Classifying cubic s-regular graphs of orders $22 p$ and $22 p^{2}$

A. A. Talebi and N. Mehdipoor

Communicated by Z. Marciniak

Abstract. A graph is s-regular if its automorphism group acts regularly on the set of s-arcs. In this study, we classify the connected cubic s-regular graphs of orders $22 p$ and $22 p^{2}$ for each $s \geq 1$, and each prime p.

1. Introduction

In this study, all graphs considered are assumed to be undirected, finite, simple, and connected, unless stated otherwise. For a graph X, $V(X), E(X), \operatorname{Arc}(X)$, and $\operatorname{Aut}(X)$ denote its vertex set, edge set, arc set, and full automorphism group, respectively. Let G be a subgroup of Aut (X). For $u, v \in V(X)$, $u v$ denotes the edge incident to u and v in X, and $N_{X}(u)$ denotes the neighborhood of u in X, that is, the set of vertices adjacent to u in X.

A graph \widetilde{X} is called a covering of a graph X with projection $p: \widetilde{X} \rightarrow$ X if there is a surjection $p: V(\widetilde{X}) \rightarrow V(X)$ such that $\left.p\right|_{N_{\widetilde{X}}(\widetilde{v})}: N_{\widetilde{X}}(\widetilde{v}) \rightarrow$ $N_{X}(v)$ is a bijection for any vertex $v \in V(X)$ and $\widetilde{v} \in p^{-1}(v)$.

A permutation group G on a set Ω is said to be semiregular if the stabilizer G_{v} of v in G is trivial for each $v \in \Omega$, and is regular if G is transitive, and semiregular.

Let K be a subgroup of $A u t(X)$ such that K is intransitive on $V(X)$. The quotient graph X / K induced by K is defined as the graph such that

[^0]the set Ω of K-orbits in $V(X)$ is the vertex set of X / K and $B, C \in \Omega$ are adjacent if and only if there exist a $u \in B$ and $v \in C$ such that $\{u, v\}$ $\in E(X)$.

A covering \tilde{X} of X with a projection p is said to be regular (or N covering) if there is a semiregular subgroup N of the automorphism group $\operatorname{Aut}(\tilde{X})$ such that graph X is isomorphic to the quotient graph \widetilde{X} / N, say by h, and the cubic map $\widetilde{X} \rightarrow \widetilde{X} / N$ is the composition $p h$ of p and h (in this paper, all functions are composed from left to right). If N is a cyclic or an elementary Abelian, then, \widetilde{X} is called a cyclic or an elementary Abelian covering of X, and if \widetilde{X} is connected, N becomes the covering transformation group.

An s-arc in a graph X is an ordered $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices of X such that v_{i-1} is adjacent to v_{i} for $1 \leq i \leq s$, and $v_{i-1} \neq$ v_{i+1} for $1 \leq i<s$; in other words, a directed walk of length s that never includes a backtracking. For a graph X and a subgroup G of $\operatorname{Aut}(X), X$ is said to be G-vertex-transitive, G-edge-transitive, or G - s-arc-transitive if G is transitive on the sets of vertices, edges, or s-arcs of X, respectively, and G-s-regular if G acts regularly on the set of s-arcs of X. A graph X is said to be vertex-transitive, edge-transitive, s-arc-transitive, or s-regular if X is $\operatorname{Aut}(X)$-vertex-transitive, $A u t(X)$-edge-transitive, $A u t(X)$-s-arctransitive, or $A u t(X)$-s-regular, respectively. In particular, 1-arc-transitive means arc-transitive, or symmetric.

