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Algorithmic computation of principal posets

using Maple and Python

Marcin Gąsiorek, Daniel Simson and Katarzyna Zając

Abstract. We present symbolic and numerical algorithms
for a computer search in the Coxeter spectral classification prob-
lems. One of the main aims of the paper is to study finite posets
I that are principal, i.e., the rational symmetric Gram matrix
GI := 1

2
[CI + Ctr

I
] ∈MI(Q) of I is positive semi-definite of corank

one, where CI ∈MI(Z) is the incidence matrix of I. With any such
a connected poset I, we associate a simply laced Euclidean diagram
DI ∈ {Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8}, the Coxeter matrix CoxI := −CI ·C

−tr

I
,

its complex Coxeter spectrum speccI , and a reduced Coxeter num-
ber čI . One of our aims is to show that the spectrum speccI of any
such a poset I determines the incidence matrix CI (hence the poset
I) uniquely, up to a Z-congruence. By computer calculations, we find
a complete list of principal one-peak posets I (i.e., I has a unique
maximal element) of cardinality ≤ 15, together with speccI , čI , the
incidence defect ∂I : ZI → Z, and the Coxeter-Euclidean type DI.
In case when DI ∈ {Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8} and n := |I| is relatively
small, we show that given such a principal poset I, the incidence
matrix CI is Z-congruent with the non-symmetric Gram matrix
ǦDI of DI, speccI = speccDI and čI = čDI . Moreover, given a
pair of principal posets I and J , with |I| = |J | ≤ 15, the matrices
CI and CJ are Z-congruent if and only if speccI = speccJ .
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1. Introduction

Throughout, we freely use the terminology and notation introduced
in [45], [47], [50], [51]. We denote by N the set of non-negative integers,
by Z the ring of integers, and by Q ⊂ R ⊂ C the field of the rational, the
real, and the complex numbers, respectively. We view Zn, with n ≥ 1, as
a free abelian group. By e1, . . . , en we denote the standard Z-basis of the
group Zn. Given n ≥ 1, we denote by Mn(Z) the Z-algebra of all square
n by n matrices A = [aij ], with aij ∈ Z, and by E ∈Mn(Z) the identity
matrix. Given a finite set J , we denote by MJ(Z) the Z-algebra of all
square J by J matrices. The group

Gl(n,Z) := {A ∈Mn(Z), det A ∈ {−1, 1}} ⊆Mn(Z)

is called the (integral) general linear group. We say that two square
rational matrices A, A′ ∈Mn(Q) are Z-congruent (and denote by A ∼Z A′)
if there exists a Z-invertible matrix B ∈ Gl(n,Z) such that A′ = Btr ·A ·B.

By a poset J ≡ (J,�) we mean a finite partially ordered set J with
respect to a partial order relation �. Following [43], J is called a one-

peak poset if it has a unique maximal element ∗. Given a poset J , with
m = |J |, we denote by

CJ = [cij ] ∈MJ(Z) ≡Mm(Z) (1.1)

the incidence matrix of J , with cij = 1, for all i � j, and cij = 0
otherwise. The rational matrix

GJ := 1
2 [CJ + Ctr

J ] ∈MJ(Q) ≡Mm(Q) (1.2)

is called the symmetric Gram matrix of J . Following [50] and [51], we call
the symmetric matrix AdJ := CJ + Ctr

J − 2 · E the adjacency matrix

of J , and
PJ(t) = det(t · E −AdJ) ∈ Z[t], (1.3)

the characteristic polynomial of the poset J . We say that the poset
J is Z-bilinear equivalent to a poset J ′ (and we write J ≈Z J ′) if
CJ ∼Z CJ ′ .

We define J to be non-negative (resp. positive) if the rational symmet-
ric Gram matrix GJ (1.2) is positive semi-definite (resp. positive definite).
If J is connected and the symmetric Gram matrix GJ is positive semi-
definite of rank |J | − 1, we call J a principal poset, see [47, Definition
2.1] and [51, Section 3]. In other words, J is principal if and only if the
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quadratic form qJ(x) = x · CJ · x
tr is non-negative and the subgroup

Ker qJ := {v ∈ ZJ ; qJ(v) = 0} of ZJ is infinite cyclic.

Our study is inspired by important applications of the quadratic forms
and edge-bipartite graphs in constructing linear algebra invariants that
measure a geometric complexity of Nazarova-Roiter matrix problems
over a field K and in the study of module categories and their derived
categories, see the monographs [1], [11], [43], [53], and the articles [2]-[9],
[12]-[24], [27], [29]-[34], [39]-[42], [45]-[52], and [54], [55]. In particular, our
study is inspired by a well-known result of Drozd [10], by the Coxeter
spectral analysis of loop-free edge-bipartite graphs developed in [50], and
the Coxeter spectral classification technique of finite posets introduced in
[44], [45], and [51], see also [26], [28], [36]-[38], and [56].

