Algebra and Discrete Mathematics Volume 17 (2014). Number 1. pp. 1 – 11 © Journal "Algebra and Discrete Mathematics"

Rigid, quasi-rigid and matrix rings with $(\overline{\sigma}, 0)$ -multiplication

Cihat Abdioĝlu, Serap Şahinkaya and Arda KÖR

Communicated by D. Simson

ABSTRACT. Let R be a ring with an endomorphism σ . We introduce $(\overline{\sigma}, 0)$ -multiplication which is a generalization of the simple 0- multiplication. It is proved that for arbitrary positive integers $m \leq n$ and $n \geq 2$, $R[x; \sigma]$ is a reduced ring if and only if $S_{n,m}(R)$ is a ring with $(\overline{\sigma}, 0)$ -multiplication.

1. Introduction

Throughout this paper, we will assume that R is an associative ring with non-zero identity, σ is an endomorphism of the ring R and the polynomial ring over R is denoted by R[x] with x its indeterminate.

In [6], the authors introduced and studied the notion of simple 0multiplication. A subring S of the full matrix ring $\mathbb{M}_n(R)$ of $n \times n$ matrices over R is with simple 0- multiplication if for arbitrary $(a_{ij}), (b_{ij}) \in S$ then $(a_{ij})(b_{ij}) = 0$ implies that $a_{il}b_{lj} = 0$, for arbitrary $1 \leq i, j, l \leq n$. This definition is not meaningless because of the [4, Lemma 1.2]. Let R be a domain (commutative or not) and R[x] is its polynomial ring. Let $f(x) = \sum_{i=0}^{n} a_i x^i, g(x) = \sum_{j=0}^{n} b_j x^j$ be elements of R[x]. It is easy to see that if f(x)g(x) = 0, then $a_ib_j = 0$ for every i and j since f(x) = 0 or g(x) = 0. Armendariz [1] noted that the above result can be extended the class of reduced rings, i.e., if it has no non-zero nilpotent elements. A ring R is said to have the Armendariz property or is an Armendariz ring if whenever polynomials

$$f(x) = a_0 + a_1 x + \dots + a_m x^m, \quad g(x) = b_0 + b_1 x + \dots + b_n x^n \in R[x]$$

²⁰⁰⁰ MSC: 16N60,16S36,16W60.

Key words and phrases: simple 0-multiplication, quasi σ -rigid rings.

satisfy f(x)g(x) = 0, then $a_ib_j = 0$ for each i, j. In [6, Theorem 2.1], the authors show that many matrix rings with simple 0-multiplication are Armendariz rings.

Recall that an endomorphism σ of a ring R is said to be *rigid* if $a\sigma(a) = 0$ implies a = 0 for $a \in R$. A ring R is σ -rigid if there exists a rigid endomorphism σ of R. Note that σ -rigid rings are reduced rings, i.e., the rings contains no nonzero nilpotent elements.

An ideal I of a ring R is said to be a σ -ideal if I is invariant under the endomorphism σ of the ring R, i.e., $\sigma(I) \subseteq I$. Now, let σ be an automorphism of the ring R and I be a σ -ideal of R. I is called a quasi σ -rigid ideal if $aR\sigma(a) \subseteq I$, then $a \in I$ for any $a \in R$ [3]. If the zero ideal $\{0\}$ of R is a quasi σ -rigid ideal, then R is said to be a quasi σ -rigid ring [3]. In Section 2, we obtain some ring extensions of quasi σ -rigid rings. We prove that; the class of quasi σ -rigid rings is closed under taking finite direct products (see Corollary 2.4).

We denote RG the group ring of a group G over a ring R and, for cyclic group order n, write C_n . We also prove that; if RG is quasi $\overline{\sigma}$ -rigid, then R is a quasi σ -rigid ring (see Theorem 2.6), and R is quasi σ -rigid if and only if RC_2 is quasi σ -rigid where R is a ring with $2^{-1} \in R$ (see Corollary 2.8).

