Algebra and Discrete Mathematics Volume 16 (2013). Number 2. pp. 171 – 187 © Journal "Algebra and Discrete Mathematics"

Reducibility and irreducibility of monomial matrices over commutative rings

Vitaliy M. Bondarenko, Maria Yu. Bortos, Ruslana F. Dinis, Alexander A. Tylyshchak

Communicated by V. V. Kirichenko

Dedicated to the memory of Professor Petro M. Gudivok

ABSTRACT. Let R be a local ring with nonzero Jacobson radical. We study monomial matrices over R of the form

$$\begin{pmatrix} 0 & \dots & 0 & t^{s_n} \\ t^{s_1} & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & t^{s_{n-1}} & 0 \end{pmatrix},$$

and give a criterion for such matrices to be reducible when $n \leq 6$, $s_1 \ldots, s_n \in \{0, 1\}$ and the radical is a principal ideal with generator t. We also show that the criterion does not hold for n = 7.

Introduction

The problem of classifying, up to similarity, all the matrices over a commutative ring (which is not a field) is usually very difficult; in most cases it is "unsolvable" (wild), as in the case of the rings of residue classes [1]. Special cases of matrices of small orders were considered by many authors (see, e.g., [2]–[5]). In such situation, an important place is occupied by irreducible matrices over rings. Our paper is devoted to this subject.

²⁰¹⁰ MSC: 15B33, 15A30.

Key words and phrases: irreducible matrix, similarity, local ring, Jacobson radical.

Throughout the paper R denotes a commutative ring with identity, which is not a field, and R^* the group of its invertible elements.

We say that an $n \times n$ matrix M over R is reducible over R, or simply reducible, if it is similar (over R) to a matrix

$$N = \left(\begin{array}{cc} A_1 & B\\ 0 & A_2 \end{array}\right),$$

where A_i is an $n_i \times n_i$ matrix over R; $i = 1, 2, n_1, n_2 > 0$ (i. e. there exists an invertible matrix X over R such that $X^{-1}MX = N$). Otherwise we say that M is *irreducible over* R, or simply *irreducible*.

We consider the question: when is an $n \times n$ matrix over R of the form

$$M(t, s_1, \dots, s_n) = \begin{pmatrix} 0 & \dots & 0 & t^{s_n} \\ t^{s_1} & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & t^{s_{n-1}} & 0 \end{pmatrix}$$
(1)

with $t \in R$ irreducible?

The answer to this question is only known in some cases. Obviously, $M(t, s_1, \ldots, s_n)$ is reducible if $t^{s_1} = \ldots = t^{s_n}$ with n > 1 (in particular, $t \in \{0, 1\}$ or $s_1 = \ldots = s_n$). If R is local and its radical is a principle ideal with generator t, then $M(t, 0, \ldots, 0, 1)$ is irreducible since its characteristic polynomial $x^n + (-1)^{n+1}t$ is irreducible; and $M(t, 0, 1, \ldots, 1)$ is irreducible (probed by Gudivok and Tylyshchak [6]).

1. Reducible matrices $M(t, s_1, \ldots, s_n)$

 $\mathbb{Z}[\lambda]$ denotes the ring of polynomials of the variable λ over the ring \mathbb{Z} of integer numbers. Its field of fractions is denoted by F. By a basis of a vector space we mean an ordered basis. As usual, n denotes a natural number.

Proposition 1. Let s_1, \ldots, s_n be natural numbers such that $s = \sum_{i=1}^n s_i$ and n are not coprime. Then for any common divisors d > 1 of s and n, the matrix

$$M = M(\lambda, s_1, \dots, s_n)$$

over $\mathbb{Z}[\lambda]$ is similar (over $\mathbb{Z}[\lambda]$) to a matrix of the form

$$N = \left(\begin{array}{cc} A & D \\ 0 & B \end{array}\right),$$

where A is an $\frac{n}{d} \times \frac{n}{d}$ matrix.

Proof. Let s = dk, n = dm.

To illustrate the idea of the proof, we consider the following special case:

n	s	s_1, \ldots, s_n	d	m	k
15	9	0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1	3	5	3

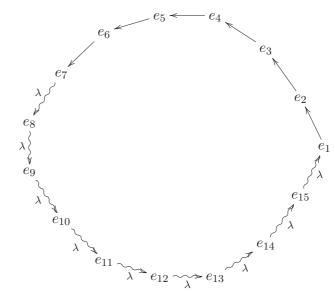
Let $\overline{e} = \{e_1, e_2, \ldots, e_{15}\}$ be the standard basis of the vector space F^{15} and let φ be the linear operator on this vector space determined (in the basis \overline{e}) by the matrix $M(\lambda, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)$, which has, by definition, the form

1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	λ	
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	λ	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	λ	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	λ	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	λ	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	λ	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	λ	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	λ	0	0	
ĺ	0	0	0	0	0	0	0	0	0	0	0	0	0	λ	0 /	

Then

$$\begin{aligned}
\varphi(e_1) &= e_2, & \varphi(e_2) = e_3, & \varphi(e_3) = e_4, \\
\varphi(e_4) &= e_5, & \varphi(e_5) = e_6, & \varphi(e_6) = e_7, \\
\varphi(e_7) &= \lambda e_8, & \varphi(e_8) = \lambda e_9, & \varphi(e_9) = \lambda e_{10}, \\
\varphi(e_{10}) &= \lambda e_{11}, & \varphi(e_{11}) = \lambda e_{12}, & \varphi(e_{12}) = \lambda e_{13}, \\
\varphi(e_{13}) &= \lambda e_{14}, & \varphi(e_{14}) = \lambda e_{15}, & \varphi(e_{15}) = \lambda e_1.
\end{aligned}$$
(2)

