Rigid, quasi-rigid and matrix rings with $(\bar{\sigma}, 0)$-multiplication

Cihat Abdioĝlu, Serap Şahinkaya and Arda KÖR

Communicated by D. Simson

Abstract. Let R be a ring with an endomorphism σ. We introduce ($\bar{\sigma}, 0$)-multiplication which is a generalization of the simple 0 - multiplication. It is proved that for arbitrary positive integers $m \leq n$ and $n \geq 2, R[x ; \sigma]$ is a reduced ring if and only if $S_{n, m}(R)$ is a ring with $(\bar{\sigma}, 0)$-multiplication.

1. Introduction

Throughout this paper, we will assume that R is an associative ring with non-zero identity, σ is an endomorphism of the ring R and the polynomial ring over R is denoted by $R[x]$ with x its indeterminate.

In [6], the authors introduced and studied the notion of simple 0multiplication. A subring S of the full matrix ring $\mathbb{M}_{n}(R)$ of $n \times n$ matrices over R is with simple 0 - multiplication if for arbitrary $\left(a_{i j}\right),\left(b_{i j}\right) \in S$ then $\left(a_{i j}\right)\left(b_{i j}\right)=0$ implies that $a_{i l} b_{l j}=0$, for arbitrary $1 \leq i, j, l \leq n$. This definition is not meaningless because of the [4, Lemma 1.2]. Let R be a domain (commutative or not) and $R[x]$ is its polynomial ring. Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j}$ be elements of $R[x]$. It is easy to see that if $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for every i and j since $f(x)=0$ or $g(x)=0$. Armendariz [1] noted that the above result can be extended the class of reduced rings, i.e., if it has no non-zero nilpotent elements. A ring R is said to have the Armendariz property or is an Armendariz ring if whenever polynomials

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}, \quad g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x]
$$

satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for each i, j. In [6, Theorem 2.1], the authors show that many matrix rings with simple 0-multiplication are Armendariz rings.

Recall that an endomorphism σ of a ring R is said to be rigid if $a \sigma(a)=0$ implies $a=0$ for $a \in R$. A ring R is σ-rigid if there exists a rigid endomorphism σ of R. Note that σ-rigid rings are reduced rings,i.e., the rings contains no nonzero nilpotent elements.

An ideal I of a ring R is said to be a σ-ideal if I is invariant under the endomorphism σ of the ring R, i.e., $\sigma(I) \subseteq I$. Now, let σ be an automorphism of the ring R and I be a σ-ideal of $R . I$ is called a quasi σ-rigid ideal if $a R \sigma(a) \subseteq I$, then $a \in I$ for any $a \in R$ [3]. If the zero ideal $\{0\}$ of R is a quasi σ-rigid ideal, then R is said to be a quasi σ-rigid ring [3]. In Section 2, we obtain some ring extensions of quasi σ-rigid rings. We prove that; the class of quasi σ-rigid rings is closed under taking finite direct products (see Corollary 2.4).

We denote $R G$ the group ring of a group G over a ring R and, for cyclic group order n, write C_{n}. We also prove that; if $R G$ is quasi $\bar{\sigma}$-rigid, then R is a quasi σ-rigid ring (see Theorem 2.6), and R is quasi σ-rigid if and only if $R C_{2}$ is quasi σ-rigid where R is a ring with $2^{-1} \in R$ (see Corollary 2.8).

Let R be a quasi σ - rigid ring with $\sigma: R \rightarrow R$ endomorphism. In Example 2.1, it is shown that $\mathbb{M}_{2}(R)$ is not a quasi σ-rigid ring. Again, in Example 2.12, we proved that

$$
S_{4}=\left\{\left.\left(\begin{array}{cccc}
a & a_{12} & a_{13} & a_{14} \\
0 & a & a_{23} & a_{24} \\
0 & 0 & a & a_{34} \\
0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a, a_{i j} \in R\right\}
$$

is not a quasi σ-rigid ring however R is a quasi σ-rigid ring. Naturally, these examples are starting points of our study. In this article, we introduce and study subrings with ($\bar{\sigma}, 0$)-multiplication of matrix rings which is a generalization of the simple 0-multiplication. They are related to $\bar{\sigma}$ skew Armendariz rings. Applying them, we obtain the following result in Section 3. Let σ be an endomorphism of a ring R. For arbitrary positive integers $m \leq n$ and $n \geq 2$, the following conditions are equivalent.
(i) $R[x ; \sigma]$ is a reduced ring.
(ii) $S_{n, m}(R)$ is a ring with ($\left.\bar{\sigma}, 0\right)$-multiplication.
(iii) $S_{n, m}(R)$ is a $\bar{\sigma}$-skew Armendariz ring (see Theorem 3.3). See Example 4 for the definition of the ring $S_{n, m}(R)$.