In the present paper we are mainly interested in the class of non-
negative posets J ; in particular, in the class of principal posets. We study
them by applying our recent results on the Coxeter spectral classification
of loop-free edge-bipartite graphs defined in [50] (see also [51]) as follows.

An edge-bipartite graph (bigraph, for short), with n≥2 vertices, is a
pair ∆ = (∆0, ∆1 = ∆−

1 ⊔∆+
1 ), where ∆0 = {a1, . . . , an} is a set of vertices

and ∆1 is a finite set of edges such that |∆−
1 (ai, aj)| · |∆

+
1 (ai, aj)| = 0,

for all ai 6= aj ∈ ∆0. Edges in ∆−
1 (ai, aj) and ∆+

1 (ai, aj) are visualized
as continuous ai ——– aj , and dotted ones ai - - - - aj , respectively. We say
that ∆ is loop-free if ∆1(ai, ai) is empty, for all ai ∈ ∆0. We denote
by UBigrn the set of all connected loop-free edge-bipartite graphs, with
n ≥ 2 vertices.

We view any finite graph ∆ = (∆0, ∆1) as an edge-bipartite graph by
setting ∆−

1 (ai, aj) = ∆1(ai, aj) and ∆+
1 (ai, aj) = ∅, for ai, aj ∈ ∆0.

A non-symmetric Gram matrix of ∆ ∈ UBigrn is the matrix

Ǧ∆ =




1 d∆
12

. . . d∆
1n

0 1 . . . d∆
2n

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . 1


 ∈Mn(Z),

where d∆
ij = −|∆−

1 (ai, aj)|, if there is an edge ai ——– aj and i ≤ j, d∆
ij =

|∆+
1 (ai, aj)|, if there is an edge ai- - - - aj and i ≤ j. We set d∆

ij = 0, if
the set ∆1(ai, aj) is empty or j < i. The rational matrix

G∆ :=
1

2
[Ǧ∆+Ǧtr

∆ ] ∈Mn(Q)
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is called the symmetric Gram matrix of ∆. The Gram quadratic

form of ∆ ∈ UBigrn is defined by the formula

q∆(x) = q∆(x1, . . . , xn)=x2
1+· · ·+x2

n+
∑

i<j

d∆
ijxixj =x·Ǧ∆ ·x

tr = x·G∆ ·x
tr.

We call ∆ ∈ UBigrn, with n ≥ 2 numbered vertices, positive (resp. non-

negative of corank s ≥ 1), if its symmetric Gram matrix G∆ ∈Mn(Q)
is positive definite (resp. positive semi-definite of rank n− s). Moreover,
we call ∆ ∈ UBigrn principal if the matrix G∆ is positive semi-definite
of rank n− 1, see [50]. Note that a non-negative loop-free bigraph ∆ is of
corank s ≥ 1 if and only if the kernel

Ker q∆ := {v ∈ Zn; q∆(v) = v · Ǧ∆ · v
tr = 0} ⊆ Zn

of q∆ : Zn → Z is a free subgroup of Zn of Z-rank s. Obviously, ∆ is
principal if and only if ∆ is non-negative loop-free and Ker q∆ = Z · h,
with h 6= 0.

The matrix Ad∆ := Ǧ∆ + Ǧtr
∆ − 2 ·E is called the symmetric adja-

cency matrix of a loop-free edge-bipartite graph ∆ ∈ UBigrn, and the
spectrum of ∆ is the set spec∆ ⊂ R of n real roots of the polynomial

P∆(t) = det(t · E −Ad∆) ∈ Z[t],

called the characteristic polynomial of the edge-bipartite graph ∆.
Following [50], with any principal poset J , we have associated in [51] a

loop-free edge-bipartite principal graph ∆J , and a simply laced Euclidean
diagram DJ , that is, one of the graphs presented in the following table.

Table 1.1. Simply laced Euclidean diagrams

Ãn : 1 2

n + 1

n − 1 n n ≥ 1,

D̃n : 1

2

3

n + 1

n − 1 n n ≥ 4,

Ẽ6 : 1

4

5

2 3 6 7

Ẽ7 : 1 2

5

3 4 6 7 8

Ẽ8 : 1

4

2 3 5 6 7 8 9
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We recall that DJ is the simply laced Euclidean diagram D̃∆J obtained
from ∆J by applying the inflation algorithm ∆J 7→ D̃∆J presented in
[28, Algorithm 5.4] and [50, Algorithm 3.1] (see also [52]). Consequently,
we have the passage

J 7→ ∆J 7→ DJ := D̃∆J .

