Algebra and Discrete Mathematics Volume 16 (2013). Number 2. pp. 287 – 292 © Journal "Algebra and Discrete Mathematics"

Relative symmetric polynomials and money change problem

M. Shahryari

Communicated by V. A. Artamonov

ABSTRACT. This article is devoted to the number of nonnegative solutions of the linear Diophantine equation

$$a_1t_1 + a_2t_2 + \dots + a_nt_n = d,$$

where a_1, \ldots, a_n , and d are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using *relative symmetric polynomials*. As an application, we give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero.

Suppose a_1, \ldots, a_n , and d are positive integers, and consider the following linear Diophantine equation:

$$a_1t_1 + a_2t_2 + \dots + a_nt_n = d.$$

Let $Q_d(a_1, \ldots, a_n)$ be the number of non-negative integer solutions of this equation. Computing the exact values of the function Q_d is the well-known money change problem. It is easy to see that a generating function for $Q_d(a_1, \ldots, a_n)$ is

$$\prod_{i=1}^n \frac{1}{1-t^{a_i}}.$$

This article is devoted for an interesting relation between Q_d and irreducible complex characters of the symmetric group S_m , where $m = a_1 + \cdots + a_n$. In fact, we will show that Q_d is a permutation character of

²⁰¹⁰ MSC: Primary 05A17, Secondary 05E05 and 15A69.

Key words and phrases: Money change problem; Partitions of integers; Relative symmetric polynomials; Symmetric groups; Complex characters.

 S_m , and then we will find its irreducible constituents. Our main tool, in the investigation of Q_d , is the notion of *relative symmetric polynomials*, which is introduced by the author in [3]. Once, we find the irreducible constituents of Q_d , we can also obtain a necessary and sufficient condition for vanishing of the space of relative symmetric polynomials. A similar result was obtained in [2], for vanishing of symmetry classes of tensors, using the same method.

We need a survey of results about relative symmetric polynomials in this article. For a detailed exposition, one can see [3].

Let G be a subgroup of the full symmetric group S_m of degree m and suppose χ is an irreducible complex character of G. Let $H_d[x_1, \ldots, x_m]$ be the complex space of homogenous polynomials of degree d with the independent commuting variables x_1, \ldots, x_m . Suppose $\Gamma_{m,d}^+$ is the set of all m-tuples of non-negative integers, $\alpha = (\alpha_1, \ldots, \alpha_m)$, such that $\sum_i \alpha_i = d$. For any $\alpha \in \Gamma_{m,d}^+$, define X^{α} to be the monomial $x_1^{\alpha_1} \cdots x_m^{\alpha_m}$. So the set $\{X^{\alpha} : \alpha \in \Gamma_{m,d}^+\}$ is a basis of $H_d[x_1, \ldots, x_m]$. We define also an inner product on $H_d[x_1, \ldots, x_m]$ by

$$\langle X^{\alpha}, X^{\beta} \rangle = \delta_{\alpha,\beta}.$$

The group G acts on $H_d[x_1, \ldots, x_m]$ via

$$q^{\sigma}(x_1,\ldots,x_m) = q(x_{\sigma^{-1}(1)},\ldots,x_{\sigma^{-1}(m)}).$$

It also acts on $\Gamma_{m,d}^+$ by

$$\sigma \alpha = (\alpha_{\sigma(1)}, \dots, \alpha_{\sigma(m)}).$$

Let Δ be a set of representatives of orbits of $\Gamma_{m,d}^+$ under the action of G.

Now consider the idempotent

$$T(G,\chi) = \frac{\chi(1)}{|G|} \sum_{\sigma \in G} \chi(\sigma)\sigma$$

in the group algebra $\mathbb{C}G$. Define the space of relative symmetric polynomials of degree d with respect to G and χ to be

$$H_d(G,\chi) = T(G,\chi)(H_d[x_1,\ldots,x_m]).$$

Let $q \in H_d[x_1, \ldots, x_m]$. Then we set

$$q^* = T(G, \chi)(q)$$

and we call it a symmetrized polynomial with respect to G and χ . Clearly

$$H_d(G,\chi) = < X^{\alpha,*} : \alpha \in \Gamma_{m,d}^+ >,$$

where $\langle set of vectors \rangle$ denotes the subspace generated by a given set of vectors.

Recall that the inner product of two characters of an arbitrary group K is defined as follows,

$$[\phi,\psi]_K = \frac{1}{|K|} \sum_{\sigma \in K} \phi(\sigma)\psi(\sigma^{-1}).$$

In the special case where K is a subgroup of G and ϕ and ψ are characters of G, the notation $[\phi, \psi]_K$ will denote the inner product of the restrictions of ϕ and ψ to K.