2. Extensions of quasi σ-rigid rings

The following example shows that the class of quasi σ-rigid rings is not closed under taking subrings.

Example 1. Let R be a quasi σ-rigid ring with $\sigma: R \rightarrow R$ endomorphism defined by $\sigma\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\left(\begin{array}{cc}a & -b \\ -c & d\end{array}\right)$. We take the nonzero element $a=\left(\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right)$. Since

$$
a \mathbb{M}_{2}(R) \sigma(a)=\left(\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)=0
$$

$\mathbb{M}_{2}(R)$ is not a quasi σ-rigid ring.
This example is one of the starting point of our study. First, we prove that the finite direct product of quasi σ-rigid rings is again a quasi σ-rigid ring.

Proposition 1. Let σ_{1} and σ_{2} be automorphisms of rings R_{1} and R_{2}, respectively. Assume that I_{1} is a quasi σ_{1}-rigid ideal of R_{1} and I_{2} is a quasi σ_{2}-rigid ideal of R_{2}. Then $I_{1} \times I_{2}$ is a quasi σ-rigid ideal of $R_{1} \times R_{2}$, where σ is an automorphism of $R_{1} \times R_{2}$ such that $\sigma(a, b)=\left(\sigma_{1}(a), \sigma_{2}(b)\right)$ for any $a \in R_{1}$ and $b \in R_{2}$.

Proof. We assume that $(a, b) R_{1} \times R_{2} \sigma(a, b) \subseteq I_{1} \times I_{2}$, equivalently,

$$
(a, b) R_{1} \times R_{2}\left(\sigma_{1}(a), \sigma_{2}(b)\right) \subseteq I_{1} \times I_{2}
$$

Then we have $\left(a R_{1} \sigma_{1}(a), 0\right) \subseteq I_{1} \times I_{2}$ and $\left(0, b R_{2} \sigma_{2}(b)\right) \subseteq I_{1} \times I_{2}$. Thus we obtain that $a R_{1} \sigma_{1}(a) \subseteq I_{1}$ and $b R_{2} \sigma_{2}(b) \subseteq I_{2}$. Since I_{1} is a quasi σ_{1}-rigid ideal of R_{1} and I_{2} is a quasi σ_{2}-rigid ideal of R_{2}, we have $a \in I_{1}$ and $b \in I_{2}$. Hence, $(a, b) \in I_{1} \times I_{2}$.

Theorem 1. Assume that each $\sigma_{i}, 1 \leq i \leq n$, is an automorphism of rings R_{i}. Then the finite direct product of quasi σ_{i}-rigid ideals I_{i} of R_{i}, $1 \leq i \leq n$, is a quasi σ-rigid ideal, where σ is an automorphism of $\prod_{i=1}^{n} R_{i}$ such that $\sigma\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\left(\sigma_{1}\left(a_{1}\right), \sigma_{2}\left(a_{2}\right), \cdots, \sigma_{n}\left(a_{n}\right)\right)$ for any $a_{i} \in R_{i}$.

As a parallel result to Theorem 1, we have the following corollaries for quasi σ-rigid rings.

Corollary 1. Assume that each $\sigma_{i}, 1 \leq i \leq n$, is an automorphism of rings R_{i}. Then the finite direct product of quasi σ_{i}-rigid rings R_{i},
$1 \leq i \leq n$, is a quasi σ-rigid ring, where σ is an automorphism of $\prod_{i=1}^{n} R_{i}$ such that $\sigma\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\left(\sigma_{1}\left(a_{1}\right), \sigma_{2}\left(a_{2}\right), \cdots, \sigma_{n}\left(a_{n}\right)\right)$ for any $a_{i} \in R_{i}$.

Lemma 1. Let R be a subring of a ring S such that both share the same identity. Suppose that S is a free left R-module with a basis G such that $1 \in G$ and $a g=$ ga for all $a \in R$ ring. Let σ be an endomorphism of R. Assume that the epimorphism $\bar{\sigma}: S \rightarrow S$ defined by $\bar{\sigma}\left(\sum_{g \in G} r_{g} g\right)=$ $\sum_{g \in G} \sigma\left(r_{g}\right) g$ extends σ. If S is a quasi $\bar{\sigma}$-rigid ring, then R is a quasi σ-rigid ring.

Proof. Suppose that $r R \sigma(r)=0$ for $r \in R$. Then, by hypothesis, we can obtain that $r \sum_{g \in G} R g \bar{\sigma}(r)=0$. Hence $r=0$, since S is a quasi $\bar{\sigma}$-rigid ring.

Theorem 2. Let R be a ring and G be a group. If the group ring $R G$ is quasi $\bar{\sigma}$-rigid, then R is a quasi σ-rigid ring.