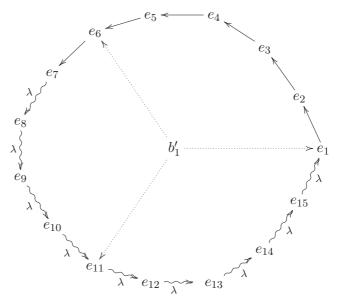
We can write these equalities in the form of the following diagram:



where $e_i \longrightarrow e_j$ and $e_i \longrightarrow e_j$ mean respectively that $\varphi(e_i) = e_j$ and $\varphi(e_i) = \lambda e_j$. Obviously, $\varphi^{15}(e_1) = \lambda^9 e_1$. Put

$$b_1' = \lambda^6 e_1 + \lambda^3 \varphi^5(e_1) + \varphi^{10}(e_1) = \lambda^6 e_1 + \lambda^3 e_6 + \lambda^4 e_{11}.$$
 (3)

On the diagram



 $b'_1 \longrightarrow e_i$ indicate those e_i which appeared in (3). Then

$$\begin{split} \varphi^{5}(b_{1}') &= \varphi^{5}(\lambda^{6}e_{1} + \lambda^{3}\varphi^{5}(e_{1}) + \varphi^{10}(e_{1})) \\ &= \lambda^{6}\varphi^{5}(e_{1}) + \lambda^{3}\varphi^{10}(e_{1}) + \varphi^{15}(e_{1}) \\ &= \lambda^{6}\varphi^{5}(e_{1}) + \lambda^{3}\varphi^{10}(e_{1}) + \lambda^{9}e_{1} \\ &= \lambda^{9}e_{1} + \lambda^{6}\varphi^{5}(e_{1}) + \lambda^{3}\varphi^{10}(e_{1}) \\ &= \lambda^{3}(\lambda^{6}e_{1} + \lambda^{3}\varphi^{5}(e_{1}) + \varphi^{10}(e_{1})) = \lambda^{3}b_{1}'. \end{split}$$

Let us define b'_2, \ldots, b'_5 by recursion

$$b'_{2} = \varphi(b'_{1}), \qquad b'_{3} = \varphi(b'_{2}), \qquad b'_{4} = \varphi(b'_{3}), \qquad b'_{5} = \varphi(b'_{4}).$$
(4)

Clearly

$$\begin{split} b_1' &= \lambda^6 e_1 + \lambda^3 e_6 + \lambda^4 e_{11}, \\ b_2' &= \varphi(b_1') = \lambda^6 e_2 + \lambda^3 e_7 + \lambda^5 e_{12}, \\ b_3' &= \varphi(b_2') = \lambda^6 e_3 + \lambda^4 e_8 + \lambda^6 e_{13}, \\ b_4' &= \varphi(b_3') = \lambda^6 e_4 + \lambda^5 e_9 + \lambda^7 e_{14}, \\ b_5' &= \varphi(b_4') = \lambda^6 e_5 + \lambda^6 e_{10} + \lambda^8 e_{15}, \end{split}$$

and

$$\varphi(b_5') = \lambda^6 e_6 + \lambda^7 e_{12} + \lambda^9 e_1 = \lambda^9 e_1 + \lambda^6 e_6 + \lambda^7 e_{12}.$$

Then $\varphi(b_5') = \varphi^5(b_1') = \lambda^3 b_1'$. From (2)–(4) it follows that

$$b'_j = \lambda^{\alpha_{1j}} e_j + \lambda^{\alpha_{2j}} e_{5+j} + \lambda^{\alpha_{3j}} e_{10+j}$$

for some integer $\alpha_{ij} \ge 0$; here $i = 1, 2, 3, j = 1, \ldots, 5$. Put $\alpha_j = \min_i \{\alpha_{ij}\}$. Then

$$\alpha_1 = 3, \ \alpha_2 = 3, \ \alpha_3 = 4, \ \alpha_4 = 5, \ \alpha_5 = 6,$$

whence $\alpha_j \ge \alpha_{j-1}$ $(j > 1), \alpha_1 + 3 = \alpha_5$.

Let $\beta_{ij} = \alpha_{ij} - \alpha_j$ (i = 1, 2, 3, j = 1, ..., 5). Then $\beta_{ij} \ge 0$, and obviously that for any j there is $1 \le \mu_j \le 3$ such that $\beta_{\mu_j j} = 0$.

Put

$$b_j = \sum_{i=1}^d \lambda^{\beta_{ij}} e_{(i-1)5+j}$$

or more detail

$$b_{1} = \lambda^{3}e_{1} + e_{6} + \lambda e_{11}, \quad b_{2} = \lambda^{3}e_{2} + e_{7} + \lambda^{2}e_{12},$$

$$b_{3} = \lambda^{2}e_{3} + e_{8} + \lambda^{2}e_{13}, \quad b_{4} = \lambda e_{4} + e_{9} + \lambda^{2}e_{14},$$

$$b_{5} = e_{5} + e_{10} + \lambda^{2}e_{15}.$$
(5)

Then

$$\lambda^{\alpha_{1}}b_{1} = \lambda^{3}b_{1} = \lambda^{6}e_{1} + \lambda^{3}e_{6} + \lambda^{4}e_{11} = b_{1}',$$

$$\lambda^{\alpha_{2}}b_{2} = \lambda^{3}b_{2} = \lambda^{6}e_{2} + \lambda^{3}e_{7} + \lambda^{5}e_{12} = b_{2}',$$

$$\lambda^{\alpha_{3}}b_{3} = \lambda^{4}b_{3} = \lambda^{6}e_{3} + \lambda^{4}e_{8} + \lambda^{6}e_{13} = b_{3}',$$

$$\lambda^{\alpha_{4}}b_{4} = \lambda^{5}b_{4} = \lambda^{6}e_{4} + \lambda^{5}e_{9} + \lambda^{7}e_{14} = b_{4}',$$

$$\lambda^{\alpha_{5}}b_{5} = \lambda^{6}b_{5} = \lambda^{6}e_{5} + \lambda^{6}e_{10} + \lambda^{8}e_{15} = b_{5}'.$$