Covering techniques have long been known as a powerful tool in topology, and graph theory. Regular covering of a graph is currently an active topic in algebraic graph theory. Tutte $[17,18]$ showed that every finite cubic symmetric graph is s-regular for some $s \geq 1$, and this s is at most five. It follows that every cubic symmetric graph has an order of the form $2 m p$ for a positive integer m and a prime number p. In order to know all cubic symmetric graphs, we need to classify the cubic s-regular graphs of order $2 m p$ for a fixed positive integer m and each prime p. Conder and Dobcsányi $[4,5]$ classified the cubic s-regular graphs up to order 2048 with the help of the "Low index normal subgroups" routine in MAGMA system [2]. Cheng and Oxley [3] classified the cubic s-regular graphs of order $2 p$. Recently, by using the covering technique, cubic s-regular graphs with order $2 p^{2}, 2 p^{3}, 4 p, 4 p^{2}, 6 p, 6 p^{2}, 8 p, 8 p^{2}, 10 p, 10 p^{2}, 12 p, 12 p^{2}, 14 p$ and $16 p$ were classified in $[1,7-12,15,16]$.

In this paper, by employing the covering technique, and group-theoretical construction, we investigate connected cubic s-regular graphs of orders $22 p$ and $22 p^{2}$ for each $s \geq 1$, and each prime p.

2. Preliminaries

We start by introducing two propositions for later applications in this paper.

Proposition 2.1. [14, Theorem 9] Let X be a connected symmetric graph of prime valency and G a s-regular subgroup of $A u t(X)$ for some $s \geq 1$. If a normal subgroup N of G has more than two orbits, then it is semiregular and G / N is an s-regular subgroup of $\operatorname{Aut}\left(X_{N}\right)$, where X_{N} is the quotient graph of X corresponding to the orbits of N. Furthermore, X is a N-regular covering of X_{N}.

Proposition 2.2. [18] If X is an s-arc regular cubic graph, then $s \leq 5$.
Remark. If X is a regular graph with valency k on n vertices and $s \geq 1$, then there exactly $n k(k-1)^{s-1} s$-arcs. It follows that if X is s-arc transitive then $|A u t(X)|$ must be divisible by $n k(k-1)^{s-1}$, and if X is s-regular, then $|\operatorname{Aut}(X)|=n k(k-1)^{s-1}$. In particular, a cubic arc-transitive graph X is s-regular if and only if $|A u t(X)|=(3 n) 2^{s-1}$.

3. Cubic s-regular graphs of orders $22 p$ and $22 p^{2}$

In this section, we investigate the connected cubic s-regular graphs of orders $22 p$ and $22 p^{2}$, where p is a prime. We have the following lemma, by $[4,5]$.

Lemma 3.1. Let p be a prime. Let X be a connected cubic symmetric graph. If X has order $22 p$, and $p \leq 89$, then X is isomorphic to one of the 2-regular graph $F 242$ with order 242, the 3-regular graphs $F 110$, $F 506 A$ with orders 110, 506 respectively, or the 4-regular graph $F 506 B$ with order 506.

Lemma 3.2. Let p be a prime. Then, there is no cubic symmetric graph of order $22 p$ for $p>89$.

Proof. Suppose that X is a connected cubic symmetric graph of the order $22 p$, where $p>89$ is a prime. Set $A:=\operatorname{Aut}(X)$. By proposition 2.2, and [18], X is at most 5 -regular. Then, $|A|=2^{s}$. 3. 11. p, where $1 \leq s \leq 5$. Then we deduce that solvable. Because if not, then by the classification of finite simple groups, its composition factors would have to be one of the following non-abelian simple groups

$$
\begin{gather*}
M_{11}, M_{12}, P S L(2,11), \operatorname{PSL}(2,19), P S L(2,23) \\
\operatorname{PSL}(2,32), \text { or } \operatorname{PSU}(5,2) \tag{3.1}
\end{gather*}
$$