Let R be a quasi σ - rigid ring with $\sigma : R \to R$ endomorphism. In Example 2.1, it is shown that $\mathbb{M}_2(R)$ is not a quasi σ -rigid ring. Again, in Example 2.12, we proved that

$$S_4 = \left\{ \begin{pmatrix} a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \\ 0 & 0 & 0 & a \end{pmatrix} | a, a_{ij} \in R \right\}$$

is not a quasi σ -rigid ring however R is a quasi σ -rigid ring. Naturally, these examples are starting points of our study. In this article, we introduce and study subrings with $(\overline{\sigma}, 0)$ -multiplication of matrix rings which is a generalization of the simple 0-multiplication. They are related to $\overline{\sigma}$ skew Armendariz rings. Applying them, we obtain the following result in Section 3. Let σ be an endomorphism of a ring R. For arbitrary positive integers $m \leq n$ and $n \geq 2$, the following conditions are equivalent.

(i) $R[x;\sigma]$ is a reduced ring.

(*ii*) $S_{n,m}(R)$ is a ring with $(\overline{\sigma}, 0)$ -multiplication.

(*iii*) $S_{n,m}(R)$ is a $\overline{\sigma}$ -skew Armendariz ring (see Theorem 3.3). See Example 4 for the definition of the ring $S_{n,m}(R)$.

2. Extensions of quasi σ -rigid rings

The following example shows that the class of quasi σ -rigid rings is not closed under taking subrings.

Example 1. Let R be a quasi σ -rigid ring with $\sigma : R \to R$ endomorphism defined by $\sigma(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$. We take the nonzero element $a = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$. Since $a\mathbb{M}_2(R)\sigma(a) = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = 0,$

 $\mathbb{M}_2(R)$ is not a quasi σ -rigid ring.

This example is one of the starting point of our study. First, we prove that the finite direct product of quasi σ -rigid rings is again a quasi σ -rigid ring.

Proposition 1. Let σ_1 and σ_2 be automorphisms of rings R_1 and R_2 , respectively. Assume that I_1 is a quasi σ_1 -rigid ideal of R_1 and I_2 is a quasi σ_2 -rigid ideal of R_2 . Then $I_1 \times I_2$ is a quasi σ -rigid ideal of $R_1 \times R_2$, where σ is an automorphism of $R_1 \times R_2$ such that $\sigma(a, b) = (\sigma_1(a), \sigma_2(b))$ for any $a \in R_1$ and $b \in R_2$.

Proof. We assume that $(a, b)R_1 \times R_2\sigma(a, b) \subseteq I_1 \times I_2$, equivalently,

$$(a,b)R_1 \times R_2(\sigma_1(a), \sigma_2(b)) \subseteq I_1 \times I_2.$$

Then we have $(aR_1\sigma_1(a), 0) \subseteq I_1 \times I_2$ and $(0, bR_2\sigma_2(b)) \subseteq I_1 \times I_2$. Thus we obtain that $aR_1\sigma_1(a) \subseteq I_1$ and $bR_2\sigma_2(b) \subseteq I_2$. Since I_1 is a quasi σ_1 -rigid ideal of R_1 and I_2 is a quasi σ_2 -rigid ideal of R_2 , we have $a \in I_1$ and $b \in I_2$. Hence, $(a, b) \in I_1 \times I_2$.

Theorem 1. Assume that each σ_i , $1 \leq i \leq n$, is an automorphism of rings R_i . Then the finite direct product of quasi σ_i -rigid ideals I_i of R_i , $1 \leq i \leq n$, is a quasi σ -rigid ideal, where σ is an automorphism of $\prod_{i=1}^n R_i$ such that $\sigma(a_1, a_2, \dots, a_n) = (\sigma_1(a_1), \sigma_2(a_2), \dots, \sigma_n(a_n))$ for any $a_i \in R_i$.

As a parallel result to Theorem 1, we have the following corollaries for quasi σ -rigid rings.

Corollary 1. Assume that each σ_i , $1 \leq i \leq n$, is an automorphism of rings R_i . Then the finite direct product of quasi σ_i -rigid rings R_i ,

 $1 \leq i \leq n$, is a quasi σ -rigid ring, where σ is an automorphism of $\prod_{i=1}^{n} R_i$ such that $\sigma(a_1, a_2, \cdots, a_n) = (\sigma_1(a_1), \sigma_2(a_2), \cdots, \sigma_n(a_n))$ for any $a_i \in R_i$.