It follows from (4) that $\varphi(b_{j-1}) = \lambda^{\alpha_j - \alpha_{j-1}} b_j$ (j = 2, ..., 5) and $\varphi(b_5) = \lambda^{3+\alpha_1-\alpha_5} b_1$ (since $\varphi(b'_5) = \lambda^3 b'_1$). Then

$$\varphi(b_1) = \lambda^{3-3}b_2 = b_2, \qquad \varphi(b_2) = \lambda^{4-3}b_2 = \lambda b_3,
\varphi(b_3) = \lambda^{5-4}b_3 = \lambda b_4, \qquad \varphi(b_4) = \lambda^{6-5}b_4 = \lambda b_5, \tag{6}$$

$$\varphi(b_5) = \lambda^{3+3-6}b_1 = b_1.$$

Denote by \overline{a} the following basis of F^{15} :

$$\overline{a} = \{e_6, e_7, e_8, e_9, e_5, e_1, e_2, e_3, e_4, e_{10}, e_{11}, e_{12}, e_{13}, e_{14}, e_{15}\}.$$

The transition matrix from the basic \overline{e} to the basis \overline{a} is the (permutation) matrix

From (5) it follows that

$$\overline{b} = \{b_1, b_2, b_3, b_4, b_5, e_1, e_2, e_3, e_4, e_{10}, e_{11}, e_{12}, e_{13}, e_{14}, e_{15}\}$$

is a basis of F^{15} . The transition matrix from the basis \overline{a} to the basis \overline{b} is

(belonging obviously to $\operatorname{GL}_{15}(\mathbb{Z}[\lambda])$).

Consider now the matrix $S = PC \in \operatorname{GL}_n(\mathbb{Z}[\lambda])$, which is the transition matrix from the basic \overline{e} to the basis \overline{b} . It follows from (6) that

$$S^{-1}MS = \left(\begin{array}{cc} A & D\\ 0 & B \end{array}\right) \tag{7}$$

where

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 & 0 \\ 0 & 0 & \lambda & 0 & 0 \\ 0 & 0 & 0 & \lambda & 0 \end{pmatrix}$$

and B is an 10×10 matrix over the ring $\mathbb{Z}[\lambda]$. This completes the proof in our special case.

Now we proceed to the general case. Recall that $s = \sum_{i=1}^{n} s_i = dk$, n = dm.

Let φ be the linear operator on the vector space F^n determined by the matrix M in the standard basis $\overline{e} = \{e_1, e_2, \ldots, e_n\}$. Then $\varphi(e_1) = \lambda^{s_1} e_2$, $\varphi(e_2) = \lambda^{s_2} e_3, \ldots, \varphi(e_{n-1}) = \lambda^{s_{n-1}} e_n, \varphi(e_n) = \lambda^{s_n} e_1$. Thus

$$\varphi(e_i) = \begin{cases} \lambda^{s_i} e_{i+1}, & i < n, \\ \lambda^{s_i} e_1, & i = n. \end{cases}$$
(8)

Obviously, $\varphi^n(e_1) = \lambda^{\sum_{i=1}^n s_i} e_1 = \lambda^s e_1$. Let

$$b_1' = \sum_{i=1}^d \lambda^{(d-i)k} \varphi^{(i-1)m}(e_1).$$
(9)

Then

$$\begin{split} \varphi^{m}(b_{1}') &= \varphi^{m} \left(\sum_{i=1}^{d} \lambda^{(d-i)k} \varphi^{(i-1)m}(e_{1}) \right) = \\ \sum_{i=1}^{d} \lambda^{(d-i)k} \varphi^{im}(e_{1}) &= \sum_{i=1}^{d-1} \lambda^{(d-i)k} \varphi^{im}(e_{1}) + \varphi^{dm}(e_{1}) = \\ \varphi^{dm}(e_{1}) &+ \sum_{i=1}^{d-1} \lambda^{(d-i)k} \varphi^{im}(e_{1}) = \varphi^{n}(e_{1}) + \sum_{i=2}^{d} \lambda^{(d-i+1)k} \varphi^{(i-1)m}(e_{1}) = \\ &= \lambda^{s} e_{1} + \sum_{i=2}^{d} \lambda^{(d-i+1)k} \varphi^{(i-1)m}(e_{1}) = \lambda^{dk} e_{1} + \sum_{i=2}^{d} \lambda^{(d-i+1)k} \varphi^{(i-1)m}(e_{1}) = \\ &\sum_{i=1}^{d} \lambda^{(d-i+1)k} \varphi^{(i-1)m}(e_{1}) = \lambda^{k} \left(\sum_{i=1}^{d} \lambda^{(d-i)k} \varphi^{(i-1)m}(e_{1}) \right) = \lambda^{k} b_{1}'. \end{split}$$

Let us define b'_j by the recursion

$$b'_{j} = \varphi(b'_{j-1}), \ (j = 2, \dots, m).$$
 (10)

Then $\varphi(b'_m) = \varphi^m(b'_1) = \lambda^k b'_1$. From (8)–(10), it follows that

$$b'_j = \sum_{i=1}^d \lambda^{\alpha_{ij}} e_{(i-1)m+j}$$

for some $\alpha_{ij} \in \mathbb{Z}$ $(i = 1, \dots, d, j = 1, \dots, m)$. Moreover,

$$b'_{j} = \varphi(b'_{j-1}) = \sum_{i=1}^{d} \lambda^{\alpha_{ij-1}} \varphi(e_{(i-1)m+j-1}) =$$
$$= \sum_{i=1}^{d} \lambda^{\alpha_{ij-1}+s_{(i-1)m+j-1}} e_{(i-1)m+j} \ (j = 2, \dots, m).$$