Proof. Since $S=R G=\oplus_{g \in G} R g$ is a free left R-module with a basis G satisfying the assumptions of Lemma 1, the proof of theorem is clear.

Example 2. Let R be a ring. Note that if G is a semigroup or C_{2}, then clearly the epimorphism $\bar{\sigma}: S \rightarrow S$ defined by $\bar{\sigma}\left(\sum_{g \in G} r_{g} g\right)=$ $\sum_{g \in G} \sigma\left(r_{g}\right) g$ extends σ. If the semigroup ring $R G$ or $R C_{2}$ is quasi $\bar{\sigma}$-rigid, then R is a quasi σ-rigid ring by Theorem 2 .

Corollary 2. Let R be a ring with $2^{-1} \in R$. Then R is quasi σ-rigid if and only if $R C_{2}$ is quasi σ-rigid.

Proof. If $2^{-1} \in R$, then the mapping $R C_{2} \rightarrow R \times R$ which is given by $a+b g \rightarrow(a+b, a-b)$, is a ring isomorphism. The rest is clear from Example 2.7 and Corollary 1.

Let σ be an epimorphism of a ring R. Then $\bar{\sigma}: R[x] \rightarrow R[x]$, defined by $\bar{\sigma}\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=0}^{n} \sigma\left(a_{i}\right) x^{i}$, is an epimorphism of the polynomial ring $R[x]$, and $\bar{\sigma}$ extends to σ.

Corollary 3. R is a quasi σ-rigid ring if and only if $R[x]$ is a quasi $\bar{\sigma}$-rigid ring.

Since, for an automorphism σ of R, every σ-rigid ring is a quasi σ-rigid ring, Corollary 1 holds for quasi σ-rigid rings.

Now we investigate a sufficient condition for Corollary 1.
Proposition 2. Assume that σ is an automorphism of $a \operatorname{ring} R$ and e is a central idempotent of R. If R is a quasi σ-rigid ring then $e R$ is also a quasi σ-rigid ring.

Proof. For $e a \in e R$, we assume that $e a(e R) \sigma(e a)=0$, equivalently,

$$
0=e a(e R) \sigma(e a)=e a e R \sigma(e a)=(e a) R \sigma(e a)
$$

Since R is a quasi σ-rigid ring, we have $e a=0$.
The following example show that the condition e is a central idempotent of $R^{\prime \prime}$ in Proposition 2 is necessary.

Example 3. Let F be a field with $\operatorname{char}(F) \neq 2$. It is easy to see that the ring $R=\mathbb{M}_{2}(F)$ with an endomorphism $\sigma\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\left(\begin{array}{cc}a & -b \\ -c & d\end{array}\right)$ is a quasi σ-rigid ring. Consider the idempotent element $e=\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$ of R. Since

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right) \neq\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)
$$

the idempotent e is not central. Let $a=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Now it is easy to see that $e a \neq 0$ and $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right) \sigma\left(\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\right)=0$.

Example 3 shows that for a quasi σ-rigid ring $R, \mathbb{M}_{n}(R)$ or the full upper triangular matrix ring $\mathbb{T}_{n}(R)$ is not necessarily quasi $\bar{\sigma}$-rigid.

Example 4. Let R be a ring. We consider the following subrings of $\mathbb{T}_{n}(R)$ for any $n \geq 2$.

$$
\begin{align*}
R_{n} & =R I_{n}+\sum_{i=1}^{n} \sum_{k=i+1}^{n} R E_{i j} \tag{1}\\
& =\left\{\left(\begin{array}{lllll}
a & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right): a, a_{i j} \in R\right\}
\end{align*}
$$

where $E_{i j}$ is the matrix units for all i, j and I_{n} is the identity matrix.

$$
T(R, n)=\left\{\left(\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & \cdots & a_{n} \tag{2}\\
0 & a_{1} & a_{2} & \cdots & a_{n-1} \\
0 & 0 & a_{1} & \cdots & a_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{1}
\end{array}\right): a_{i} \in R\right\}
$$

(3) Let $m \leq n$ be positive integers. Let $S_{n, m}(R)$ be the set of all $n \times n$ matrices $\left(a_{i j}\right)$ with entiries in a ring R such that
(a) for $i>j, a_{i j}=0$,
(b) for $i \leq j, a_{i j}=a_{k l}$ when $i-k=j-l$ and either $1 \leq i, j, k, l \leq m$ or $m \leq i, j, k, l \leq n$.