Lemma 1. Let R be a subring of a ring S such that both share the same identity. Suppose that S is a free left R-module with a basis G such that $1 \in G$ and ag = ga for all $a \in R$ ring. Let σ be an endomorphism of R. Assume that the epimorphism $\overline{\sigma} : S \to S$ defined by $\overline{\sigma}(\sum_{g \in G} r_g g) = \sum_{g \in G} \sigma(r_g)g$ extends σ . If S is a quasi $\overline{\sigma}$ -rigid ring, then R is a quasi σ -rigid ring.

Proof. Suppose that $rR\sigma(r) = 0$ for $r \in R$. Then, by hypothesis, we can obtain that $r\sum_{g\in G} Rg\overline{\sigma}(r) = 0$. Hence r = 0, since S is a quasi $\overline{\sigma}$ -rigid ring.

Theorem 2. Let R be a ring and G be a group. If the group ring RG is quasi $\overline{\sigma}$ -rigid, then R is a quasi σ -rigid ring.

Proof. Since $S = RG = \bigoplus_{g \in G} Rg$ is a free left *R*-module with a basis *G* satisfying the assumptions of Lemma 1, the proof of theorem is clear. \Box

Example 2. Let R be a ring. Note that if G is a semigroup or C_2 , then clearly the epimorphism $\overline{\sigma} : S \to S$ defined by $\overline{\sigma}(\sum_{g \in G} r_g g) = \sum_{g \in G} \sigma(r_g)g$ extends σ . If the semigroup ring RG or RC_2 is quasi $\overline{\sigma}$ -rigid, then R is a quasi σ -rigid ring by Theorem 2.

Corollary 2. Let R be a ring with $2^{-1} \in R$. Then R is quasi σ -rigid if and only if RC_2 is quasi σ -rigid.

Proof. If $2^{-1} \in R$, then the mapping $RC_2 \to R \times R$ which is given by $a + bg \to (a + b, a - b)$, is a ring isomorphism. The rest is clear from Example 2.7 and Corollary 1.

Let σ be an epimorphism of a ring R. Then $\overline{\sigma} : R[x] \to R[x]$, defined by $\overline{\sigma}(\sum_{i=0}^{n} a_i x^i) = \sum_{i=0}^{n} \sigma(a_i) x^i$, is an epimorphism of the polynomial ring R[x], and $\overline{\sigma}$ extends to σ .

Corollary 3. *R* is a quasi σ -rigid ring if and only if R[x] is a quasi $\overline{\sigma}$ -rigid ring.

Since, for an automorphism σ of R, every σ -rigid ring is a quasi σ -rigid ring, Corollary 1 holds for quasi σ -rigid rings.

Now we investigate a sufficient condition for Corollary 1.

Proposition 2. Assume that σ is an automorphism of a ring R and e is a central idempotent of R. If R is a quasi σ -rigid ring then eR is also a quasi σ -rigid ring.

Proof. For $ea \in eR$, we assume that $ea(eR)\sigma(ea) = 0$, equivalently,

$$0 = ea(eR)\sigma(ea) = eaeR\sigma(ea) = (ea)R\sigma(ea).$$

Since R is a quasi σ -rigid ring, we have ea = 0.

The following example show that the condition e is a central idempotent of R["] in Proposition 2 is necessary.

Example 3. Let F be a field with $\operatorname{char}(F) \neq 2$. It is easy to see that the ring $R = \mathbb{M}_2(F)$ with an endomorphism $\sigma(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$ is a quasi σ -rigid ring. Consider the idempotent element $e = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ of R. Since

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right) \neq \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}\right),$$

the idempotent *e* is not central. Let $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Now it is easy to see that $ea \neq 0$ and $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \sigma(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}) = 0.$

Example 3 shows that for a quasi σ -rigid ring R, $\mathbb{M}_n(R)$ or the full upper triangular matrix ring $\mathbb{T}_n(R)$ is not necessarily quasi $\overline{\sigma}$ -rigid.

Example 4. Let R be a ring. We consider the following subrings of $\mathbb{T}_n(R)$ for any $n \geq 2$. (1)

$$R_n = RI_n + \sum_{i=1}^n \sum_{k=i+1}^n RE_{ij}$$

$$= \left\{ \begin{pmatrix} a & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{pmatrix} : a, a_{ij} \in R \right\}$$

where E_{ij} is the matrix units for all i, j and I_n is the identity matrix. (2)

$$T(R,n) = \left\{ \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ 0 & a_1 & a_2 & \cdots & a_{n-1} \\ 0 & 0 & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_1 \end{pmatrix} : a_i \in R \right\}$$

(3) Let $m \leq n$ be positive integers. Let $S_{n,m}(R)$ be the set of all $n \times n$ matrices (a_{ij}) with entiries in a ring R such that

(a) for $i > j, a_{ij} = 0$,

(b) for $i \leq j$, $a_{ij} = a_{kl}$ when i - k = j - l and either $1 \leq i, j, k, l \leq m$ or $m \leq i, j, k, l \leq n$.

