable group with nilpotent π -Hall subgroup.

Recall that least positive integer m such that $G^{(m)} = 1$ is called the derived length of the group G and is denoted by d(G). Here G' is the derived subgroup of G and $G^{(i)} = (G^{(i-1)})'$.

V.S. Monakhov suggested a new notation of the derived π -length of a π -solvable group. Let G be a π -solvable group. Then G has a subnormal series (1) whose factors are π' -groups or abelian π -groups. The least number of abelian π -factors of all such subnormal series of a group G is called the derived π -length of a π -solvable group G and is denoted by $l_{\pi}^{a}(G)$. Clearly, in the case $\pi = \pi(G)$ to $l_{\pi}^{a}(G)$ coincides with the derived length of G. The initial properties of the derived π -length and some of the results related to this notion, established in [4] – [6].

In 2001 V. S. Monakhov and O. A. Shpyrko [3] proved that $l_{\pi}^{n}(G) \leq 1 + \max_{r \in \pi} l_{r}(G)$ if G is a π -solvable group in which the derived subgroup of a π -Hall subgroup is nilpotent. In this article, we received an analogue of this result for the derived π -length. Also, we obtain a new estimate of derived π -length of a π -solvable group whose all proper subgroups of a π -Hall subgroup are supersolvable.

1. Preliminary results

Lemma 1 ([4, Lemma 3]). Let G be a π -solvable group. Then $d(G_{\pi}) \leq l_{\pi}^{a}(G) \leq l_{\pi}(G)d(G_{\pi})$.

Here and below, G_{π} is a π -Hall subgroup of a π -solvable group G.

Lemma 2 ([4, Lemma 4]). Let G be a π -solvable group, and let t be a positive integer. Suppose that $l^a_{\pi}(G/N) \leq t$ for every non-trivial subgroup N of G, but $l^a_{\pi}(G) > t$. Then:

- (1) $O_{\pi'}(G) = 1;$
- (2) G has a unique minimal normal subgroup;
- (3) $F(G) = O_p(G) = F(O_{\pi}(G))$ for some prime $p \in \pi$;
- (4) $O_{p'}(G) = 1$ and $C_G(F(G)) \subseteq F(G)$.

Here F(X) is the Fitting subgroup of a group X, i.e. F(X) is the largest normal nilpotent subgroup of X.

Lemma 3 ([4, Theorem 1]). If G is a π -solvable group in which a Sylow p-subgroup is abelian for every $p \in \pi$, then $l^a_{\pi}(G) = d(G_{\pi}) \leq |\pi(G_{\pi})|$.

Lemma 4 ([4, Theorem 2]). Let G be a π -solvable group. If G_{π} is abelian, then $l_{\pi}^{a}(G) \leq 1$.

Lemma 5 ([5, Lemma 2.6]). If G is a π -solvable group and $\pi = \pi_1 \cup \pi_2$, then $l^a_{\pi}(G) \leq l^a_{\pi_1}(G) + l^a_{\pi_2}(G)$.

Lemma 6 ([5, Theorem 3.1]). Let G be a p-solvable group. If a Sylow p-subgroup of G is bicyclic, then $l_p^a(G) \leq 2$ for every p > 2 and $l_p^a(G) \leq 3$ for p = 2.

The group is called a bicyclic group if it is the product of two cyclic subgroups.

Lemma 7 ([7, Theorem 2]). Let G be a group of odd order. If every Sylow subgroup of G is bicyclic, then the derived subgroup of G is nilpotent.

A group is called a Schmidt group if it is a non-nilpotent groups all of whose proper subgroups are nilpotent. O. Yu. Schmidt pioneered the study of such groups [8]. A whole paragraph from Huppert's monography is dedicated to Schmidt groups, (see [1, III.5]). A survey of results on the existence of Schmidt subgroups in finite groups and some of their applications in the theory of group classes given in [9].

Lemma 8 ([10, Theorem 2]). Let G be a p-solvable group. If a Sylow p-subgroup of G is isomorphic to a Sylow Subgroup of a Schmidt group, then $l_p^a(G) \leq 1$.

The group is called a Miller-Moreno group if it is a non-abelian group and all of its proper subgroups are abelian. Non-nilpotent Miller-Moreno groups are a special case of Schmidt groups and the structure of these groups is easily derived from the properties of Schmidt groups. Nilpotent Miller-Moreno groups are the groups of prime-power order.

We denote by \mathfrak{U} a class of all supersolvable groups. Then $G^{\mathfrak{U}}$ is \mathfrak{U} -residual of G, i.e. $G^{\mathfrak{U}}$ is the intersection of all those normal subgroups N of G for which $G/N \in \mathfrak{U}$.