Clearly, $S_{n, 1}(R)=S_{n, n}(R)=T(R, n)$.
Let σ be an endomorphism of a ring R, then $\bar{\sigma}: \mathbb{M}_{n}(R) \rightarrow \mathbb{M}_{n}(R)$, defined by $\bar{\sigma}\left(\left(a_{i j}\right)\right)=\left(\sigma\left(a_{i j}\right)\right)$, is an also endomorphism of $\mathbb{M}_{n}(R)$ and $\bar{\sigma}$ extends to σ. Now assume that R is a quasi σ-rigid ring. It is easy to see that $R_{n}, T(R, n)$ and $S_{n, m}(R)$ are not quasi $\bar{\sigma}$-rigid rings for $n \geq 2$. For instance, we consider the ring:

$$
S_{4}=\left\{\left.\left(\begin{array}{cccc}
a & a_{12} & a_{13} & a_{14} \\
0 & a & a_{23} & a_{24} \\
0 & 0 & a & a_{34} \\
0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a, a_{i j} \in R\right\}
$$

Although R is a quasi σ-rigid ring, S_{4} is not a quasi σ-rigid ring.

$$
\begin{aligned}
\text { Let } a \in S_{4} \text { such that } a=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \neq 0 \text {. Since } \\
a S_{4} \bar{\sigma}(a)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) S_{4} \bar{\sigma}\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) S_{4}\left(\begin{array}{cccc}
0 & \sigma(1) & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=0
\end{aligned}
$$

S_{4} is not a quasi σ-rigid ring.

3. On σ-skew Armendariz and ($\bar{\sigma}, 0$)-multiplication rings

In Corollary 3, we proved that R is a quasi σ-rigid ring if and only if $R[x]$ is a quasi $\bar{\sigma}$-rigid ring.

Theorem 3. Assume that σ is a monomorphism of a ring R and $\sigma(1)=1$, where 1 denotes the identity of R. Then the factor ring $R[x] /\left(x^{2}\right)$ is $\bar{\sigma}$ skew Armendariz if and only if R is a σ-rigid ring, where $\left(x^{2}\right)$ is an ideal of $R[x]$ generated by x^{2}.

Proof. (: \Rightarrow) Assume that $R[x] /\left(x^{2}\right)$ is a $\bar{\sigma}$-skew Armendariz ring. Let $r \in R$ with $\sigma(r) r=0$. Then

$$
(\sigma(r)-\bar{x} y)(r+\bar{x} y)=\sigma(r) r+(\sigma(r) \bar{x}-\bar{x} \sigma(r)) y-\sigma(1) \bar{x}^{2} y^{2}=\overline{0},
$$

because $\sigma(r) \bar{x}=\bar{x} \sigma(r)$ in $\left(R[x] /\left(x^{2}\right)\right)[y ; \bar{\sigma}]$, where $\bar{x}=x+\left(x^{2}\right) \in$ $R[x] /\left(x^{2}\right)$. Since $R[x] /\left(x^{2}\right)$ is $\bar{\sigma}$-skew Armendariz, we can obtain that $\sigma(r) \bar{x}=\overline{0}$ so $\sigma(r)=0$. The injectivity of σ implies $r=0$, and so R is σ-rigid.
$(\Leftarrow:)$ Assume that $R[x ; \sigma]$ is reduced. Let $\bar{h}=h+\left(x^{2}\right) \in R[x] /\left(x^{2}\right)$. Suppose that $\bar{p} \cdot \bar{q}=\overline{0}$ in $\left(R[x] /\left(x^{2}\right)\right)[y ; \bar{\sigma}]$, where $\bar{p}=\bar{f}_{0}+\bar{f}_{1} y+\ldots+\bar{f}_{m} y^{m}$ and $\bar{q}=\bar{g}_{0}+\bar{g}_{1} y+\ldots+\bar{g}_{n} y^{n}$. Let $\bar{f}_{i}=a_{i_{0}}+a_{i_{1}} \bar{x}, \bar{g}_{j}=b_{j_{0}}+b_{j_{1}} \bar{x}$ for each $0 \leq i \leq m$, and $0 \leq j \leq n$, where $\bar{x}^{2}=\overline{0}$. Note that $\bar{x} y=y \bar{x}$ since $\alpha(1)=1, a \bar{x}=\bar{x} a$ for any $a \in R$. Thus $\bar{p}=h_{0}+h_{1} \bar{x}$ and $\bar{q}=k_{0}+k_{1} \bar{x}$, where $h_{0}=\sum_{i=0}^{m} a_{i_{0}} y^{i}, h_{1}=\sum_{i=0}^{m} a_{i_{1}} y^{i}, k_{0}=\sum_{j=0}^{n} b_{j_{0}} y^{j}, k_{1}=\sum_{j=0}^{n} b_{j_{1}} y^{j}$ in $R[y]$. Since $\bar{p} \cdot \bar{q}=\overline{0}$ and $\bar{x}^{2}=\overline{0}$, we have
$\overline{0}=\bar{p} \cdot \bar{q}=\overline{0}=h_{0} k_{0}+\left(h_{0} k_{1}+h_{1} k_{0}\right) \bar{x}+h_{1} k_{1} \bar{x}^{2}=h_{0} k_{0}+\left(h_{0} k_{1}+h_{1} k_{0}\right) \bar{x}$.
We get $h_{0} k_{0}=0$ and $h_{0} k_{1}+h_{1} k_{0}=0$ in $R[y ; \sigma]$. Since $R[y ; \sigma]$ is reduced, $k_{0} h_{0}=0$ and so $0=k_{0}\left(k_{0} k_{1}+h_{1} k_{0}\right) h_{1}=\left(k_{0} h_{1}\right)^{2}$. Thus $k_{0} h_{1}=0, h_{1} k_{0}=0$ and $h_{0} k_{1}=0$. Moreover, R is σ-skew Armendariz by [8, Corollary 4]. Thus $a_{0_{i}} \sigma^{i}\left(b_{0_{j}}\right)=0, a_{0_{i}} \sigma^{i}\left(b_{1_{j}}\right)=0$ and $a_{1_{i}} \sigma^{i}\left(b_{0_{j}}\right)=0$ for all $0 \leq i \leq m$, $0 \leq j \leq n$. Hence $f_{i} \bar{\sigma}^{i}\left(\bar{g}_{j}\right)=\overline{0}$ for all $0 \leq i \leq m, 0 \leq j \leq n$. Therefore $R[x] /\left(x^{2}\right)$ is σ-skew Armendariz.