Clearly, $S_{n,1}(R) = S_{n,n}(R) = T(R, n).$

Let σ be an endomorphism of a ring R, then $\overline{\sigma} : \mathbb{M}_n(R) \to \mathbb{M}_n(R)$, defined by $\overline{\sigma}((a_{ij})) = (\sigma(a_{ij}))$, is an also endomorphism of $\mathbb{M}_n(R)$ and $\overline{\sigma}$ extends to σ . Now assume that R is a quasi σ -rigid ring. It is easy to see that R_n , T(R, n) and $S_{n,m}(R)$ are not quasi $\overline{\sigma}$ -rigid rings for $n \ge 2$. For instance, we consider the ring:

$$S_4 = \left\{ \begin{pmatrix} a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \\ 0 & 0 & 0 & a \end{pmatrix} | a, a_{ij} \in R \right\}.$$

Although R is a quasi σ -rigid ring, S_4 is not a quasi σ -rigid ring.

 S_4 is not a quasi σ -rigid ring.

3. On σ -skew Armendariz and $(\overline{\sigma}, 0)$ -multiplication rings

In Corollary 3, we proved that R is a quasi σ -rigid ring if and only if R[x] is a quasi $\overline{\sigma}$ -rigid ring.

Theorem 3. Assume that σ is a monomorphism of a ring R and $\sigma(1) = 1$, where 1 denotes the identity of R. Then the factor ring $R[x]/(x^2)$ is $\overline{\sigma}$ skew Armendariz if and only if R is a σ -rigid ring, where (x^2) is an ideal of R[x] generated by x^2 . *Proof.* (:=>) Assume that $R[x]/(x^2)$ is a $\overline{\sigma}$ -skew Armendariz ring. Let $r \in R$ with $\sigma(r)r = 0$. Then

$$(\sigma(r) - \overline{x}y)(r + \overline{x}y) = \sigma(r)r + (\sigma(r)\overline{x} - \overline{x}\sigma(r))y - \sigma(1)\overline{x}^2y^2 = \overline{0},$$

because $\sigma(r)\overline{x} = \overline{x}\sigma(r)$ in $(R[x]/(x^2))[y;\overline{\sigma}]$, where $\overline{x} = x + (x^2) \in R[x]/(x^2)$. Since $R[x]/(x^2)$ is $\overline{\sigma}$ -skew Armendariz, we can obtain that $\sigma(r)\overline{x} = \overline{0}$ so $\sigma(r) = 0$. The injectivity of σ implies r = 0, and so R is σ -rigid.

 $(\Leftarrow:) \text{ Assume that } R[x;\sigma] \text{ is reduced. Let } \overline{h} = h + (x^2) \in R[x]/(x^2).$ Suppose that $\overline{p}.\overline{q} = \overline{0}$ in $(R[x]/(x^2))[y;\overline{\sigma}]$, where $\overline{p} = \overline{f}_0 + \overline{f}_1y + \ldots + \overline{f}_my^m$ and $\overline{q} = \overline{g}_0 + \overline{g}_1y + \ldots + \overline{g}_ny^n$. Let $\overline{f}_i = a_{i_0} + a_{i_1}\overline{x}, \ \overline{g}_j = b_{j_0} + b_{j_1}\overline{x}$ for each $0 \leq i \leq m$, and $0 \leq j \leq n$, where $\overline{x}^2 = \overline{0}$. Note that $\overline{x}y = y\overline{x}$ since $\alpha(1) = 1, \ a\overline{x} = \overline{x}a$ for any $a \in R$. Thus $\overline{p} = h_0 + h_1\overline{x}$ and $\overline{q} = k_0 + k_1\overline{x}$, where $h_0 = \sum_{i=0}^m a_{i_0}y^i, \ h_1 = \sum_{i=0}^m a_{i_1}y^i, \ k_0 = \sum_{j=0}^n b_{j_0}y^j, \ k_1 = \sum_{j=0}^n b_{j_1}y^j$ in R[y]. Since $\overline{p}.\overline{q} = \overline{0}$ and $\overline{x}^2 = \overline{0}$, we have

$$\overline{0} = \overline{p}.\overline{q} = \overline{0} = h_0 k_0 + (h_0 k_1 + h_1 k_0)\overline{x} + h_1 k_1 \overline{x}^2 = h_0 k_0 + (h_0 k_1 + h_1 k_0)\overline{x}.$$