Lemma 9 ([11, Theorem 22], [12]). Let G be a minimal non-supersolvable group, i. e. G is a non-supersolvable group and all proper subgroups of G are supersolvable. Then:

(1) G is solvable and $|\pi(G)| \leq 3$;

(2) $G^{\mathfrak{U}} = P$ is a Sylow p-subgroup of G and $P/\Phi(P)$ is a minimal normal subgroup of $G/\Phi(G)$;

(3) $P' \subseteq \Phi(P) \subseteq Z(P);$

(4) if Q is a complement to P in G, then $Q/Q \cap \Phi(G)$ is either a cyclic group of prime-power order or a Miller-Moreno group.

Lemma 10 ([13, Theorem 26.3], [14, Theorem 1]). The minimal nonsupersolvable groups are one of the following types:

(1) G = [P]Q is a Schmidt group;

(2) G = [P]Q, where P is a Sylow p-subgroup of Schmidt type (see the definition in [14]); Q is a cyclic Sylow q-subgroup; $[P]\Phi(Q)$ and $[\Phi(P)]Q$ are supersolvable, $[P, \Phi(Q)] = P$;

(3) G = [P]Q, where P is a Sylow p-subgroup of Schmidt type; Q is a Sylow q-subgroup; $\Phi(Q) > C_Q(P) \triangleleft G$; $Q/C_Q(P)$ is either a non-abelian group of order q^3 and exponent q or a Miller-Moreno group of prime-power order containing a cyclic maximal subgroup, $p \equiv 1 \pmod{q}$; [P, Q'] = P, $[\Phi(P)]Q$, $[P]Q_1$ are supersolvable, where Q_1 is any subgroup of Q;

(4) G = [P]([Q]R), where P is a Sylow p-subgroup of Schmidt type; Q and R are the cyclic Sylow q- and r-subgroups, q > r; [P]Q, [P]R and [Q]R are non-nilpotent; [P,Q] = P; [Q,R] = Q; $\Phi(P) < \Phi(P) \cdot [P,R] \le P$; $\Phi(P) \times \Phi(Q) \le Z([P]Q)$; $\Phi(R) = Z([Q]R)$, $p \equiv 1 \pmod{qr}$ and $q \equiv 1 \pmod{r}$.

Lemma 11. Let G be a π -solvable group, and let G_{π} be a minimal nonsupersolvable group. Then $l_p(G) \leq 1$ and $l_p^a(G) \leq 2$ for $p \in \pi((G_{\pi})^{\mathfrak{U}})$.

Proof. By hypothesis, $(G_{\pi})^{\mathfrak{U}} = G_p$. First of all, we prove that $l_p(G) \leq 1$. The group $G_{\pi}O_{p'}(G)/O_{p'}(G)$ is a π -Hall subgroup of $G/O_{p'}(G)$ and

$$(G_{\pi}O_{p'}(G)/O_{p'}(G))^{\mathfrak{U}} = (G_{\pi})^{\mathfrak{U}}O_{p'}(G)/O_{p'}(G) \simeq$$
$$\simeq G_{p}O_{p'}(G)/O_{p'}(G) \simeq G_{p} \simeq (G_{\pi})^{\mathfrak{U}}$$

by properties residuals. The group $G_{\pi}O_{p'}(G)/O_{p'}(G)$ is a minimal nonsupersolvable group and, by induction, $l_p(G/O_{p'}(G)) \leq 1$, so $l_p(G) \leq 1$. Hence we can assume that $O_{p'}(G) = 1$. Therefore, $F(G) = O_p(G)$ and $C_G(O_p(G)) \subseteq O_p(G)$.

Assume that $O_p(G)$ is a proper subgroup of G_p . Clearly, the group $O_p(G)\Phi(G_p)/\Phi(G_p)$ is a normal subgroup of $G_{\pi}/\Phi(G_p)$. Since $G_p/\Phi(G_p)$ is a minimal normal subgroup of $G_{\pi}/\Phi(G_p)$ by Lemma 9 (2) and

$$O_p(G)\Phi(G_p)/\Phi(G_p) \subseteq G_p/\Phi(G_p),$$

then

$$O_p(G)\Phi(G_p)/\Phi(G_p) = 1 \text{ or } O_p(G)\Phi(G_p) = G_p.$$

If $O_p(G)\Phi(G_p)/\Phi(G_p) = 1$, then $O_p(G) \subseteq \Phi(G_p)$. Since, by Lemma 9(3), $\Phi(G_p) \subseteq Z(G_p)$, we have

$$O_p(G) \subseteq Z(G_p), \ G_p \subseteq C_G(O_p(G)) \subseteq O_p(G),$$

we have a contradiction. If $O_p(G)\Phi(G_p) = G_p$, then $O_p(G) = G_p$. Therefore, $O_p(G) = G_p$. Hence $l_p(G) \leq 1$.