Consequently, $\alpha_{ij} = \alpha_{ij-1} + s_{(i-1)m+j-1}$. Thus $\alpha_{ij} \ge \alpha_{ij-1}$ $(i = 1, \ldots, d, j = 2, \ldots, m)$. Put $\alpha_j = \min_i \{\alpha_{ij}\}$ $(j = 1, \ldots, m)$. Then $\alpha_j \ge \alpha_{j-1}$ (j > 1). Since

$$\sum_{i=1}^{d} \lambda^{\alpha_{i1}+k} e_{(i-1)m+1} = \lambda^{k} b'_{1} = \varphi(b'_{m}) = \sum_{i=1}^{d} \lambda^{\alpha_{i\,m}} \varphi(e_{(i-1)m+m}) = \sum_{i=1}^{d} \lambda^{\alpha_{i,m}} \varphi(e_{(i-1)m+m}) = \sum_{$$

$$= \sum_{i=1}^{d} \lambda^{\alpha_{i\,m}} \varphi(e_{im}) = \sum_{i=1}^{d-1} \lambda^{\alpha_{i\,m}} \varphi(e_{im}) + \lambda^{\alpha_{d\,m}} \varphi(e_{dm}) =$$

$$= \sum_{i=1}^{d-1} \lambda^{\alpha_{i\,m}+s_{im}}(e_{im+1}) + \lambda^{\alpha_{d\,m}+s_{n}} e_{1} = \lambda^{\alpha_{d\,m}+s_{n}} e_{1} + \sum_{i=1}^{d-1} \lambda^{\alpha_{i\,m}+s_{im}}(e_{im+1}) =$$

$$= \lambda^{\alpha_{d\,m}+s_{n}} e_{1} + \sum_{i=2}^{d} \lambda^{\alpha_{i-1,m}+s_{(i-1)m}}(e_{(i-1)m+1})$$

we deduce that $\alpha_{i1} + k \ge \alpha_{i-1,m}$ (i = 2, ..., d). Moreover, $\alpha_{11} + k \ge \alpha_{dm}$. Thus $\alpha_1 + k \ge \alpha_m$.

Put $\beta_{ij} = \alpha_{ij} - \alpha_j$ (i = 1, ..., d, j = 1, ..., m). Then $\beta_{ij} \ge 0$ for all i, j and, obviously, for any j there is $1 \le \mu_j \le d$ such that $\beta_{\mu_j,j} = 0$. Let

$$b_j = \sum_{i=1}^d \lambda^{\alpha_{ij} - \alpha_j} e_{(i-1)m+j}.$$

Then

$$\lambda^{\alpha_j} b_j = \sum_{i=1}^d \lambda^{\alpha_{ij}} e_{(i-1)m+j} = b'_j,$$

and it follows from (10) that $\varphi(b_{j-1}) = \lambda^{\alpha_j - \alpha_{j-1}} b_j$ (j = 2, ..., m). Since $\varphi(b'_m) = \lambda^k b'_1$, we deduce that $\varphi(b_m) = \lambda^{k+\alpha_1-\alpha_m} b_1$. Let $\beta(j-1) = \alpha_j - \alpha_{j-1}$, $\beta(m) = k + \alpha_1 - \alpha_m$. Clearly $\beta(j) \ge 0$ (j = 1, ..., m). Moreover, $\varphi(b_{j-1}) = \lambda^{\beta(j-1)} b_j$ (j = 2, ..., m), $\varphi(b_m) = \lambda^{\beta(m)} b_1$.

Consider the vectors $e_{(\mu_1-1)m+1}$, $e_{(\mu_2-1)m+2}$, ..., $e_{(\mu_m-1)m+m}$ (belonging to the original basic \overline{e}). They are distinct because their indices are not congruent modulo m. Therefore we can extend these vectors to a basis

$$\overline{a} = \{e_{(\mu_1 - 1)m + 1}, e_{(\mu_2 - 1)m + 2}, \dots, e_{(\mu_m - 1)m + m}, e_{i'_{m+1}}, \dots, e_{i'_n}\}$$

of F^n which is equal, up to a permutation, to the basic $\overline{e} = \{e_1, \ldots, e_n\}$. The transition matrix from the basic \overline{a} to a basis

$$b = \{b_1, \dots, b_m, e_{i'_{m+1}}, \dots, e_{i'_n}\}$$

has the form

$$C = \begin{pmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ \lambda^{\delta_{m+1,1}} & \dots & \lambda^{\delta_{m+1,m}} & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \lambda^{\delta_{n1}} & \dots & \lambda^{\delta_{nm}} & 0 & \dots & 1 \end{pmatrix}$$

where $\delta_{ij} \geq 0$ (i = m + 1, ..., n, j = 1, ..., m). Obviously, $C \in GL_n(\mathbb{Z}[\lambda])$ (as an matrix over $\mathbb{Z}[\lambda]$ with determinant 1).

Let $P \in \operatorname{GL}_n(\mathbb{Z})$ be a permutation matrix which is the transition matrix from the basic \overline{e} to the basis \overline{a} . Then the matrix S = PC is the transition matrix from the basic \overline{e} to the basis \overline{b} , and since $\varphi(b_{j-1}) = \lambda^{\beta(j-1)}b_j$ $(j = 2, \ldots, m), \varphi(b_m) = \lambda^{\beta(m)}b_1$ we deduce that

$$S^{-1}MS = \left(\begin{array}{cc} A & D\\ 0 & B \end{array}\right),$$

where

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & \lambda^{\beta(m)} \\ \lambda^{\beta(1)} & 0 & \dots & 0 & 0 \\ 0 & \lambda^{\beta(2)} & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda^{\beta(m-1)} & 0 \end{pmatrix}$$

and B is a $(n-m) \times (n-m)$ matrix.