We get $h_0k_0 = 0$ and $h_0k_1 + h_1k_0 = 0$ in $R[y;\sigma]$. Since $R[y;\sigma]$ is reduced, $k_0h_0 = 0$ and so $0 = k_0(k_0k_1 + h_1k_0)h_1 = (k_0h_1)^2$. Thus $k_0h_1 = 0, h_1k_0 = 0$ and $h_0k_1 = 0$. Moreover, R is σ -skew Armendariz by [8, Corollary 4]. Thus $a_{0_i}\sigma^i(b_{0_j}) = 0, a_{0_i}\sigma^i(b_{1_j}) = 0$ and $a_{1_i}\sigma^i(b_{0_j}) = 0$ for all $0 \le i \le m$, $0 \le j \le n$. Hence $f_i\overline{\sigma}^i(\overline{g}_j) = \overline{0}$ for all $0 \le i \le m$, $0 \le j \le n$. Therefore $R[x]/(x^2)$ is σ -skew Armendariz. \Box

In [6], the author defined and studied Armendariz and simple 0multiplication rings. In other words, a subring S of the ring $\mathbb{M}_n(R)$ of $n \times n$ matrices over R is with simple 0-multiplication if for arbitrary $(a_{ij}), (b_{ij}) \in S$ then $(a_{ij})(b_{ij}) = 0$ implies that for arbitrary $1 \leq i, j, l \leq n$, $a_{il}b_{lj} = 0$.

Let σ be an endomorphism of a ring R. As we mentioned before, $\overline{\sigma}$: $\mathbb{M}_n(R) \to \mathbb{M}_n(R)$, defined by $\overline{\sigma}((a_{ij})) = (\sigma(a_{ij}))$, is an also endomorphism of $\mathbb{M}_n(R)$ and $\overline{\sigma}$ extends to σ . We shall say that a subring S of the ring $\mathbb{M}_n(R)$ of $n \times n$ matrices over R is with $(\overline{\sigma}, 0)$ -multiplication if for arbitrary $(a_{ij}), (b_{ij}) \in S, (a_{ij})\overline{\sigma}((b_{ij})) = 0$ implies that for arbitrary $1 \le i, j, l \le n$ $a_{il}\sigma(b_{lj}) = 0$.

Let σ be an epimorphism of a ring R. We know that $\overline{\sigma} : R[x] \to R[x]$, defined by $\overline{\sigma}(\sum_{i=0}^{n} a_i x^i) = \sum_{i=0}^{n} \sigma(a_i) x^i$, is an also epimorphism of the polynomial ring R[x], and $\overline{\sigma}$ extends to σ . So, the map

$$\mathbb{M}_n(R)[x] \longrightarrow \mathbb{M}_n(R)[x],$$

defined by

$$\sum_{i=0}^{m} A_i x^i \mapsto \sum_{i=0}^{m} \overline{\sigma}(A_i) x^i$$

is an endomorphism of the matrix ring $\mathbb{M}_n(R)[x]$ and clearly this map extends σ . By the same notation of authors in [6], ϕ denotes the canonical isomorphism of $\mathbb{M}_n(R)[x]$ onto $\mathbb{M}_n(R[x])$. It is given by

$$\phi(\overline{\sigma}(A_0) + \overline{\sigma}(A_1)x + \dots + \overline{\sigma}(A_m)x^m) = (f_{ij}(x)),$$

where

$$f_{ij}(x) = (\sigma(a_{ij}^{(0)}) + \sigma(a_{ij}^{(1)})x + \dots + \sigma(a_{ij}^{(m)})x^m)$$

and $\sigma(a_{ij}^{(k)})$ denotes the (i, j) entry of $\overline{\sigma}(A_k)$. In fact follows E_{ij} will denote the usual matrix unit.

Theorem 4. Let σ be an endomorphism of a ring R, and R be a σ -skew Armendariz ring.