Since $p>89$, this contradicts the order of A. Therefore, A is solvable, and hence, elementary Abelian. Let N is a minimal normal subgroup of A. Then, N is an elementary Abelian. Hence, N is $2,3,11$, or p-group. Then, N has more than two orbits on $V(X)$, and hence it is semiregular, by proposition 2.1. Thus, $|N| \mid 22 p$. Therefore $|N|=2,11$, or p. In each case, we get a contradiction.
case I): $|N|=p$
If $|N|=p$, then the quotient graph X_{N} of X relative to N is an A / N-symmetric graph of the order 22 , by Proposition 2.1. It is impossible by [4]. Suppose that $Q:=O_{p}(A)$ be the maximal normal p-subgroup of A. Therefore, $O_{p}(A)=1$.
case II): $|N|=2$
If $|N|=2$, then Proposition 2.1, implies that the quotient graph X_{N} corresponding to orbits of N has odd number of vertices and valency 3 , which is impossible.
case III): $|N|=11$
Now, we consider the quotient graph $X_{N}=X / N$ of X relative to N, where A / N is a s-regular of $\operatorname{Aut}\left(X_{N}\right)$. Let K / N be a minimal normal subgroup of A / N. By the same argument as above K / N is solvable, and elementary Abelian. Then, we must have $|K / N|=2$, or p. Consequently $|K|=22$, or $11 p$. If $|K|=22$, we consider the quotient graph $X_{K}=X / K$ of X relative to K, where A / K is a s-regular of $\operatorname{Aut}\left(X_{K}\right)$. By Proposition 2.1, X_{K} is an A / K-symmetric graph of the order p. Then, with the same reasoning as case II, we get a contradiction. Now, suppose that $|K|=11 p$. Since $\mathrm{p}>89, K$ has a normal subgroup of order p, which is characteristic in K and hence is normal in A, contradicting to $O_{p}(A)=1$.

Theorem 3.3. Let p be a prime. Let X be a connected cubic symmetric graph. Let p be a prime. Let X be a connected cubic symmetric graph. If X has order $22 p$ then, X is isomorphic to one of the 2-regular graph $F 242$ with order 242, the 3-regular graphs $F 110, F 506 A$ with orders 110, 506 respectively, or the 4-regular graph $F 506 B$ with order 506.

Proof. By Lemmas 3.1 and 3.2, the proof is complete.

Theorem 3.4. Let p be a prime. Then, there is no cubic symmetric graph of order $22 p^{2}$.

Proof. For $p \leq 7$, by [3], there is no connected cubic symmetric graph of the order $22 p^{2}$. Thus we may assume that $p \geq 11$. Suppose that X is a connected cubic symmetric graph of the order $22 p^{2}$, where $p>7$ is
a prime. Set $A:=A u t(X)$. Then, $|A|=2^{s}$. 3. 11. p^{2}, where $1 \leq s \leq 5$. First, suppose that A is nonsolvable. Then, A is a product of isomorphic non-abelian simple groups. By the classification of finite simple groups, its composition factors would have to be a non-abelian simple $\{2,3,11\}$ group, or $\{2,3,11, p\}$-group. Let q be a prime. Then, by [13, pp. 12-14], and [6], a non-abelian simple $\{2, q, p\}$-group is one of the groups

$$
\begin{gather*}
A_{5}, A_{6}, P S L(2,7), \operatorname{PSL}(2,8), \operatorname{PSL}(2,17), \operatorname{PSL}(3,3) \\
\operatorname{PSU}(3,3), \text { or } \operatorname{PSU}(4,2) \tag{3.2}
\end{gather*}
$$