Theorem 1. Let R be a commutative local ring, and let n > 0 and $s_1, \ldots, s_n \ge 0$ be integer numbers such that n and $s = \sum_{i=1}^n s_i$ are not coprime. Then for any common divisors d > 1 of n and s, and any $t \in R$ the matrix

$$M(t, s_1, \dots, s_n) = \begin{pmatrix} 0 & \dots & 0 & t^{s_n} \\ t^{s_1} & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & t^{s_{n-1}} & 0 \end{pmatrix}$$

over the ring R is reducible.

The proof follows from Proposition 1 and the existence of a (unique) homomorphism of rings $f : \mathbb{Z}[\lambda] \to R$ such that $f(1) = 1, f(\lambda) = t$.

2. Irreducible matrices $M(t, s_1, \ldots, s_n)$

Throughout this section all matrices are considered over a commutative local ring R with Jacobson radical $\operatorname{Rad}(R) = tR, t \neq 0$, and their similarity are considered also over R. For a matrix M, we denote by \overline{M} its reduction modulo the radical. As above n denotes a natural number.

Lemma 1. Let $s_1, \ldots, s_n \in \{0, 1\}$ with $s_i = 0$ for at least one $i \in \{1, \ldots, n\}$. Then the matrix $M = M(t, s_1, \ldots, s_n)$ is not similar to matrices of the form

$$M_1 = \begin{pmatrix} tA & D \\ 0 & B \end{pmatrix}, \ M_2 = \begin{pmatrix} A & D \\ 0 & tB \end{pmatrix},$$

where A is an $r \times r$ matrix and B is an $(n-r) \times (n-r)$ matrix (0 < r < n).

Proof. Suppose that

$$C^{-1}MC = M_1,$$

where $C = (c_{ij})_{1 \le i,j \le n} \in \operatorname{GL}_n(R)$, or equivalently,

$$MC = CM_1,$$

i. e.

$$\begin{pmatrix} 0 & \dots & 0 & t^{s_n} \\ t^{s_1} & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & t^{s_{n-1}} & 0 \end{pmatrix} C = C \begin{pmatrix} tA & D \\ 0 & B \end{pmatrix}.$$
 (11)

For $i, j \in \{1, \ldots, n\}$, the scalar equality $(MC)_{ij} = (CM_1)_{ij}$ is denoted by (11, ij). Put $c_i = (c_{i1}, \ldots, c_{ir})$.

We write the equalities $(11, 1j), (11, 2j), \ldots, (11, nj)$, where, in all cases, j runs from 1 to r, respectively in the form

$$t^{s_n}c_n = tc_1A, \ t^{s_1}c_1 = tc_2A, \ \dots, \ t^{s_{n-1}}c_{n-1} = tc_nA.$$
 (12)

Since Rad(R) is generated by $t \neq 0$, we have the following simple fact: if $t^s \gamma = t\delta$ for some $s \in \{0, 1\}, \gamma, \delta \in R$ then either s = 0 and consequently $\gamma = t\delta$, or s = 1 and consequently $t(\gamma - \delta) = 0$; so, respectively, $\overline{\gamma} = 0$ or $\overline{\gamma} = \overline{\delta}$. If one put $c_{n+1} = c_1$, then by this fact $\overline{c}_i = 0$ or $\overline{c}_i = \overline{c}_{i+1}\overline{A}$ for any $i = 1, \ldots, n$. Because $s_i = 0$ for at least one i, we have that $\overline{c}_l = 0$ for some $l \in \{1, \ldots, n\}$. By (12) we successively obtain $\overline{c}_1 = \ldots, \overline{c}_{l-1} = 0$, $\overline{c}_n = 0$ and $\overline{c}_{l+1} = \ldots, \overline{c}_{n-1} = 0$. Thus the matrix C in not invertible modulo t and consequently is not invertible itself, a contradiction.

The case $C^{-1}MC = M_2$ is considered analogously.

Lemma 2. Let $s_1, \ldots, s_n \ge 0$ be integers with $s_i \ne 0$ for at least one $i \in \{1, \ldots, n\}$. The matrix $M = M(t, s_1, \ldots, s_n)$ is not similar to a matrix

$$N = \left(\begin{array}{cc} A & D \\ 0 & B \end{array}\right),$$

where A is an $r \times r$ matrix and B is an $(n-r) \times (n-r)$ matrix (0 < r < n), A or B is invertible.

The lemma follows at once from the nilpotency of \overline{M} .

Lemma 3. The matrix M(t, 0, 0, 0, 1, 1) is irreducible.

Proof. Assume that the matrix M(t, 0, 0, 0, 1, 1) is reducible. Then for some matrix $C \in GL_5(R)$ we have

$$M(t, 0, 0, 0, 1, 1)C = C \begin{pmatrix} A & D \\ 0 & B \end{pmatrix}.$$
 (13)

where A is an $s \times s$ matrix and B is a $(5-s) \times (5-s)$ matrix (0 < s < 5).

Since the matrix M(t, 0, 0, 0, 1, 1) is similar to its transpose, we can interchange the matrices A and B in (13), and therefore, without loss of generality, we can assume that $s \leq 5 - s$, i. e. s = 1 or s = 2.

In the case s = 1 either $A \in tR$ or $A \in R^*$, and we have a contradiction with Lemmas 1 or 2, respectively.