We study the Coxeter spectral properties of any principal poset J by
means of the Coxeter spectral properties of the associated simply laced
Euclidean diagram DJ ∈ {Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8}.

Following [45], with any poset J , we associate the Coxeter matrix

CoxJ := −CJ · C
−tr
J ,

with det CoxJ = (−1)m, where m = |J | and C−tr
J = (Ctr

J )−1. The Cox-

eter spectrum speccJ ⊆ C of J is defined to be the set of all m = |J |
complex roots of the Coxeter polynomial

coxJ(t) = det(t · E − CoxJ) ∈ Z[t],

the Coxeter number cJ ≥ 2 is the minimal integer such that CoxcJ

J = E,
and the Coxeter transformation of J is the group automorphism

ΦJ : ZJ → ZJ , ΦJ(v) := v 7→ v · CoxJ ,

see [45] and [51] for details. If J is non-negative, the Coxeter spectrum
speccJ lies on the unit circle S1 = {z ∈ C; |z| = 1}, consists of roots of
unity, and 1 /∈ speccJ if and only if J is positive, see [50, Lemma 2.1]
and [51]. In this case we have associated with J (see [47] and [51]) a
reduced Coxeter number čJ and the incidence defect homomorphism

∂̃J : ZJ → Ker qJ ⊆ ZJ such that

ΦčJ

J (v) = v + ∂̃J(v), for all v ∈ ZJ ,

where Ker qJ := {v ∈ ZJ ; qJ(v) = 0} is the kernel of the incidence
quadratic form qJ : ZJ → Z defined by the formula

qJ(x) =
∑

j∈J

x2
j +

∑

i≺j

xixj = x · CJ · x
tr.

Since J is assumed to be non-negative, the quadratic form qJ is non-
negative and Ker qJ is a subgroup of ZJ , see [47]. If, in addition, the
poset J is principal, the kernel Ker qJ is an infinite cyclic subgroup of
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ZJ of the form Ker qJ = Z · hJ , where hJ is a non-zero vector in Ker qJ

uniquely determined by J , up to multiplication by −1. In this case,
∂̃J(v) = ∂J(v) · hJ , where ∂J : ZJ → Z is a group homomorphism, called
the incidence defect of J , see [51].

The following characterisation of principal posets obtained in [51,
Proposition 9] is of importance.

Theorem 1.4. Assume that J is a connected poset with m = |J | ≥ 2 and
let GJ ∈MJ (Q) be the symmetric incidence Gram matrix of J (1.2). The
following four conditions are equivalent.

(a) The poset J is principal.
(b) The incidence symmetric Gram matrix GJ is positive semidefinite

of rank m− 1.
(c) The incidence quadratic form qJ : ZJ → Z of J is non-negative

and Ker qJ = Z · h, for some non-zero vector h ∈ ZJ .
(d) There exists a simply laced Euclidean diagram

DJ ∈ {Ãs, s ≥ 3, D̃n, n ≥ 4, Ẽ6, Ẽ7, Ẽ8}

(uniquely determined by J) such that the incidence symmetric Gram
matrix GJ is Z-congruent to the symmetric Gram matrix GDJ ∈MDJ(Q)
of the Euclidean diagram DJ , that is, there exists a Z-invertible matrix
B ∈ Gl(m,Z) such that GDJ = Btr ·GJ ·B.

Proof. Apply [51, Proposition 3.2] and a characterisation of principal
loop-free edge-bipartite graphs given in [50].

One of the aims of the Coxeter spectral analysis of finite posets is to
study the following problem.

Problem 1.5. When the Coxeter spectrum speccJ of a poset J deter-
mines the incidence matrix CJ (hence the poset J) uniquely, up to a
Z-congruence.

In connection with Problem 1.5, and a problem studied by Horn and
Sergeichuck in [25], we also consider the problem if for any Z-invertible
matrix A ∈ Mn(Z), there exists B ∈ Mn(Z) such that Atr = Btr · A ·B
and B2 = E (the identity matrix).

We would like to note that the following problem remains unsolved.

Problem 1.6. Show that DJ 6= Ãm−1, if J is a one-peak connected
principal poset, with m = |J | ≥ 5.

A partial solution of Problems 1.5 and 1.6 is given in the following
three theorems proved in Sections 2 and 3.
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Theorem 1.7. (a) Assume that I is a poset of the shape D̃
(1)
m,s,p, D̃

(2)
m,s,

D̃
(3)
m,s,p, D̃

(4)
m,s,p, D̃

(5)
m,s,p,r, D̃

(6)
m,s,p,r or D̃

(7)
m,s listed in Table 1.11, and |I| =

m ≥ 5. Then I is principal and the associated Euclidean graph DI of I
is the diagram D̃m.