(1) If S is a subring of $\mathbb{M}_n(R)$ with $(\overline{\sigma}, 0)$ -multiplication and, for some $A_i, B_i \in S \ 0 \leq i \leq 1$, $(A_0 + A_1 x)(B_0 + B_1 x) = 0$ then $A_t \overline{\sigma^t}(B_u) = 0$ for $0 \leq t, u \leq 1$.

(2) If, for a subring S of $\mathbb{M}_n(R)$, $\phi(S[x])$ is a subring of $\mathbb{M}_n(R[x])$ with $(\overline{\sigma}, 0)$ -multiplication, then S is an $\overline{\sigma}$ -skew Armendariz ring.

Proof. (1) Assume that S is a subring of $\mathbb{M}_n(R)$ with $(\overline{\sigma}, 0)$ -multiplication and, for some $A_i, B_i \in S, 0 \leq i \leq 1$. Then

$$0 = (A_0 + A_1 x)(B_0 + B_1 x) = A_0 B_0 + A_0 B_1 x + A_1 x B_0 + A_1 x B_1 x = A_0 B_0 + [A_0 B_1 + A_1 \overline{\sigma}(B_0)] x + A_1 \overline{\sigma}(B_1) x^2 = a_{il}^{(0)} b_{lj}^{(0)} + (a_{il}^{(0)} b_{lj}^{(1)} + a_{il}^{(1)} \sigma(b_{lj}^{(0)})) x + a_{il}^{(1)} \sigma(b_{lj}^{(1)}) x^2.$$

Now, we set $p = \sum_{t=0}^{1} a_{il}^{(t)} x^t$ and $q = \sum_{u=0}^{1} b_{lj}^{(u)} x^u$. Then pq = 0 and $a_{il}^{(t)} \sigma^t(b_{lj}^{(u)}) = 0$, since R is a σ -skew Armendariz ring.

(2) We prove only when n = 2. Other cases can be proved by the same method. Suppose that

$$\begin{aligned} p(x) &= \overline{\sigma}(A_0) + \overline{\sigma}(A_1)x + \ldots + \overline{\sigma}(A_m)x^m \in S[x;\overline{\sigma}] \\ q(x) &= \overline{\sigma}(B_0) + \overline{\sigma}(B_1)x + \ldots + \overline{\sigma}(B_m)x^m \in S[x;\overline{\sigma}] \end{aligned}$$

such that p(x)q(x) = 0, where

$$\overline{\sigma}(A_i) = \begin{pmatrix} \sigma(a_{11}^{(i)}) & \sigma(a_{12}^{(i)}) \\ \\ \sigma(a_{21}^{(i)}) & \sigma(a_{22}^{(i)}) \end{pmatrix} \text{ and } \overline{\sigma}(B_j) = \begin{pmatrix} \sigma(b_{11}^{(j)}) & \sigma(b_{12}^{(j)}) \\ \\ \\ \sigma(b_{21}^{(j)}) & \sigma(b_{22}^{(j)}) \end{pmatrix}$$

for $0 \leq i \leq m$ and $0 \leq j \leq m$. We claim that $\overline{\sigma}(A_i)\overline{\sigma}^i(\overline{\sigma}(B_j)) = 0$ for $0 \leq i \leq m$ and $0 \leq j \leq m$. Then p(x)q(x) = 0 implies that

$$(\sigma(a_{il}^{(0)}) + \dots + \sigma(a_{il}^{(m)})x^m)\sigma((b_{lj}^{(0)}) + \dots + (b_{lj}^{(m)})x^m) = 0$$

since $\phi(S[x])$ is $(\overline{\sigma}, 0)$ -multiplication. Now we can obtain that $\sigma(a_{il}^{(t)})\sigma^t(\sigma(b_{lj}^{(u)})) = 0$ for all $0 \leq i, j, u, t \leq m$ since R is σ -skew Armendariz.

Now we return one of the important examples in the paper, the ring $S_{n,m}(R)$ that is not a (quasi) $\overline{\sigma}$ -rigid rings for $n \geq 2$ by Example 2.12. We consider our ring S_4 . Note that if R is an σ -rigid ring, then $\sigma(e) = e$ for $e^2 = e \in R$. Let $p = e_{12} + (e_{12} - e_{13})x$ and $q = e_{34} + (e_{24} + e_{34})x \in S_4[x;\overline{\sigma}]$, where e_{ij} 's are the matrix units in S_4 . Then pq = 0, but $(e_{12} - e_{13})\overline{\sigma}(e_{34}) \neq 0$. Thus S_4 is not $\overline{\sigma}$ -skew Armendariz. Similarly, for the case of $n \geq 5$, we have the same result.