Let now s = 2 and let $C = (c_{ij})_{1 \le i,j \le 5}$, $c_p = (c_{p1}, c_{p2})$ $(p = 1, \ldots, 5)$. Then from the equality (13) we obtain

$$tc_5 = c_1 A, \quad c_1 = c_2 A, \quad c_2 = c_3 A, \quad c_3 = c_4 A, \quad tc_4 = c_5 A.$$
 (14)

By Lemmas 1 and 2 rank $(\overline{A}) \neq 0$ and rank $(\overline{A}) \neq 2$. Consequently rank $(\overline{A}) = 1$. Since the matrix \overline{A} is nilpotent, we can assume, without loss of generality, that

$$A = \left(\begin{array}{cc} t\alpha & 1 + t\beta \\ t\gamma & t\delta \end{array}\right),$$

where $\alpha, \beta, \gamma, \delta \in \mathbb{R}$. Substituting A in (14), we get the following equalities (which for convenience are written in pairs):

$$\begin{cases}
(tc_{51}, tc_{52}) = (c_{11}t\alpha + c_{12}t\gamma, c_{11} + c_{11}t\beta + c_{12}t\delta), \\
(c_{11}, c_{12}) = (c_{21}t\alpha + c_{22}t\gamma, c_{21} + c_{21}t\beta + c_{22}t\delta), \\
(c_{21}, c_{22}) = (c_{31}t\alpha + c_{32}t\gamma, c_{31} + c_{31}t\beta + c_{32}t\delta), \\
(c_{31}, c_{32}) = (c_{41}t\alpha + c_{42}t\gamma, c_{41} + c_{41}t\beta + c_{42}t\delta), \\
(tc_{41}, tc_{42}) = (c_{51}t\alpha + c_{52}t\gamma, c_{51} + c_{51}t\beta + c_{52}t\delta).
\end{cases}$$
(15)

From the equalities (15) we obtain that $\overline{c}_{11} = \overline{c}_{21} = \overline{c}_{31} = 0 = \overline{c}_{51}$.

Further, $\bar{c}_{12} = 0$ (since $c_{12} = c_{21} + c_{21}t\beta + c_{22}t\delta$ and $\bar{c}_{21} = 0$), and $\bar{c}_{22} = 0$ (since $c_{22} = c_{31} + c_{31}t\beta + c_{32}t\delta$ and $\bar{c}_{31} = 0$).

Finally, since $\overline{c}_{41} = \overline{c}_{51}\overline{\alpha} + \overline{c}_{52}\overline{\gamma}$ (by $tc_{41} = c_{51}t\alpha + c_{52}t\gamma$) and $\overline{c}_{52} = \overline{c}_{21}\overline{\alpha} + \overline{c}_{22}\overline{\gamma} + \overline{c}_{11}\overline{\beta} + \overline{c}_{12}\overline{\delta}$ (by $tc_{52} = c_{11} + c_{11}t\beta + c_{12}t\delta$ and $c_{11} = c_{21}t\alpha + c_{22}t\gamma$) we have that $\overline{c}_{41} = 0$ (taking into account the above equalities of the form $\overline{c}_{ij} = 0$).

Thus $det(\overline{C}) = 0$, a contradiction.

Lemma 4. The matrix M(t, 0, 0, 1, 1, 1) is irreducible.

Proof. Assume that M(t, 0, 0, 0, 1, 1) is reducible. Then for some matrix $C \in GL_5(R)$ we have

$$M(t, 0, 0, 1, 1, 1)C = C \begin{pmatrix} A & D \\ 0 & B \end{pmatrix}.$$
 (16)

where A is an $s \times s$ matrix and B is a $(5-s) \times (5-s)$ matrix (0 < s < 5).

As in the proof of Lemma 3, we can assume that $s \le 5 - s$, i. e. s = 1 or s = 2. Since the case s = 1 is trivial, we consider only the case s = 2.

Let $C = (c_{ij})_{1 \le i,j \le 5}$, $c_p = (c_{p1}, c_{p2})$ (p = 1, ..., 5). Then from the equality (16) we obtain

$$tc_5 = c_1 A, \quad c_1 = c_2 A, \quad c_2 = c_3 A, \quad tc_3 = c_4 A, \quad tc_4 = c_5 A.$$
 (17)

By Lemmas 1 and 2 rank $(\overline{A}) = 1$. Since the matrix \overline{A} is nilpotent we can assume, without loss of generality, that

$$A = \left(\begin{array}{cc} t\alpha & 1 + t\beta \\ t\gamma & t\delta \end{array}\right),$$

where $\alpha, \beta, \gamma, \delta \in \mathbb{R}$. Substituting A in (17), we get the following equalities:

$$\begin{pmatrix} (tc_{51}, tc_{52}) = (c_{11}t\alpha + c_{12}t\gamma, c_{11} + c_{11}t\beta + c_{12}t\delta), \\ (c_{11}, c_{12}) = (c_{21}t\alpha + c_{22}t\gamma, c_{21} + c_{21}t\beta + c_{22}t\delta), \\ (c_{21}, c_{22}) = (c_{31}t\alpha + c_{32}t\gamma, c_{31} + c_{31}t\beta + c_{32}t\delta), \\ (tc_{31}, tc_{32}) = (c_{41}t\alpha + c_{42}t\gamma, c_{41} + c_{41}t\beta + c_{42}t\delta), \\ (tc_{41}, tc_{42}) = (c_{51}t\alpha + c_{52}t\gamma, c_{51} + c_{51}t\beta + c_{52}t\delta).$$

$$(18)$$

From the equalities (18) we have $\overline{c}_{11} = \overline{c}_{21} = 0 = \overline{c}_{41} = \overline{c}_{51}$, and

$$\overline{c}_{31} = \overline{c}_{42}\overline{\gamma} \text{ (since } tc_{31} = c_{41}t\alpha + c_{42}t\gamma \text{ and } \overline{c}_{41} = 0), \\ \overline{c}_{22} = \overline{c}_{31} \text{ (since } c_{22} = c_{31} + c_{31}t\beta + c_{32}t\delta), \\ \overline{c}_{12} = 0 \text{ (since } c_{12} = c_{21} + c_{21}t\beta + c_{22}t\delta \text{ and } \overline{c}_{21} = 0), \\ \overline{c}_{52}\overline{\gamma} = 0 \text{ (since } tc_{41} = c_{51}t\alpha + c_{52}t\gamma \text{ and } \overline{c}_{41} = \overline{c}_{51} = 0), \\ \overline{c}_{52} = \overline{c}_{31}\overline{\gamma} \text{ (since } tc_{52} = c_{11} + c_{11}t\beta + c_{12}t\delta, \\ c_{11} = c_{21}t\alpha + c_{22}t\gamma \text{ and } \overline{c}_{11} = \overline{c}_{21} = \overline{c}_{12} = 0, \ \overline{c}_{22} = \overline{c}_{31}).$$

If $\overline{\gamma} = 0$ then $\overline{c}_{31} = 0$; if $\overline{\gamma} \neq 0$ then $\gamma \in R^*$ and hence $\overline{c}_{52} = 0$, $\overline{c}_{31} = 0$. Therefore, in both the cases $\det(\overline{C}) = 0$, a contradiction.