In [6], the author defined and studied Armendariz and simple 0multiplication rings. In other words, a subring S of the ring $\mathbb{M}_{n}(R)$ of $n \times n$ matrices over R is with simple 0 -multiplication if for arbitrary $\left(a_{i j}\right),\left(b_{i j}\right) \in S$ then $\left(a_{i j}\right)\left(b_{i j}\right)=0$ implies that for arbitrary $1 \leq i, j, l \leq n$, $a_{i l} b_{l j}=0$.

Let σ be an endomorphism of a ring R. As we mentioned before, $\bar{\sigma}$: $\mathbb{M}_{n}(R) \rightarrow \mathbb{M}_{n}(R)$, defined by $\bar{\sigma}\left(\left(a_{i j}\right)\right)=\left(\sigma\left(a_{i j}\right)\right)$, is an also endomorphism of $\mathbb{M}_{n}(R)$ and $\bar{\sigma}$ extends to σ. We shall say that a subring S of the ring $\mathbb{M}_{n}(R)$ of $n \times n$ matrices over R is with $(\bar{\sigma}, 0)$-multiplication if for arbitrary $\left(a_{i j}\right),\left(b_{i j}\right) \in S,\left(a_{i j}\right) \bar{\sigma}\left(\left(b_{i j}\right)\right)=0$ implies that for arbitrary $1 \leq i, j, l \leq n$ $a_{i l} \sigma\left(b_{l j}\right)=0$.

Let σ be an epimorphism of a ring R. We know that $\bar{\sigma}: R[x] \rightarrow R[x]$, defined by $\bar{\sigma}\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=0}^{n} \sigma\left(a_{i}\right) x^{i}$, is an also epimorphism of the polynomial ring $R[x]$, and $\bar{\sigma}$ extends to σ. So, the map

$$
\mathbb{M}_{n}(R)[x] \longrightarrow \mathbb{M}_{n}(R)[x],
$$

defined by

$$
\sum_{i=0}^{m} A_{i} x^{i} \mapsto \sum_{i=0}^{m} \bar{\sigma}\left(A_{i}\right) x^{i}
$$

is an endomorphism of the matrix ring $\mathbb{M}_{n}(R)[x]$ and clearly this map extends σ. By the same notation of authors in [6], ϕ denotes the canonical isomorphism of $\mathbb{M}_{n}(R)[x]$ onto $\mathbb{M}_{n}(R[x])$. It is given by

$$
\phi\left(\bar{\sigma}\left(A_{0}\right)+\bar{\sigma}\left(A_{1}\right) x+\ldots+\bar{\sigma}\left(A_{m}\right) x^{m}\right)=\left(f_{i j}(x)\right)
$$

where

$$
f_{i j}(x)=\left(\sigma\left(a_{i j}^{(0)}\right)+\sigma\left(a_{i j}^{(1)}\right) x+\ldots+\sigma\left(a_{i j}^{(m)}\right) x^{m}\right)
$$

and $\sigma\left(a_{i j}^{(k)}\right)$ denotes the (i, j) entry of $\bar{\sigma}\left(A_{k}\right)$. In fact follows $E_{i j}$ will denote the usual matrix unit.