(b) If I is any of the one-peak posets listed in Tables 4.1 and 4.2 then
I is principal and the associated Euclidean graph DI of I is the diagram
Ẽm−1, where m = |I|.

Theorem 1.8. Assume that I is a one-peak principal poset with m :=
|I| ≤ 15 and DI is its associated Euclidean diagram.

(a) m ≥ 5 and DI is not the diagram Ãm−1. In particular, for m = 5,
we have DI = D̃4 and I is one of the four posets:

D̃
(1)
4,0,5 :

2

1

4

3

5

D̃
(2)
4,0 :

1

2

3

4 5

D̃
(4)
4,1,4 :

1

4

2

3

5

D̃
(6)
4,0,4,2 :

3

4

2

1

5

(b) If m ≥ 6 and DI = D̃m−1 then I is one of the 2.115 posets of
the shapes presented in Table 1.11. In particular, for m = 6, we have
DI = D̃5 and I is one of the 13 posets:

D̃
(1)
5,0,5 :

2

1

4

3

5 6

D̃
(1)
5,0,6 :

2

1

5

3

4

6

D̃
(1)
5,1,6 :

1

3

2

5

4

6

D̃
(2)
5,0 :

1

2

3

4 5 6

D̃
(2)
5,1 :

1

2

3

4

5 6

D̃
(3)
5,2,2 :

1 2

3

4
5

6

D̃
(4)
5,1,4 :

1

4

3

2

5 6

D̃
(4)
5,1,5 : 1

2

3

4 5

6

D̃
(4)
5,2,5 :

1 2

5

3

4 6

D̃
(5)
5,0,3,6 :

1

2

3

4

5

6

D̃
(6)
5,0,5,3 :

1

2

3

4

5

6

D̃
(6)
5,0,5,2 :

1

2

3

4

5 6

D̃
(7)
5,3 :

4

1

5

2 3

6
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(c) If m = 7 and DI = Ẽ6 then I is one of the 31 posets presented
in Table 4.1.

(d) If m = 8 and DI = Ẽ7 then I is one of the 132 posets presented
in Table 4.2.

(e) If m = 9 and DI = Ẽ8 then I is one of the posets J Ẽ8
1 ,. . . , J Ẽ8

422

listed in [21]. In particular, we have

J Ẽ8
1 :

1

2 3 4 5 6 7 8 9

J Ẽ8
31 :

1 2

3 5

4 6

7 8 9

J Ẽ8
48 : 1 2

6

7

3 4 5 8 9 J Ẽ8
147 : 1

3

2 4 6

5 7

8 9

J Ẽ8
412 :

1 4

2

6

7

3 5 8

9 J Ẽ8
422 : 2

1

3

7

4 6

5 8

9

(f) The total number of principal posets J (not necessarily one-peak
ones), with m = |J | ≤ 15, equals 158.448 and the number # J of such
posets J of the Coxeter-Euclidean type DJ ∈ {D̃m−1, Ẽm−1} is listed in
the following tables.

n = |J | n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

DJ D̃4 D̃5
D̃6

Ẽ6

D̃7

Ẽ7

D̃8

Ẽ8

D̃9

# J 8 30 92
84

227
470

577
2 102 1.357

n = |J | n = 11 n = 12 n = 13 n = 14 n = 15

DJ D̃10 D̃11 D̃12 D̃13 D̃14

# J 3.217 7.371 16.897 38.069 85.561

Theorem 1.9. Assume that I is a one-peak principal poset with 5 ≤
m := |I| ≤ 15, DI is its associated Euclidean diagram, ǦDI is the non-
symmetric Gram matrix of the graph DI, and ΦI : ZI → ZI is the
incidence Coxeter transformation of I. Denote by

RI := RqI
= {v ∈ ZI ; qI(v) = 1}

the set of roots of the incidence quadratic form qI : ZI → Z.
(a) There exists a Z-invertible matrix B ∈Mm(Z) such that ǦDI =

Btr · CI ·B,
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(b) The Coxeter number cI of I is infinite, the incidence defect ho-
momorphism ∂I : ZI → Z is non-zero and the set ∂0

IRI ∪Ker qI admits
a ΦI-mesh translation quiver Γ(∂0

IRI ∪ Ker qI , ΦI) of a sand-glass tube
shape (in the sense of [46]-[47]), where

∂0
IRI = {v ∈ ZI ; qI(v) = 1 and ∂I(v) = 0}.

(c) There exists a Z-invertible matrix C ∈Mm(Z) such that C2 = E
and Ctr

I = Ctr · CI · C.