It is proved it [3] that for any α , we have

$$||X^{\alpha,*}||^2 = \chi(1) \frac{[\chi,1]_{G_{\alpha}}}{[G:G_{\alpha}]},$$

where G_{α} is the stabilizer subgroup of α under the action of G. Hence, $X^{\alpha,*} \neq 0$, if and only if $[\chi, 1]_{G_{\alpha}} \neq 0$. According to this result, let Ω be the set of all $\alpha \in \Gamma_{m,d}^+$, with $[\chi, 1]_{G_{\alpha}} \neq 0$ and suppose $\overline{\Delta} = \Delta \cap \Omega$.

We proved in [3], the following formula for the dimension of $H_d(G, \chi)$

$$\dim H_d(G,\chi) = \chi(1) \sum_{\alpha \in \bar{\Delta}} [\chi, 1]_{G_\alpha}.$$

Note that, $\overline{\Delta}$ depends on χ , but Δ depends only on G. Since, $[\chi, 1]_{G_{\alpha}} = 0$, for all $\alpha \in \Delta - \overline{\Delta}$, we can re-write the above formula, as

$$\dim H_d(G,\chi) = \chi(1) \sum_{\alpha \in \Delta} [\chi, 1]_{G_\alpha}.$$

There is also another interesting formula for the dimension of $H_d(G, \chi)$. This is the formula which employs the function Q_d and so it connects the money change problem to relative symmetric polynomials. Let $\sigma \in G$ be any element with the cycle structure $[a_1, \ldots, a_n]$, (i.e. σ is equal to a product of *n* disjoint cycles of lengths a_1, \ldots, a_n , respectively). Define $Q_d(\sigma)$ to be the number of non-negative integer solutions of the equation

$$a_1t_1 + a_2t_2 + \dots + a_nt_n = d,$$

so, we have $Q_d(\sigma) = Q_d(a_1, \ldots, a_n)$. If we consider the free vector space $\mathbb{C}[\Gamma_{m,d}^+]$ as a $\mathbb{C}G$ -module, then for all $\sigma \in G$, we have

$$Tr \ \sigma = Q_d(\sigma),$$

and hence, Q_d is a permutation character of G. It is proved in [3], that we have also

$$\dim H_d(G,\chi) = \frac{\chi(1)}{|G|} \sum_{\sigma \in G} \chi(\sigma) Q_d(\sigma).$$

Note that, we can write this result as dim $H_d(G, \chi) = \chi(1)[\chi, Q_d]_G$. Now, comparing two formulae for the dimension of $H_d(G, \chi)$ and using the *reciprocity relation* for induced characters, we obtain

$$Q_d(a_1,\ldots,a_n) = \sum_{\alpha\in\Delta} (1_{G_\alpha})^G(\sigma),$$

where $\sigma \in S_m$ is any permutation of the cycle structure $[a_1, \ldots, a_n]$, G is any subgroup of S_m containing σ and $m = a_1 + \cdots + a_n$. It is clear that, if α and β are in the same orbit of $\Gamma^+_{m,d}$, then $(1_{G_{\alpha}})^G = (1_{G_{\beta}})^G$, so we have also

$$Q_d(a_1,\ldots,a_n) = \frac{1}{|G|} \sum_{\alpha \in \Gamma_{m,d}^+} |G_\alpha| (1_{G_\alpha})^G(\sigma).$$

As our main result in this section, we have,

Theorem A.

$$Q_d = \frac{1}{|G|} \sum_{\alpha \in \Gamma_{m,d}^+} |G_\alpha| (1_{G_\alpha})^G.$$

For a fixed equation

$$a_1t_1 + a_2t_2 + \dots + a_nt_n = d,$$

suppose σ is a permutation of the cycle structure $[a_1, \ldots, a_n]$ and let G be the cyclic group generated by σ . Clearly this G is the smallest subgroup of S_m which we can use to obtain the number of non-negative solutions of the above equation. By Theorem A, the required number is

$$Q_d(\sigma) = \frac{1}{|G|} \sum_{\alpha \in \Gamma_{m,d}^+} |G_\alpha| (1_{G_\alpha})^G(\sigma).$$

On the other hand, if we want to have a formula for all values of Q_d , we must let $G = S_m$, which contains any possible cycle structure. So in the remaining part of this article, we will assume that, $G = S_m$, then using representation theory of symmetric groups, we will find, irreducible constituents of Q_d .