Theorem 4. Let σ be an endomorphism of a ring R, and R be a σ-skew Armendariz ring.
(1) If S is a subring of $\mathbb{M}_{n}(R)$ with $(\bar{\sigma}, 0)$-multiplication and, for some $A_{i}, B_{i} \in S 0 \leq i \leq 1,\left(A_{0}+A_{1} x\right)\left(B_{0}+B_{1} x\right)=0$ then $A_{t} \overline{\sigma^{t}}\left(B_{u}\right)=0$ for $0 \leq t, u \leq 1$.
(2) If, for a subring S of $\mathbb{M}_{n}(R), \phi(S[x])$ is a subring of $\mathbb{M}_{n}(R[x])$ with $(\bar{\sigma}, 0)$-multiplication, then S is an $\bar{\sigma}$-skew Armendariz ring.

Proof. (1) Assume that S is a subring of $\mathbb{M}_{n}(R)$ with ($\bar{\sigma}, 0$)-multiplication and, for some $A_{i}, B_{i} \in S, 0 \leq i \leq 1$. Then

$$
\begin{aligned}
0 & =\left(A_{0}+A_{1} x\right)\left(B_{0}+B_{1} x\right) \\
& =A_{0} B_{0}+A_{0} B_{1} x+A_{1} x B_{0}+A_{1} x B_{1} x \\
& =A_{0} B_{0}+\left[A_{0} B_{1}+A_{1} \bar{\sigma}\left(B_{0}\right)\right] x+A_{1} \bar{\sigma}\left(B_{1}\right) x^{2} \\
& =a_{i l}^{(0)} b_{l j}^{(0)}+\left(a_{i l}^{(0)} b_{l j}^{(1)}+a_{i l}^{(1)} \sigma\left(b_{l j}^{(0)}\right)\right) x+a_{i l}^{(1)} \sigma\left(b_{l j}^{(1)}\right) x^{2} .
\end{aligned}
$$

Now, we set $p=\sum_{t=0}^{1} a_{i l}^{(t)} x^{t}$ and $q=\sum_{u=0}^{1} b_{l j}^{(u)} x^{u}$. Then $p q=0$ and $a_{i l}^{(t)} \sigma^{t}\left(b_{l j}^{(u)}\right)=0$, since R is a σ-skew Armendariz ring.
(2) We prove only when $n=2$. Other cases can be proved by the same method. Suppose that

$$
\begin{aligned}
p(x) & =\bar{\sigma}\left(A_{0}\right)+\bar{\sigma}\left(A_{1}\right) x+\ldots+\bar{\sigma}\left(A_{m}\right) x^{m} \in S[x ; \bar{\sigma}] \\
q(x) & =\bar{\sigma}\left(B_{0}\right)+\bar{\sigma}\left(B_{1}\right) x+\ldots+\bar{\sigma}\left(B_{m}\right) x^{m} \in S[x ; \bar{\sigma}]
\end{aligned}
$$

such that $p(x) q(x)=0$, where

$$
\bar{\sigma}\left(A_{i}\right)=\left(\begin{array}{cc}
\sigma\left(a_{11}^{(i)}\right) & \sigma\left(a_{12}^{(i)}\right) \\
\sigma\left(a_{21}^{(i)}\right) & \sigma\left(a_{22}^{(i)}\right)
\end{array}\right) \text { and } \bar{\sigma}\left(B_{j}\right)=\left(\begin{array}{cc}
\sigma\left(b_{11}^{(j)}\right) & \sigma\left(b_{12}^{(j)}\right) \\
\sigma\left(b_{21}^{(j)}\right) & \sigma\left(b_{22}^{(j)}\right)
\end{array}\right)
$$

for $0 \leq i \leq m$ and $0 \leq j \leq m$. We claim that $\bar{\sigma}\left(A_{i}\right) \bar{\sigma}^{i}\left(\bar{\sigma}\left(B_{j}\right)\right)=0$ for $0 \leq i \leq m$ and $0 \leq j \leq m$. Then $p(x) q(x)=0$ implies that

$$
\left(\sigma\left(a_{i l}^{(0)}\right)+\ldots+\sigma\left(a_{i l}^{(m)}\right) x^{m}\right) \sigma\left(\left(b_{l j}^{(0)}\right)+\ldots+\left(b_{l j}^{(m)}\right) x^{m}\right)=0
$$

since $\phi(S[x])$ is $(\bar{\sigma}, 0)$-multiplication. Now we can obtain that $\sigma\left(a_{i l}^{(t)}\right) \sigma^{t}\left(\sigma\left(b_{l j}^{(u)}\right)\right)=0$ for all $0 \leq i, j, u, t \leq m$ since R is σ-skew Ar mendariz.