The proofs of Theorems 1.7-1.9 are given in Sections 2 and 3.
We finish this section by a result that relates the Coxeter spectrum

speccI with the usual spectrum specI of a poset I, compare with [50,
Proposition 2.4(c)].

Theorem 1.10. Assume that I = {1, . . . , m} is an arbitrary poset and
P I(t) := det(t · E − AdI) is the characteristic polynomial of the Euler

adjacency matrix AdI := C
tr
I + CI − 2E of I, where CI := C−1

I is the
Euler matrix of I, see [45].

(a) If the Hasse quiver of I (see [43]) is a tree then

coxI(t2) = tm · P I(t + 1
t
).

(b) Assume that I is a one-peak poset and m := |I| ≤ 15. If I is
positive or I is principal then coxI(t2) = tm · P I(t + 1

t
) if and only if the

Hasse quiver of I is a tree.

Proof. Since det CI = 1, the Euler matrix CI := C−1
I lies in Mm(Z) and

Ctr
I = Ctr

I · CI · CI .
(a) Assume that the Hasse quiver of I is a tree. Without loss of gen-

erality, we may assume that the points of I = {a1, . . . , am} are numbered
in such a way that ai � aj implies i ≤ j in the natural order. Let ∆I be
the Euler edge-bipartite graph associated with I, see [51, (33)].

By the definition of ∆I , the non-symmetric Gram matrix of the edge-
bipartite graph ∆I coincides with the Euler matrix CI . Hence, Cox∆I

=

CoxI = −C−tr
I · CI and cox∆I

(t) = det(t · E − CoxI) = coxI(t), see
[50] and [51, Corollary 6]. Since the Hasse quiver of I is a tree then, by
[44, Proposition 2.12], the Euler matrix CI := C−1

I of I has the form

CI := C−1
I =




1 c−
12 . . . c−

1m

0 1 . . . c−
2m

...
. . .

...
0 0 . . . 1



∈Mm(Z),
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with
• c−

11 = . . . = c−
mm = 1,

• c−
ab = −1, if there is an arrow a→ b in the Hasse quiver QI of I,

• c−
ab = 0, if a 6≺ b or there is a path a ≺ j1 ≺ . . . ≺ js−1 ≺ js = b of

length s ≥ 2 in the Hasse quiver QI .
It follows from [51, (33)] that the Euler edge-bipartite graph ∆I is a

tree and, by [50, Proposition 2.4(c)], we get

coxI(t2) = cox∆I
(t2) = tm · P ∆I

(t + 1
t
) = tm · P I(t + 1

t
).

(b) Assume that I is a one-peak poset, m := |I| ≤ 15, and I is positive
or I is principal. If the Hasse quiver QI of I is a tree, the statement (a)
applies. To prove the converse implication, assume to the contrary that
the Hasse quiver QI of I is not a tree. If I is positive, I is one of the
non-tree shape posets described in [18, Theorem 5.2(e)], see also [19]. If I
is principal, I is one of the non-tree shape poset described in Theorem 1.8.
By a case by case inspection of the posets from our lists, a straightforward
computer calculations show that coxI(t2) 6= tm · P I(t + 1

t
).

For example, if I, I ′, I ′′, and J , J ′, J ′′ are the positive and principal
posets

I =

1 2

3 4

5 6

∗ I ′ =
1 2 3 4

5 6 7

∗

I ′′ =

1 2

3

4

5

6

7

∗

J =

1

2

3

4

5

6

7

∗ J ′ = 1

2

3

4

5

6

∗ J ′′ = 1

2

3

4

5

6

7 8

∗

then we have

L coxL(t2) tm · P L(t + 1
t
)

I t14 + t12 − t8 − t6 t14 − 3t12 − 8t11 − 13t10 − 18t9 − 21t8 − 22t7 − 21t6 − 18t5

+t2 + 1 −13t4 − 8t3 − 3t2 + 1

I ′
t16 + t14 + t2 + 1 t16 − t14 − 2t13 − 3t12 − 6t11 − 7t10 − 8t9 − 8t8 − 8t7 − 7t6

−6t5 − 3t4 − 2t3 − t2 + 1

I ′′
t16 + t14 − t10 − t8 t16 − 3t14 − 6t13 − 10t12 − 14t11 − 16t10 − 18t9 − 19t8 − 18t7

−t6 + t2 + 1 −16t6 − 14t5 − 10t4 − 6t3 − 3t2 + 1
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J t14 + t12 − 2t8 − 2t6 t14 − 5t12 − 12t11 − 20t10 − 28t9 − 36t8 − 40t7 − 36t6 − 28t5

+t2 + 1 −20t4 − 12t3 − 5t2 + 1

J ′
t16 + t14 − t10 − 2t8 t16 − 3t14 − 8t13 − 14t12 − 20t11 − 25t10 − 28t9 − 30t8 − 28t7

−t6 + t2 + 1 −25t6 − 20t5 − 14t4 − 8t3 − 3t2 + 1

J ′′
t18 + t16 − t14 − t12 t18 − 7t16 − 24t15 − 53t14 − 88t13 − 121t12 − 144t11 − 156t10

−t6 − t4 + t2 + 1 −160t9 − 156t8 − 144t7 − 121t6 − 88t5 − 53t4 − 24t3 − 7t2 + 1

This finishes the proof of Theorem 1.10.