Theorem 5. Let σ be an endomorphism of a ring R. For arbitrary positive integers $m \leq n$ and $n \geq 2$, the following conditions are equivalent.

- (1) $R[x;\sigma]$ is a reduced ring.
- (2) $S_{n,m}(R)$ is a ring with $(\overline{\sigma}, 0)$ -multiplication.
- (3) $S_{n,m}(R)$ is an $\overline{\sigma}$ -skew Armendariz ring.

Proof. To prove, we completely follow the proof of [6, Theorem 2.3]. (1) \Rightarrow (2) We will proceed by induction on *n*. Suppose that $n \geq 2$ and the result holds for smaller integers. Let $A = (a_{ij})$, $\overline{A} = (\overline{a}_{ij}) \in S_{n,m}(R)$ and $A\overline{\sigma}(\overline{A}) = 0$.

Note that the matrices obtained from A and \overline{A} by deleting their first rows and columns belong to $S_{n-1,m-1}(R)$ when m > 1, and $S_{n-1,n-1}(R)$ when m = 1. The product of obtained matrices is equal to 0. So, applying the induction assumption, we get that $a_{ij}\sigma^i(\overline{a}_{jl}) = 0$ for $i \ge 2$ and all j, l. Similarly, by deleting the last rows and columns, we get that $a_{ij}\sigma^i(\overline{a}_{jl}) = 0$ for $l \le n-1$ and all i, j. Moreover,

$$a_{11}\sigma(\overline{a}_{1n}) + a_{12}\sigma(\overline{a}_{2n}) + \dots + a_{1n}\sigma(\overline{a}_{nn}) = 0.$$
(1)

It is left to prove that $a_{1j}\sigma(\overline{a}_{jn}) = 0$ for $1 \le j \le n$. Let $1 \le j < k \le n$.

If $k \leq m$, then $a_{ij} = a_{k-j-1,k}$ and $k-j+1 \geq 2$, so from the induction conclusion, we get that $a_{1j}\sigma(\overline{a}_{kn}) = a_{k-j-1,k}\sigma(\overline{a}_{kn}) = 0$.

Similarly, we get that if $m \leq j$ (which is possible only when m < n), then $a_{1j}\sigma(\overline{a}_{kn}) = a_{1j}\sigma(\overline{a}_{j,j-k+n}) = 0$.

If $j \leq m < k$, then $a_{1j}\sigma(\overline{a}_{kn}) = a_{m-j+1,m}\sigma(\overline{a}_{m,n+m-k}) = 0$ (because j < k implies that either $m - j + 1 \geq 2$ or $n + m - k \leq n - 1$).

Multiplying (1) on the left by a_{11} and the foregoing, we get that $a_{11}^2\sigma(\overline{a}_{1n}) = 0$. Hence, $a_{11}\sigma(\overline{a}_{1n}) = 0$. Similarly, multiplying (1) (in which now $a_{11}\sigma(\overline{a}_{1n}) = 0$) on the left by a_{12} , we get that $a_{12}\sigma(\overline{a}_{2n}) = 0$. Continuing in this way, we get $a_{1j}\sigma(\overline{a}_{jn}) = 0$ for all $j \leq m - 1$. These results and (1) gives the result when m = n.

If m < n, then, same as above, multiplying (1) on the right by \overline{a}_{nn} , $\overline{a}_{n-1,n}, ..., \overline{a}_{m+1,n}$ applying the foregoing relations, we get (successively) that

$$a_{1n}\sigma(\overline{a}_{nn}) = a_{1,n-1}\sigma(\overline{a}_{n-1,n})$$

= ...
= $a_{1,m+1}\sigma(\overline{a}_{m+1,n})$
= 0.

Now (1) implies also that $a_{1m}\sigma(\overline{a}_{mn}) = 0$ and we are done.

 $(2) \Rightarrow (3)$ Note that $\phi((S_{n,m}(R))[x]) = S_{n,m}(R[x])$. Now the rest follows from Theorem 4.