But, this is contradiction to the order of A. Then, composition factors is a $\{2,3,11, p\}$-group. By the classification of finite simple groups, its composition factors would have to be one of the following non-abelian simple groups listed in (3.1). However, this contradicts the order of A. Therefore, A is solvable, and hence, elementary Abelian. Let N is a minimal normal subgroup of A. Then, N is an elementary Abelian. Hence, N is $2,3,11$, or p-group. Then, N has more than two orbits on $V(X)$, and hence it is semiregular, by proposition 2.1. Thus, $|N| \mid 22 p^{2}$. Therefore $|N|=2,11, p$, or p^{2}. In each case, we get a contradiction.
case I): $|N|=p^{2}$
If $|N|=p^{2}$, then the quotient graph X_{N} of X relative to N is an A / N-symmetric graph of the order 22 , by Proposition 2.1. It is impossible by [4]. Suppose that $Q:=O_{p}(A)$ be the maximal normal p-subgroup of A.
case II): $|N|=p$
Now, we consider the quotient graph $X_{N}=X / N$ of X relative to N, where A / N is a s-regular of $A u t\left(X_{N}\right)$. Let K / N be a minimal normal subgroup of A / N. By the same argument as above K / N is solvable, and elementary Abelian. Then, we must have $|K / N|=2,11$, or p. Now, by considering the quotient graph X_{K} with the same reasoning as lemma 3.2 , a contradiction can be obtained.
case III): $|N|=11$
Now, we consider the quotient graph $X_{N}=X / N$ of X relative to N, where A / N is a s-regular of $A u t\left(X_{N}\right)$. Let K / N be a minimal normal subgroup of A / N. By the same argument as above K / N is solvable, and elementary Abelian. Then, we must have $|K / N|=2$, p, or p^{2}. Consequently $|K|=22,11 p$, or $11 p^{2}$. Then, with the same reasoning as case III of lemma 3.2 , we arrive at a contradiction.
case IV): $|N|=2$
In this case by the argument as in the case II of Lemma 3.2 a similar contradiction is obtained.

References

[1] M. Alaeiyan and M. K. Hosseinipoor A classification of the cubic s-regular graphs of orders $12 p$ and $12 p^{2}$, Acta Universitatis Apulensis (2011), 153-158.
[2] W. Bosma and J. Cannon, Handbook of Magma Function, Sydney University Press, Sydney, 1994.
[3] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42 (1987), 196-211.
[4] M. D. E. Conder, Trivalent (cubic) symmetric graphs on up to 2048 vertices, J (2006). http://www.math.auckland.ac.nz conder/symmcubic2048list.txt.
[5] M. D. E. Conder and P. Dobcsányi, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput. 40 (2002) 41-63.
[6] J. H. Conway, R. T. Curties, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[7] Y. Q. Feng and J. H. Kwak, Classifying cubic symmetric graphs of order 10 p or $10 p^{2}$, Sci. China Ser. A 49 (2006), 300-319.
[8] Y. Q. Feng and J. H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square J. Combin. Theory Ser. B 97 (2007), 627-646.
[9] Y. Q. Feng and J. H. Kwak, Cubic symmetric graphs of order twice an odd prime-power, J. Aust. Math. Soc. 81 (2006), 153-164.
[10] Y. Q. Feng and J. H. Kwak, One-regular cubic graphs of order a small number times a prime or a prime square, J. Aust. Math. Soc. 76 (2004), 345-356.
[11] Y. Q. Feng, J. H. Kwak and K. Wang, Classifying cubic symmetric graphs of order 8 p or $8 p^{2}$, European J. Combin. 26 (2005), 1033-1052.
[12] Y. Q. Feng, J. H. Kwak and M .Y. Xu, Cubic s-regular graphs of order $2 p^{3}$, J. Graph Theory 52 (2006), 341-352.
[13] D. Gorenstein, Finite Simple Groups, Plenum Press, New York, 1982.
[14] P. Lorimer, Vertex-transitive graphs: Symmetric graphs of prime valency, J. Graph Theory 8 (1984), 55-68.
[15] J.M. Oh, A classification of cubic s-regular graphs of order $14 p$, Discrete Math. 309 (2009), 2721-2726.
[16] J.M. Oh, A classification of cubic s-regular graphs of order 16p, Discrete Math. 309 (2009), 3150-3155.
[17] W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947), 459-474.
[18] W. T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959), 621-624.

Contact information

A. A. Talebi, N. Mehdipoor

Department of Mathematics, University of Mazandaran, Babolsar, Iran
E-Mail: a.talebi@umz.ac.ir, nargesmehdipoor@yahoo.com

Received by the editors: 07.03.2012
and in final form 14.08.2013.

[^0]: 2000 MSC: 05C25, 20b25.
 Key words and phrases: s-regular graphs, s-arc-transitive graphs, symmetric graphs, regular covering.