By Lemma 9(3), $d(G_p) \leq 2$, and $l_p^a(G) \leq 2$ by Lemma 1.

2. Main results

Theorem 1. Let G be a π -solvable group. If the derived subgroup of G_{π} is nilpotent, then $l_{\pi}^{a}(G) \leq 1 + \max_{r \in \pi} l_{r}^{a}(G)$.

Proof. Let G be a π -solvable group, and let the derived subgroup of G_{π} be a nilpotent. We use induction on |G|. Let N is a normal subgroup of G. Since $G_{\pi}N/N \simeq G_{\pi}/(G_{\pi} \cap N)$, then their derived subgroups are isomorphic.

$$(G_{\pi}/(G_{\pi}\cap N))' = (G_{\pi})'(G_{\pi}\cap N)/(G_{\pi}\cap N) \simeq$$
$$\simeq (G_{\pi})'/((G_{\pi})'\cap N) \simeq (G_{\pi}N/N)'.$$

Therefore, the conditions of the lemma are inherited by all quotient groups. By Lemma 2, $O_{\pi'}(G) = 1$, G has a unique minimal normal subgroup

$$C_G(F(G)) \subseteq F(G) = O_p(G) = F(O_\pi(G))$$

for some prime $p \in \pi$. Clearly, $F(G) \subseteq G_{\pi}$.

Let K be the derived subgroup of G_{π} . By hypothesis of the theorem subgroup K is nilpotent. Since p'-Hall subgroup $K_{p'}$ of K is a normal subgroup of G_{π} , it follows

$$K_{p'} \subseteq C_G(F(G)) \subseteq F(G), \ K_{p'} = 1.$$

Thus, K is a p-group, $G_{\pi \setminus \{p\}}$ is abelian and a Sylow q-subgroup of G is abelian for every $q \in \pi \setminus \{p\}$. So $l_q^a(G) = 1$ for every $q \in \pi \setminus \{p\}$ by Lemma 4. Therefore, $\max_{r \in \pi} l_r^a(G) = l_p^a(G)$.

Let $\pi_1 = \pi \setminus \{p\}$. By Lemma 5, $l^a_{\pi}(G) \leq l^a_{\pi_1}(G) + l^a_p(G)$. Since G_{π_1} is abelian, we have $l^a_{\pi_1}(G) \leq 1$ by Lemma 4. Now $l^a_{\pi}(G) \leq 1 + l^a_p(G) \leq 1 + \max_{r \in \pi} l^a_r(G)$.

Corollary 1. Let G be a π -solvable group. If a Sylow p-subgroup of G is cyclic for every $p \in \pi$, then $l^a_{\pi}(G) \leq 2$.

Proof. By Lemma 4, $l_p^a(G) \leq 1$ for all $p \in \pi$, so $\max_{r \in \pi} l_r^a(G) \leq 1$ and, by [1, Theorem IV.2.11], G_{π} is a supersolvable. By [1, Theorem VI.9.1], the derived subgroup of G_{π} is nilpotent. By Theorem 1, $l_{\pi}^a(G) \leq 2$. \Box

Corollary 2. Let G be a π -solvable group, and let a Sylow p-subgroup of G be bicyclic for every $p \in \pi$. Then $l^a_{\pi}(G) \leq 6$. If $2 \notin \pi$, then $l^a_{\pi}(G) \leq 3$.

Proof. Let $\pi = \{2\} \cup \tau$. By Lemma 5, $l^a_{\pi}(G) \leq l^a_2(G) + l^a_{\tau}(G)$. By Lemma 6, $l^a_2(G) \leq 3$ and $l^a_t(G) \leq 2$ for all $t \in \tau$, so $\max_{t \in \tau} l^a_t(G) \leq 2$. By Lemma 7, the derived subgroup of a τ -Hall subgroup is nilpotent. By Theorem 1, we have that

$$l^a_\tau(G) \le 1 + \max_{t \in \tau} l^a_t(G) \le 3.$$

Now $l^a_{\pi}(G) \leq 6$. If $2 \notin \pi$, then $\pi = \tau$ and $l^a_{\pi}(G) = l^a_{\tau}(G) \leq 3$.