(3) \Rightarrow (1) Clearly, $S_{n,m}(R)$ contains a subring isomorphic to $S_2(R)$. Hence (3) implies that $S_2(R)$ is a $\overline{\sigma}$ -skew Armendariz ring. Then $R[x;\sigma]$ is a reduced ring.

Theorem 6. Let σ be an endomorphism of a ring R with $\sigma(1) = 1$. For arbitrary integers 1 < m < n, if T is a subring of $\mathbb{T}_n(R)$, which properly contains $S_{n,m}(R)$, then there are $A_0, A_1, B_0, B_1 \in T$ such that $(A_0 + A_1x)(B_0 + B_1x) = 0$ and $A_1\overline{\sigma}(B_0) \neq 0$. In particular, T is not a $\overline{\sigma}$ -skew Armendariz ring.

Proof. We proceed by induction on n. Let us observe first that if T is an $\overline{\sigma}$ -skew Armendariz subring of the ring $\mathbb{T}_n(R)$, then by deleting in every matrix from T the first(last) row and column, we get a $\overline{\sigma}$ -skew Armendariz subring of the ring $\mathbb{T}_{n-1}(R)$.

To start the induction, assume that n = 3 and m = 3. Applying the above observation, it suffices to show that no subring of $\mathbb{T}_2(R)$, which properly contains $S_2(R)$, is $\overline{\sigma}$ -skew Armendariz. It is clear that every such subring S contains the matrices $A = aE_{11}$, $B = -aE_{22}$, for some $0 \neq a \in R$ and $C = E_{12}$.

Let $\sigma(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$, p = A + Cx, $q = B + Cx \in R[x; \sigma]$. We have (A + Cx)(B + Cx) = 0 but $C\sigma((B)) \neq 0$, so S is not a $\overline{\sigma}$ -skew Armendariz ring.

Now, the rest of the proof is similar to the proof of [6, Theorem 2.4]. \Box

Corollary 4. For arbitrary integers 1 < m < n and every ring R with an endomorphism σ , no subring of $\mathbb{T}_n(R)$, which properly contains $S_{n,m}(R)$, is with $(\overline{\sigma}, 0)$ -multiplication.

Acknowledgements

We would like to express our gratefulness to the referee for his/her valuable suggestions and contributions. Special thanks to Tamer Koşan (from GIT).

References

- Armendariz, E. P.: A note on extension of Baer and p.p.-rings, J. Austral.Math Soc. 18(1974), 470-473.
- [2] Başer, M. and Koşan, M. T.: On quasi-Armendariz modules, *Taiwanese J. Mathe*matics 12(3) (2008), 573-582.
- [3] Koşan, M.T. and Özdin, T.: Quasi σ-rigid rings, Int. J. Contemp. Math.Sciences (27)(3) (2008), 1331-1335.
- [4] Lee, T.K. and Zhou, Y.: Armendariz rings and reduced rings, Comm. Algebra (32)(6) (2004), 2287-2299.
- [5] Lee, T.K. and Zhou, Y.: Reduced modules, rings, modules, algebras and abelian groups, *Lecture Notes in Pure and Appl. Math.*, 236, Dekker, New york, (2004), 365-377.
- [6] Wang, W., Puczylowski, E.R. and Li, L.: On Armendariz rings and matrix rings with simple 0-multiplication, *Comm. Algebra* 36(2008), 1514-1519.
- [7] Yi, Z. and Zhou, Y.: Baer and quasi-Baer properties of group rings, J. Australian Math. Soc. (83)(2) (2007), 285-296.
- [8] Hong, C.Y., Kim, N.K. and Kwak, T.K.: On skew armendariz rings, Comm. Algebra (31)(01)(2003), 103-122.

CONTACT INFORMATION

C. Abdioĝlu	Department of Mathematics, Karamanoĝlu Mehmetbey University, Yunus Emre Campus, Karaman, Turkey <i>E-Mail:</i> cabdioglu@kmu.edu.tr
S. Şahinkaya, A. KÖR	Department of Mathematics, Gebze Institute of Technology, Çayirova Campus, 41400 Gebze- Kocaeli, Turkey <i>E-Mail:</i> ssahinkaya@gyte.edu.tr, akor@gyte.edu.tr

Received by the editors: 26.04.2012 and in final form 19.12.2012.