Lemma 5. The matrix M(t, 0, 0, 1, 0, 1) is irreducible.

Proof. Assume that M(t, 0, 0, 1, 0, 1) is reducible. Then for some matrix $C \in GL_5(R)$ we have

$$M(t, 0, 0, 1, 0, 1)C = C \begin{pmatrix} A & D \\ 0 & B \end{pmatrix}.$$
 (19)

where A is an $s \times s$ matrix and B is a $(5-s) \times (5-s)$ matrix (0 < s < 5).

As in the proof of Lemma 3, we can assume that $s \leq 5 - s$, i. e. s = 1or s = 2. Since the case s = 1 is trivial, we consider only the case s = 2. Let $C = (c_{ij})_{1 \leq i,j \leq 5}, c_p = (c_{p1}, c_{p2}) \ (p = 1, \ldots, 5)$. Then from the equality (19) we obtain

$$tc_5 = c_1 A, \quad c_1 = c_2 A, \quad c_2 = c_3 A, \quad tc_3 = c_4 A, \quad c_4 = c_5 A.$$
 (20)

By Lemmas 1 and 2 rank $(\overline{A}) = 1$. Since the matrix \overline{A} is nilpotent we can assume, without loss of generality, that

$$A = \left(\begin{array}{cc} t\alpha & 1 + t\beta \\ t\gamma & t\delta \end{array}\right),$$

where $\alpha, \beta, \gamma, \delta \in R$. Substituting A in equality (20), we get

$$\begin{pmatrix} (tc_{51}, tc_{52}) &= (c_{11}t\alpha + c_{12}t\gamma, c_{11} + c_{11}t\beta + c_{12}t\delta), \\ (c_{11}, c_{12}) &= (c_{21}t\alpha + c_{22}t\gamma, c_{21} + c_{21}t\beta + c_{22}t\delta), \\ (c_{21}, c_{22}) &= (c_{31}t\alpha + c_{32}t\gamma, c_{31} + c_{31}t\beta + c_{32}t\delta), \\ (tc_{31}, tc_{32}) &= (c_{41}t\alpha + c_{42}t\gamma, c_{41} + c_{41}t\beta + c_{42}t\delta), \\ (c_{41}, c_{42}) &= (c_{51}t\alpha + c_{52}t\gamma, c_{51} + c_{51}t\beta + c_{52}t\delta). \end{cases}$$

From equality (21) we have $\bar{c}_{11} = \bar{c}_{21} = \bar{c}_{41} = 0$, and $\bar{c}_{12} = 0$ (since $c_{12} = c_{21} + c_{21}t\beta + c_{22}t\delta$ and $\bar{c}_{21} = 0$), $\bar{c}_{51} = 0$ (since $tc_{51} = c_{11}t\alpha + c_{12}t\gamma$ and $\bar{c}_{11} = \bar{c}_{12} = 0$), $\bar{c}_{42} = 0$ (since $c_{42} = c_{51} + c_{51}t\beta + c_{52}t\delta$ and $\bar{c}_{51} = 0$), $\bar{c}_{31} = \bar{c}_{41}\bar{\alpha} + \bar{c}_{42}\bar{\gamma} = 0$ (since $tc_{31} = c_{41}t\alpha + c_{42}t\gamma$ and $\bar{c}_{41} = \bar{c}_{42} = 0$).

Therefore $det(\overline{C}) = 0$, a contradiction.

Lemma 6. The matrix M(t, 0, 1, 1, 0, 1) is irreducible.

Proof. Assume that M(t, 0, 1, 1, 0, 1) is reducible. Then for some matrix $C \in GL_5(R)$ we have

$$M(t, 0, 1, 1, 0, 1)C = C \begin{pmatrix} A & D \\ 0 & B \end{pmatrix}.$$
 (22)

where A is an $s \times s$ matrix and B is a $(5-s) \times (5-s)$ matrix (0 < s < 5).

As in the proof of Lemma 3, we can assume that $s \le 5 - s$, i. e. s = 1 or s = 2. Since the case s = 1 is trivial, we consider only the case s = 2.

Let $C = (c_{ij})_{1 \le i,j \le 5}$, $c_p = (c_{p1}, c_{p2})$ (p = 1, ..., 5). Then from the equality (22) we obtain

$$tc_5 = c_1 A, \quad c_1 = c_2 A, \quad tc_2 = c_3 A, \quad tc_3 = c_4 A, \quad c_4 = c_5 A.$$
 (23)

By Lemmas 1 and 2 rank $(\overline{A}) = 1$. Since the matrix \overline{A} is nilpotent, we can assume, without loss of generality, that

$$A = \left(\begin{array}{cc} t\alpha & 1 + t\beta \\ t\gamma & t\delta \end{array}\right),$$

where $\alpha, \beta, \gamma, \delta \in R$.