Now we return one of the important examples in the paper, the ring $S_{n, m}(R)$ that is not a (quasi) $\bar{\sigma}$-rigid rings for $n \geq 2$ by Example 2.12. We consider our ring S_{4}. Note that if R is an σ-rigid ring, then $\sigma(e)=e$ for $e^{2}=e \in R$. Let $p=e_{12}+\left(e_{12}-e_{13}\right) x$ and $q=e_{34}+\left(e_{24}+e_{34}\right) x \in S_{4}[x ; \bar{\sigma}]$, where $e_{i j}$'s are the matrix units in S_{4}. Then $p q=0$, but $\left(e_{12}-e_{13}\right) \bar{\sigma}\left(e_{34}\right) \neq$ 0 . Thus S_{4} is not $\bar{\sigma}$-skew Armendariz. Similarly, for the case of $n \geq 5$, we have the same result.

Theorem 5. Let σ be an endomorphism of a ring R. For arbitrary positive integers $m \leq n$ and $n \geq 2$, the following conditions are equivalent.
(1) $R[x ; \sigma]$ is a reduced ring.
(2) $S_{n, m}(R)$ is a ring with ($\left.\bar{\sigma}, 0\right)$-multiplication.
(3) $S_{n, m}(R)$ is an $\bar{\sigma}$-skew Armendariz ring.

Proof. To prove, we completely follow the proof of [6, Theorem 2.3].
$(1) \Rightarrow(2)$ We will proceed by induction on n. Suppose that $n \geq 2$ and the result holds for smaller integers. Let $A=\left(a_{i j}\right), \bar{A}=\left(\bar{a}_{i j}\right) \in S_{n, m}(R)$ and $A \bar{\sigma}(\bar{A})=0$.

Note that the matrices obtained from A and \bar{A} by deleting their first rows and columns belong to $S_{n-1, m-1}(R)$ when $m>1$, and $S_{n-1, n-1}(R)$ when $m=1$. The product of obtained matrices is equal to 0 . So, applying the induction assumption, we get that $a_{i j} \sigma^{i}\left(\bar{a}_{j l}\right)=0$ for $i \geq 2$ and all j, l. Similarly, by deleting the last rows and columns, we get that $a_{i j} \sigma^{i}\left(\bar{a}_{j l}\right)=0$ for $l \leq n-1$ and all i, j. Moreover,

$$
\begin{equation*}
a_{11} \sigma\left(\bar{a}_{1 n}\right)+a_{12} \sigma\left(\bar{a}_{2 n}\right)+\cdots+a_{1 n} \sigma\left(\bar{a}_{n n}\right)=0 \tag{1}
\end{equation*}
$$

It is left to prove that $a_{1 j} \sigma\left(\bar{a}_{j n}\right)=0$ for $1 \leq j \leq n$. Let $1 \leq j<k \leq n$.

If $k \leq m$, then $a_{i j}=a_{k-j-1, k}$ and $k-j+1 \geq 2$, so from the induction conclusion, we get that $a_{1 j} \sigma\left(\bar{a}_{k n}\right)=a_{k-j-1, k} \sigma\left(\bar{a}_{k n}\right)=0$.

Similarly, we get that if $m \leq j$ (which is possible only when $m<n$), then $a_{1 j} \sigma\left(\bar{a}_{k n}\right)=a_{1 j} \sigma\left(\bar{a}_{j, j-k+n}\right)=0$.

If $j \leq m<k$, then $a_{1 j} \sigma\left(\bar{a}_{k n}\right)=a_{m-j+1, m} \sigma\left(\bar{a}_{m, n+m-k}\right)=0$ (because $j<k$ implies that either $m-j+1 \geq 2$ or $n+m-k \leq n-1$).

Multiplying (1) on the left by a_{11} and the foregoing, we get that $a_{11}^{2} \sigma\left(\bar{a}_{1 n}\right)=0$. Hence, $a_{11} \sigma\left(\bar{a}_{1 n}\right)=0$. Similarly, multiplying (1) (in which now $a_{11} \sigma\left(\bar{a}_{1 n}\right)=0$) on the left by a_{12}, we get that $a_{12} \sigma\left(\bar{a}_{2 n}\right)=0$. Continuing in this way, we get $a_{1 j} \sigma\left(\bar{a}_{j n}\right)=0$ for all $j \leq m-1$. These results and (1) gives the result when $m=n$.