Let H be a subgroup of a group G. A subgroup K of G is called a complement of H in G if G = HK and $H \cap K = 1$. Yu. M. Gorchakov [15] showed that complementability of all subgroups is equivalents to complementability subgroups of prime order. The group G is called completely factorable if all of its subgroups are complemented. In 1937 Ph. Hall [16] found that finite groups in which all subgroups are complemented exhausted by supersolvable groups with elementary abelian Sylow subgroups.

Corollary 3. Let G be a π -solvable group. If G_{π} is completely factorable, then $l_{\pi}^{a}(G) \leq 2$.

Proof. By [16], G_{π} of G is supersolvable and a Sylow p-subgroup of G is an elementary abelian for all $p \in \pi$. By [1, Theorem VI.9.1], the derived subgroup of G_{π} is nilpotent. By Lemma 4 and Theorem 1, $l_{\pi}^{a}(G) \leq 2$. \Box

Corollary 4. Let G be a π -solvable group. If G_{π} is supersolvable, then $l^a_{\pi}(G) \leq 1 + \max_{r \in \pi} l^a_r(G)$.

Proof. By [1, Theorem VI.9.1], the derived subgroup of G_{π} is nilpotent. By Theorem 1, $l_{\pi}^{a}(G) \leq 1 + \max_{r \in \pi} l_{r}^{a}(G)$.

Corollary 5. Let G be a π -solvable group. If G_{π} is a Schmidt group, then $l_{\pi}^{a}(G) \leq 3$.

Proof. Let G be a π -solvable group, and let $G_{\pi} = [P]Q$ be a Schmidt group, when P is a normal Sylow p-subgroup, and Q is a non-normal Sylow q-subgroup. Since Q is cyclic, we have $l_q^a(G) \leq 1$ by Lemma 4. By Lemma 8, $l_p(G) \leq 1$. Since either P is abelian or P' = Z(P) [8]–[9], we have $d(P) \leq 2$. By Lemma 1, $l_p^a(G) \leq 2$. By Lemma 5, $l_{\pi}^a(G) \leq l_p^a(G) + l_q^a(G) \leq 3$.

Corollary 6. Let G be a π -solvable group. If G_{π} is a Miller-Moreno group, then $l^a_{\pi}(G) \leq 2$.

Proof. Assume that G_{π} is not a group of prime-power order. Then G_{π} is a Schmidt group in which every Sylow subgroup is abelian. So the derived subgroup of G_{π} is abelian and $\max_{r \in \pi} l_r^a(G) \leq 1$ by Lemma 3. By Theorem 1, $l_{\pi}^a(G) \leq 2$.

Let $G_{\pi} = G_p$ be a group of prime-power order. We use induction on |G|. If N is a non-trivial normal subgroup of G, then G_pN/N is an abelian or a Miller-Moreno group. So $l_p^a(G/N) \leq 2$ either by Lemma 4 or by induction. By Lemma 2, G has a unique minimal normal subgroup,

$$O_{p'}(G) = 1, \ F(G) = O_p(G), \ C_G(F(G)) \subseteq F(G).$$

If $F(G) = G_p$, then $l_p^a(G) = d(G_p) = 2$. Let F(G) be a proper subgroup of G_p . Then $F(G) \subseteq M$, when M is some maximal subgroup of G_p . By condition, M is abelian. So $M \subseteq C_G(F(G))$ and F(G) = M. Now $G_p/F(G)$ has prime order and $l_p^a(G/F(G)) \leq 1$ by Lemma 4. Since F(G)is abelian, we have $l_p^a(G) \leq 2$.

Theorem 2. Let G be a π -solvable group. If every proper subgroup of G_{π} is supersolvable, then $l_{\pi}^{a}(G) \leq 2 + \max_{r \in \pi} l_{r}^{a}(G)$.

Proof. If G_{π} is supersolvable, then $l_{\pi}^{a}(G) \leq 1 + \max_{r \in \pi} l_{r}^{a}(G)$ by Corollary 4. Let G_{π} be a non-supersolvable group. Then G_{π} is one of the four types listed in Lemma 10. Notation for G_{π} corresponds to Lemma 10. By Lemma 11, $l_{n}^{a}(G) \leq 2$.