Table 1.11. Seven infinite series of principal one-peak posets of
Coxeter-Euclidean type D̃m

D̃
(1)
m,s,p :

1 s

s + 1

s + 2

s + 3

s + 4

p m

∗
m + 1

p − 1s + 5

0 ≤ s, s + 5 ≤ p ≤ m + 1,

4 ≤ m

D̃
(2)
m,s :

1 s
s + 1

s + 2

s + 4 m − 1

∗
m + 1m

s + 3

0 ≤ s, 4 ≤ m, s + 4 ≤ m

D̃
(3)
m,s,p : p + 1 s

s + 1

s + 2

s + 3

m − 1

∗
m + 1

m

1 p

1 < p ≤ s ≤ m − 3,

5 ≤ m, delete •s if s = p

D̃
(4)
m,s,p :

1 s

s + 1

s + 2 p + 1
∗

m + 1m

ps + 3

1 ≤ s, s + 3 ≤ p ≤ m,

4 ≤ m

D̃
(5)
m,s,p,r :

1 s
s + 1

s + 2

s + 3

∗
m + 1

p

p + 1

p + 2

r m

r − 1p + 3

0 ≤ s, s + 3 ≤ p,

6 ≤ p + 3 ≤ r ≤ m + 1,

delete •p+3 if p + 3 = r

D̃
(6)
m,s,p,r :

1 s

s + 1

s + 2 p + 1
∗

m + 1

r r + 2

r + 1

r + 3 ps + 3

m 0 ≤ s, s + 2 ≤ r,

4 ≤ r + 2 ≤ p ≤ m,

delete •r if r = s + 2

D̃
(7)
m,s :

1 s

s + 1

∗
m + 1

m

2

m − 1

5 ≤ m, 1 < s < m − 2

Convention 1.12. In Table 1.11, the following convention is used: we
delete the vertex •a if a = 0.
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Remark 1.13. Let I be a one-peak principal poset I such that |I| ≤
15. It follows from Theorem 1.9 that the Coxeter polynomial coxI(t) ∈
Z[t] coincides with the Coxeter polynomial coxDI(t) of the simply laced
Euclidean diagram DI ∈ {D̃n, n ≥ 4, Ẽ6, Ẽ7, Ẽ8} associated with I, where

coxDI(t)=





tn+1+tn − tn−1 − tn−2 − t3 − t2+t+1, if DI = D̃n,

t7 + t6 − 2t4 − 2t3 + t + 1, if DI = Ẽ6,

t8 + t7 − t5 − 2t4 − t3 + t + 1, if DI = Ẽ7,

t9 + t8 − t6 − t5 − t4 − t3 + t + 1, if DI = Ẽ8,

(1.13)

see [33] and [45]. In particular, for n = 4 and n = 5, we have
cox

D̃4
(t) = t5 + t4 − 2t3 − 2t2 + t + 1,

cox
D̃5

(t) = t6 + t5 − t4 − 2t3 − t2 + t + 1.

2. Proof of Theorems 1.7 and 1.8

In this section we present the proof of Theorems 1.7 and 1.8 that are main
results of the paper. First, we note that every poset J = ({1, . . . , m},�)
is Z-bilinear equivalent to a poset J ′ with vertices numbered in such a
way that i � j implies i ≤ j in a natural order and the matrix CJ ′ is
upper triangular. Therefore, without loss of generality, we can assume
that the matrix CJ ∈MJ (Z) of any poset J has an upper triangular form.