If $m<n$, then, same as above, multiplying (1) on the right by $\bar{a}_{n n}$, $\bar{a}_{n-1, n}, \ldots, \bar{a}_{m+1, n}$ applying the foregoing relations, we get (successively) that

$$
\begin{aligned}
a_{1 n} \sigma\left(\bar{a}_{n n}\right) & =a_{1, n-1} \sigma\left(\bar{a}_{n-1, n}\right) \\
& =\cdots \\
& =a_{1, m+1} \sigma\left(\bar{a}_{m+1, n}\right) \\
& =0
\end{aligned}
$$

Now (1) implies also that $a_{1 m} \sigma\left(\bar{a}_{m n}\right)=0$ and we are done.
$(2) \Rightarrow(3)$ Note that $\phi\left(\left(S_{n, m}(R)\right)[x]\right)=S_{n, m}(R[x])$. Now the rest follows from Theorem 4.
$(3) \Rightarrow(1)$ Clearly, $S_{n, m}(R)$ contains a subring isomorphic to $S_{2}(R)$. Hence (3) implies that $S_{2}(R)$ is a $\bar{\sigma}$-skew Armendariz ring. Then $R[x ; \sigma]$ is a reduced ring.

Theorem 6. Let σ be an endomorphism of a ring R with $\sigma(1)=1$. For arbitrary integers $1<m<n$, if T is a subring of $\mathbb{T}_{n}(R)$, which properly contains $S_{n, m}(R)$, then there are $A_{0}, A_{1}, B_{0}, B_{1} \in T$ such that $\left(A_{0}+A_{1} x\right)\left(B_{0}+B_{1} x\right)=0$ and $A_{1} \bar{\sigma}\left(B_{0}\right) \neq 0$. In particular, T is not a $\bar{\sigma}$-skew Armendariz ring.

Proof. We proceed by induction on n. Let us observe first that if T is an $\bar{\sigma}$-skew Armendariz subring of the ring $\mathbb{T}_{n}(R)$, then by deleting in every matrix from T the first(last) row and column, we get a $\bar{\sigma}$-skew Armendariz subring of the ring $\mathbb{T}_{n-1}(R)$.

To start the induction, assume that $n=3$ and $m=3$. Applying the above observation, it suffices to show that no subring of $\mathbb{T}_{2}(R)$, which properly contains $S_{2}(R)$, is $\bar{\sigma}$-skew Armendariz. It is clear that every such subring S contains the matrices $A=a E_{11}, B=-a E_{22}$, for some $0 \neq a \in R$ and $C=E_{12}$.

Let $\sigma\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\left(\begin{array}{cc}a & -b \\ -c & d\end{array}\right), p=A+C x, q=B+C x \in R[x ; \sigma]$. We have $(A+C x)(B+C x)=0$ but $C \sigma((B)) \neq 0$, so S is not a $\bar{\sigma}$-skew Armendariz ring.

Now, the rest of the proof is similar to the proof of [6 , Theorem 2.4].
Corollary 4. For arbitrary integers $1<m<n$ and every ring R with an endomorphism σ, no subring of $\mathbb{T}_{n}(R)$, which properly contains $S_{n, m}(R)$, is with $(\bar{\sigma}, 0)$-multiplication.

Acknowledgements

We would like to express our gratefulness to the referee for his/her valuable suggestions and contributions. Special thanks to Tamer Koşan (from GIT).

References

[1] Armendariz, E. P.: A note on extension of Baer and p.p.-rings, J. Austral.Math Soc. 18(1974), 470-473.
[2] Başer, M. and Koşan, M. T.: On quasi-Armendariz modules, Taiwanese J. Mathematics 12(3) (2008), 573-582.
[3] Koşan, M.T. and Özdin, T.: Quasi σ-rigid rings, Int. J. Contemp. Math.Sciences (27)(3) (2008), 1331-1335.
[4] Lee, T.K. and Zhou, Y.: Armendariz rings and reduced rings, Comm. Algebra (32)(6) (2004), 2287-2299.
[5] Lee, T.K. and Zhou, Y.: Reduced modules, rings, modules, algebras and abelian groups, Lecture Notes in Pure and Appl. Math., 236, Dekker, New york, (2004), 365-377.
[6] Wang, W., Puczylowski, E.R. and Li, L.: On Armendariz rings and matrix rings with simple 0-multiplication, Comm. Algebra 36(2008), 1514-1519.
[7] Yi, Z. and Zhou, Y.: Baer and quasi-Baer properties of group rings, J. Australian Math. Soc. (83)(2) (2007), 285-296.
[8] Hong, C.Y., Kim, N.K. and Kwak, T.K.: On skew armendariz rings , Comm. Algebra (31)(01)(2003), 103-122.

Contact information

C. Abdioĝlu

$\begin{array}{ll}\text { S. Şahinkaya, } & \text { Department of Mathematics, Gebze Institute } \\ \text { A. KÖR } & \text { of Technology, Çayirova Campus, 41400 Gebze- } \\ & \text { Kocaeli, Turkey } \\ & \text { E-Mail: ssahinkaya@gyte.edu.tr, } \\ & \text { akor@gyte.edu.tr }\end{array}$
Received by the editors: 26.04.2012
and in final form 19.12.2012.