We need some standard notions from representation theory of symmetric groups. Ordinary representations of S_m are in one to one correspondence with *partitions* of *m*. Let

$$\pi = (\pi_1, \ldots, \pi_s)$$

be any partition of m. The irreducible character of S_m , corresponding to a partition π is denoted by χ^{π} . There is also a subgroup of S_m , associated to π , which is called the *Young subgroup* and it is defined as,

$$S_{\pi} = S_{\{1,...,\pi_1\}} \times S_{\{\pi_1+1,...,\pi_1+\pi_2\}} \times \cdots$$

Therefore, we have $S_{\pi} \cong S_{\pi_1} \times \cdots \times S_{\pi_s}$.

Let $\pi = (\pi_1, \ldots, \pi_s)$ and $\mu = (\mu_1, \ldots, \mu_l)$ be two partitions of m. We say that μ majorizes π , iff for any $1 \le i \le \min\{s, l\}$, the inequality

$$\pi_1 + \dots + \pi_i \le \mu_1 + \dots + \mu_i$$

holds. In this case we write $\lambda \leq \mu$. This is clearly a partial ordering on the set of all partitions of m. A generalized μ -tableau of type π is a function

$$T: \{(i,j): 1 \le i \le h(\mu), 1 \le j \le \mu_i\} \to \{1, 2, \dots, m\}$$

such that for any $1 \leq i \leq m$, we have $|t^{-1}(i)| = \pi_i$. This generalized tableau is called semi-standard if for each $i, j_1 < j_2$ implies $T(i, j_1) \leq$ $T(i, j_2)$ and for any $j, i_1 < i_2$ implies $T(i_1, j) < T(i_2, j)$. In other words, Tis semi-standard, iff every row of T is non-descending and every column of T is ascending. The number of all such semi-standard tableaux is denoted by $K_{\mu\pi}$ and it is called the *Kostka number*. It is well known that $K_{\mu\pi} \neq 0$ iff μ majorizes π , see [1], for example. We have also,

$$K_{\mu\pi} = [(1_{S_{\pi}})^{S_m}, \chi^{\mu}]_{S_m} = [1, \chi_{\mu}]_{S^{\pi}}.$$

For any $\alpha \in \Gamma_{m,d}^+$, the multiplicity partition is denoted by $M(\alpha)$, so, to obtain $M(\alpha)$, we must arrange the multiplicities of numbers $0, 1, \ldots, d$ in α in the descending order. It is clear that $(S_m)_{\alpha} \cong S_{M(\alpha)}$, the Young subgroup. If $M(\alpha) = (k_1, \ldots, k_s)$, then we have

$$|(S_m)_{\alpha}| = k_1!k_2!\dots k_s!.$$

In what follows, we use the notation $M(\alpha)!$ for the number $k_1!k_2!\ldots k_s!$. On the other hand, we have

$$(1_{G_{\alpha}})^{G} = (1_{S_{M(\alpha)}})^{S_{m}}$$
$$= \sum_{M(\alpha) \leq \pi} K_{\pi,M(\alpha)} \chi^{\pi}.$$

Now, using Theorem A, we obtain,

Theorem B.

$$Q_d = \frac{1}{m!} \sum_{\alpha \in \Gamma_{m,d}^+} \sum_{M(\alpha) \leq \pi} M(\alpha)! K_{\pi,M(\alpha)} \chi^{\pi}.$$

As a result, we can compute the dimension of $H_d(S_m, \chi^{\pi})$, in a new fashion. We have,

$$\dim H_d(S_m, \chi^{\pi}) = \chi^{\pi}(1)[\chi^{\pi}, Q_d]_{S_m}$$
$$= \frac{\chi^{\pi}(1)}{m!} \sum_{\alpha \in \Gamma_{m,d}^+, M(\alpha) \leq \pi} M(\alpha)! K_{\pi,M(\alpha)}$$

Note that, this generalizes the similar formulae in the final part of the second section of [3]. Now, as a final result, we have also, a necessary and sufficient condition for $H_d(S_m, \chi^{\pi})$ to be non-zero.

Theorem C. We have $H_d(S_m, \chi^{\pi}) \neq 0$, if and only if there exists $\alpha \in \Gamma^+_{m,d}$, such that $M(\alpha) \leq \pi$.

References

- [1] B. Sagan, The Symmetric Group: Representation, Combinatorial Algorithms and Symmetric Functions, Wadsworth and Brook/ Cole math. series, 1991.
- [2] M. Shahryari, M. A. Shahabi, On a permutation character of S_m , Linear and Multilinear Algebra, 44 (1998), 45 52.
- [3] M. Shahryari, Relative symmetric polynomials, Linear Algebra and its Applications, 433 (2010), 1410 - 1421.

CONTACT INFORMATION

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran *E-Mail:* mshahryari@tabrizu.ac.ir

Received by the editors: 08.04.2012 and in final form 28.04.2012.

M. Shahryari