Following [51], we identify a poset J = (J,�) with its acyclic edge-
bipartite graph ∆J (usually viewed as a signed graph in the sense of
[56]) without continuous edges, and with the dotted edges •i- - - -•j , for
all i ≺ j. We recall from [51] that ∆J is uniquely determined by its
non-symmetric Gram matrix Ǧ∆J

≡ CJ .
One of our main tools is the second step ∆ 7→ ∆′ := t−

ab∆ of the
inflation algorithm [28, Algorithm 5.4] and [50, Algorithm 3.1] (see also
[52]) that associates to any loop-free principal edge-bipartite graph ∆,
with a fixed dotted edge •a- - - -•b in ∆1(a, b), a 6= b, the loop-free principal
edge-bipartite graph ∆′ := t−

ab∆ as follows:

• we set ∆0 = ∆′
0 and replace the dotted edge •a- - - -•b in ∆ by a

continuous one •a——– •b in ∆′,

• given c 6= a in ∆0 = ∆′
0 such that ∆1(a, c) 6= ∅, we define ∆′

1(b, c)
to be the set with exactly d∆′

bc dotted edges if d∆′

bc > 0, and exactly
−d∆′

bc continuous edges if d∆′

bc ≤ 0, where d∆′

bc := d∆
bc − d∆

ac · d
∆′

ab ,

• each of the remaining edges of ∆1 becomes an edge in ∆′
1, i.e., we set

∆′+
1 (a′, b′) = ∆+

1 (a′, b′) and ∆′−
1 (a′, b′) = ∆−

1 (a′, b′), if (a′, b′) 6= (a, b)
or (a′, b′) 6= (b, c).
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The main idea of the inflation algorithm is to reduce the number of
dotted edges in ∆. It is shown in [50] that Ǧ∆′ = ∇((T −

ab)
tr · Ǧ∆ · T

−
ab),

where

T −
ab = [tij ], with tij =





1, if i = j or (i, j) 6= (a, b),
−1, if (i, j) = (a, b),

0, otherwise,

and the operation C 7→ ∇(C) = [c▽ij ] (introduced in [47, (4.5)]) associates
to any square matrix C = [cij ] ∈Mm(R) the upper triangular matrix

∇(C) = [c▽ij ] =




c▽11 c▽12 . . . c▽1m

0 c▽22 . . . c▽1m
...

...
. . .

...
0 0 . . . c▽mm



∈Mm(R)

by setting c▽ij = cij + cji, for i < j, c▽ij = 0, for i > j, and c▽jj = cjj , for
j = 1, . . . , m.

Note that the inflation matrix T −
ab = [tij ] ∈ Mm(Z) is the identity

matrix with an element tab changed to −1.

Proof of Theorem 1.7. (a) Assume that

I ∈ {D̃(1)
m,s,p, D̃(2)

m,s, D̃(3)
m,s,p, D̃(4)

m,s,p, D̃(5)
m,s,p,r, D̃(6)

m,s,p,r, D̃(7)
m,s}

with |I| = m + 1 ≥ 5, as listed in Table 1.11. Our aim is to construct a
matrix BI ∈Mm+1(Z) such that

(Ǧtr

D̃m
+ Ǧ

D̃m
) = Btr

I · (C
tr
I + CI) ·BI .

Since det CI = 1, the matrix CI is Z-invertible and C−1
I = C−1

I ·Ctr
I ·

C−tr
I . Note that, for B′′

I := C−tr
I , we have (C−tr

I + C−1
I ) = B′′tr

I · (Ctr
I +

CI) · B′′
I . Therefore, it is sufficient to construct a Z-invertible matrix

B′
I ∈ Gl(m + 1,Z) such that

B′tr
I · (C

−tr
I + C−1

I ) ·B′
I = (Ǧtr

D̃m
+ Ǧ

D̃m
),

because then, for BI := B′′
I ·B

′
I ∈Mm+1(Z), we have

(Ǧtr

D̃m
+ Ǧ

D̃m
) = B′tr

I · (C
−tr
I + C−1

I ) ·B′
I

= B′tr
I · (B

′′tr
I · (Ctr

I + CI) ·B′′
I ) ·B′

I

= (B′′
I ·B

′
I)tr · (Ctr

I + CI) · (B′′
I ·B

′
I)

= Btr
I · (C

tr
I + CI) ·BI .
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We construct the matrix B′
I ∈Mm+1(Z) in six cases considered below,

in the form of the product of inflation matrices T −
ab = [t′

ij ] ∈ Mm+1(Z),
by applying the inflation algorithm procedure.

First, we note that our assumptions imply that the matrix C−1
I is

upper triangular and coincides with the non-symmetric Gram matrix Ǧ∆I

that defines the Euler acyclic edge-bipartite graph ∆I of I, see [51].

Case 1◦ Assume that I = D̃
(1)
m,s,p. The Euler bigraph ∆I of I, with

Ǧ∆I
= C−1

I , has the shape

∆I =
1 s

s + 1

s + 2

s + 3

s + 4

p m
∗

m + 1

p − 1s + 5

To simplify the notation, we set

t
(1)
j := t−

j s+3 ◦ t−
j s+4, t

(2)
j := t−

j s+1 ◦ t−
j s+2,

T
(1)
j := T −

j s+3 · T
−
j s+4 and T

(2)
j := T −

j s+1 · T
−
j s+2.