If G_{π} is a group of type (1)–(2), then Q is cyclic and $l_q^a(G) \leq 1$ by Lemma 4 and, by Lemma 5,

$$l_{\pi}^{a}(G) \leq l_{p}^{a}(G) + l_{q}^{a}(G) \leq 2 + 1 \leq 2 + \max_{r \in \pi} l_{r}^{a}(G).$$

If G_{π} is a group of type (3), then, by Lemma 5,

$$l_{\pi}^{a}(G) \leq l_{p}^{a}(G) + l_{q}^{a}(G) \leq 2 + l_{q}^{a}(G) \leq 2 + \max_{r \in \pi} l_{r}^{a}(G).$$

Let G_{π} be a group of type (4). Then $G_{\pi} = [P]([Q]R)$, where Q and R are cyclic Sylow q- and r-subgroups. By Lemma 5, $l^{a}_{\pi}(G) \leq l^{a}_{\{p,q\}}(G) + l^{a}_{r}(G)$. Since $\{p,q\}$ -Hall subgroup of group G is supersolvable, we have $l^{a}_{\{p,q\}}(G) \leq 1 + \max_{t \in \{p,q\}} l^{a}_{t}(G)$ by Corollary 4. By Lemma 4, $l^{a}_{r}(G) \leq 1$, and by Lemma 5,

$$l_{\pi}^{a}(G) \leq l_{\{p,q\}}^{a}(G) + l_{r}^{a}(G) \leq 1 + \max_{t \in \{p,q\}} l_{t}^{a}(G) + 1 \leq 2 + \max_{t \in \pi} l_{t}^{a}(G). \quad \Box$$

References

- B. Huppert, Endliche Gruppen, I. Berlin-Heidelberg. New York: Springer-Verlag, 1967.
- [2] V.S. Monakhov, Introduction to the theory of finite groups and their classes, Minsk: Higher School, 2006 (in Russian).
- [3] V. S. Monakhov, O. A. Shpyrko, On nilpotent π-length of a finite π-solvable group, Discrete Mathematics, V. 13, N. 3, 2001. pp. 145-152 (in Russian).
- [4] D. V. Gritsuk, V. S. Monakhov, O. A. Shpyrko, On derived π-length of a π-solvable group, BSU Vestnik, Series 1. N. 3, 2012. pp. 90-95 (in Russian).
- [5] D. V. Gritsuk, V. S. Monakhov, O. A. Shpyrko, On finite π-solvable groups with bicyclic Sylow subgroups, Promlems of Physics, Mathematics and Technics, N. 1(14), 2013, pp. 61-66 (in Russian).
- [6] D. V. Gritsuk, V. S. Monakhov, On solvable groups whose Sylow subgroups are either abelian or extraspecial, Proceedings of the Institute of Mathematics of NAS of Belarus, Volume 20, N. 2, 2012. pp. 3-9 (in Russian).
- [7] V. S. Monakhov, E. E. Gribovskaya, On maximal and Sylow subgroups of a finite solvable groups, Mathematical Notes, Volume 70, N. 4, 2001. pp. 603-612 (in Russian).
- [8] O. Yu. Schmidt, Groups whose all subgroups are special, Mathematics Sbornik, Volume 31, 1924, pp. 366-372 (in Russian).

- [9] V. S. Monakhov, The Schmidt subgroups, its existence, and some of their classes, Volume Section 1, Tr. Ukraini. Mat. Congr., 2001, Kiev, 2002, pp. 81-90 (in Russian).
- [10] L. A. Shemetkov, Yi. Xiaolan, On the p-length of finite p-soluble groups, Proceedings of the Institute of Mathematics of NAS of Belarus, Volume 16, N. 1, 2008, pp. 93-96.
- [11] B. Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Mathematische Zeitschrift, Bd. 60, 1954, pp. 409-434.
- [12] K. Doerk, Minimal nicht überauflösbare, endliche Gruppen, Mathematische Zeitschrift, Bd. 91. 1966, pp. 198-205.
- [13] V. T. Nagrebetskii, On finite minimal non-supersolvable groups, Finite groups, Minsk: Science and Technics, 1975, pp. 104-108 (in Russian).
- [14] S.S. Levischenko, N.Ph. Kuzenny, Constructive description of finite minimal non-supersolvable groups, Questions in algebra, Minsk, 1987, N. 3, pp.56-63 (in Russian).
- [15] Yu. M. Gorchakov, *Primitive factorable groups*, Proceedings of the University of Perm, N. 17, 1960, pp. 15-31 (in Russian).
- [16] Ph. Hall, Complemented group, J. London Math. Soc., V. 12, 1937, pp. 201-204.

CONTACT INFORMATION

V.S. Monakhov	Department of Mathematics, Gomel Francisk Skorina State University, Gomel, Belarus <i>E-Mail:</i> Victor.Monakhov@gmail.com
D.V. Gritsuk	Department of Mathematics, Gomel Francisk Skorina State University, Gomel, Belarus <i>E-Mail:</i> Dmitry.Gritsuk@gmail.com

Received by the editors: 18.05.2013 and in final form 18.05.2013.