Substituting A in equality (23), we get

$$\begin{cases}
(tc_{51}, tc_{52}) = (c_{11}t\alpha + c_{12}t\gamma, c_{11} + c_{11}t\beta + c_{12}t\delta), \\
(c_{11}, c_{12}) = (c_{21}t\alpha + c_{22}t\gamma, c_{21} + c_{21}t\beta + c_{22}t\delta), \\
(tc_{21}, tc_{22}) = (c_{31}t\alpha + c_{32}t\gamma, c_{31} + c_{31}t\beta + c_{32}t\delta), \\
(tc_{31}, tc_{32}) = (c_{41}t\alpha + c_{42}t\gamma, c_{41} + c_{41}t\beta + c_{42}t\delta), \\
(c_{41}, c_{42}) = (c_{51}t\alpha + c_{52}t\gamma, c_{51} + c_{51}t\beta + c_{52}t\delta).
\end{cases}$$
(24)

From equality (24) we obtain that $\bar{c}_{11} = \bar{c}_{41} = 0 = \bar{c}_{31}$ and $\bar{c}_{12} = \bar{c}_{21}$ (since $c_{12} = c_{21} + c_{21}t\beta + c_{22}t\delta$), $\bar{c}_{51} = \bar{c}_{12}\overline{\gamma}$ (since $tc_{51} = c_{11}t\alpha + c_{12}t\gamma$ and $\bar{c}_{11} = 0$), $\bar{c}_{21} = \bar{c}_{32}\overline{\gamma}$ (since $tc_{21} = c_{31}t\alpha + c_{32}t\gamma$ and $\bar{c}_{31} = 0$) $\bar{c}_{42} = \bar{c}_{51}$ (since $c_{42} = c_{51} + c_{51}t\beta + c_{52}t\delta$), $\bar{c}_{42}\overline{\gamma} = 0$ (since $tc_{31} = c_{41}t\alpha + c_{42}t\gamma$ and $\bar{c}_{31} = \bar{c}_{41} = 0$).

If $\overline{\gamma} = 0$ then $\overline{c}_{51} = 0$ and $\overline{c}_{21} = 0$. If $\overline{\gamma} \neq 0$ then $\gamma \in R^*$, $\overline{c}_{42} = 0$ and hence $\overline{c}_{51} = 0$, $\overline{c}_{12} = 0$ and $\overline{c}_{21} = 0$. Therefore, $\det(\overline{C}) = 0$, a contradiction.

3. Main result

Theorem 2. Let R be a commutative local ring with radical $\operatorname{Rad}(R) = tR$, $t \neq 0$, and let $s_1, \ldots, s_n \in \{0, 1\}$. If $0 < n \leq 6$, then the matrix $M(t, s_1, \ldots, s_n)$ over R is irreducible if and only if n and $s = \sum_{i=1}^n s_i$ are coprime.

Proof. The necessity part follows from Theorem 1. Let now n and $\sum_{i=1}^{n} s_i$ are coprime. Then the matrix $M(t, s_1, \ldots, s_n)$ is, up to cyclic permutations of s_i , one of the following:

$$\begin{array}{l}
M(t,0,1), \ M(t,0,0,1), \ M(t,0,0,0,1), \\
M(t,0,0,0,0,1), \ M(t,0,0,0,0,0,1),
\end{array} (25)$$

$$M(t, 0, 0, 0, 1, 1), M(t, 0, 0, 1, 1, 1),
 M(t, 0, 0, 1, 0, 1), M(t, 0, 1, 1, 0, 1).$$
(27)

The irreducibility of the matrices (25) are obvios. The matrices (26) are irreducible by [6], and the matrices (27) are irreducible by Lemmas 3-6.

The last theorem does not hold if n > 6. For example, if R is a local ring of length 2 and $\operatorname{Rad}(R) = tR$ $(t \neq 0, t^2 = 0)$, the matrix M = M(t, 0, 0, 0, 0, 1, 1, 1) (with n = 7 and $s_1 + \cdots + s_7 = 3$ to be coprime) is reducible over R because, for

References

- V. M. Bondarenko, The similarity of matrices over rings of residue classes, Mathematics collection, Izdat. "Naukova Dumka", Kiev, 1976, pp. 275–277 (in Russian).
- [2] V. N. Shevchenko, S. V. Sidorov, On the similarity of second-order matrices over the ring of integers, Izv. Vyssh. Uchebn. Zaved. Mat. (2006), no. 4, pp. 57–64 (in Russian).
- [3] A. Pizarro, Similarity classes of 3 × 3 matrices over a discrete valuation ring, Linear Algebra Appl. 54 (1983), pp. 29–51.
- [4] N. Avni, U. Onn, A. Prasad, L. Vaserstein, Similarity classes of 3 × 3 matrices over a local principal ideal ring, Comm. Algebra 37 (2009), N.8, pp. 2601–2615.
- [5] A. Prasad, P. Singla, and S. Spallone. Similarity of matrices over local rings of length two. (2012). http://arxiv.org/pdf/1212.6157.pdf.
- [6] P. M. Gudivok, O. A. Tylyshchak, On irreducible modular representations of finite p-groups over commutative local rings, Nauk. Visn. Uzhgorod. Univ. Ser. Math. (1998), N3, pp. 78–83 (in Ukrainian).

CONTACT INFORMATION

V. M. Bondarenko	Institute of Mathematics, Tereshchenkivska 3, 01601 Kyiv, Ukraine <i>E-Mail:</i> vit-bond@imath.kiev.ua <i>URL:</i> http://www.imath.kiev.ua
M. Yu. Bortos	Faculty of Mathematics, Uzhgorod National Univ., Universytetsyka str., 14, 88000 Uzhgorod, Ukraine <i>E-Mail:</i> bortosmaria@gmail.com
R. F. Dinis	Faculty of Mechanics and Mathematics, Kyiv Na- tional Taras Shevchenko Univ., Volodymyrska str., 64, 01033 Kyiv, Ukraine <i>E-Mail:</i> ruslanadinis@ukr.net
A. A. Tylyshchak	Faculty of Mathematics, Uzhgorod National Univ., Universytetsyka str., 14, 88000 Uzhgorod, Ukraine <i>E-Mail:</i> alxtlk@gmail.com

Received by the editors: 20.10.2013 and in final form 20.10.2013.