The passage ∆I 7→D∆I and the construction of the matrix B′
I ∈Mm+1(Z)

can be illustrated as follows.

∆I

t(1)
s=⇒

1 s − 1 s

s + 1

s + 2

s + 3

s + 4

p m
∗

m + 1

p − 1s + 5

t
(1)
s−1

=⇒
1 s − 2 s

s + 1

s + 2

s + 3

s + 4

p m
∗

m + 1

p − 1s + 5

t
(1)
s−2

=⇒ · · ·
t

(1)
1=⇒

1 s

s + 1

s + 2

s + 3

s + 4

p m
∗

m + 1

p − 1s + 5

t(2)
p

=⇒ · · ·
t

(2)
m+1
=⇒ · · ·

t
(2)
s+5

=⇒
1 s

s + 1

s + 2

s + 3

s + 4

p m

∗
m + 1

p − 1
s + 5

Summing up, D∆I = D̃m and we define B′
I ∈ Gl(m + 1,Z) to be the

matrix

B′
I := T

(2)
s+5 · · ·T

(2)
p−1 · T

(2)
m+1 · T

(2)
m · · ·T (2)

p · T
(1)
1 · · ·T

(1)
s−1 · T

(1)
s
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Case 2◦ Assume that I = D̃
(2)
m,s. The Euler bigraph ∆I of I, with

Ǧ∆I
= C−1

I , has the shape

∆I =
1 s

s + 1

s + 2

s + 4 m − 1

∗
m + 1m

s + 3

We set t
(1)
j = t−

j s+4 and T
(1)
j = T −

j s+4. The passage ∆I 7→ D∆I and the
construction of the matrix B′

I ∈Mm+1(Z) can be illustrated as follows:

∆I

t(1)
s=⇒

1 s − 1 s
s + 1

s + 2

s + 4 m − 1

∗
m + 1m

s + 3

t
(1)
s−2

=⇒ · · ·
t

(1)
1=⇒

1 s
s + 1

s + 2

s + 4 m − 1

∗
m + 1m

s + 3

We have D∆I = D̃m and we define B′
I to be the matrix

B′
I := T

(1)
1 · T

(1)
2 · · ·T

(1)
s−1 · T

(1)
s

Case 3◦ Assume that I is one of the posets I1 = D̃
(3)
m,s,p and I2 = D̃

(4)
m,s,p.

Then D∆I = D̃m and B′
I is defined to be the matrix

B′
I1

:=T
(3)
p−1 · · ·T

(3)
2 · T

(3)
1 · T

(1)
p+1 · T

(1)
p+2 · · ·T

(1)
s−1 · T

(1)
s , if I = I1 and

B′
I2

:=T
(2)
s+3 · · ·T

(2)
p−1 · T

(2)
p · T

(2)
1 · · ·T (2)

s · T
(3)
m−1 · · ·T

(3)
2 · T

(3)
1 , if I = I2,

where T
(1)
j = T −

j s+3, T
(2)
j = T −

j p+1 and T
(3)
j = T −

j m+1.

Case 4◦ If I = D̃
(5)
m,s,p,r, then D∆I = D̃m and B′

I is defined to be the
matrix

B′
I := T

(2)
p+3 · · ·T

(2)
r−1 · T

(2)
m+1 · T

(2)
m · · ·T

(2)
r+1 · T

(2)
r · T

(1)
1 · · ·T

(1)
s−1 · T

(1)
s ,

where T
(1)
j = T −

j s+3 and T
(2)
j = T −

j r.

Case 5◦ If I = D̃
(6)
m,s,p,r, then D∆I = D̃m and B′

I is defined to be the
matrix

B′
I := T

(2)
s+3 · · ·T

(2)
r−1 · T

(2)
r · T

(1)
1 · · ·T

(1)
s−1 · T

(1)
s ,

where T
(1)
j = T −

j p+1 and T
(2)
j = T −

j r+3.
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Case 6◦ If I = D̃
(7)
m,s, then D∆I = D̃m and B′

I is defined to be the
matrix

B′
I := T

(1)
s−2 · · ·T

(1)
2 · T

(1)
1 · T

(2)
s+3 · · ·T

(2)
m · T

(2)
m+1 · T

−
m+1 1,

where T
(1)
j = T −

j s and T
(2)
j = T −

j s+1.

To finish the proof of (a), we recall from [50] that the Euclidean
diagrams are principal and the existence of a Z-equivalence of a finite
poset I with a Euclidean diagram D̃m implies that I is principal.

(b) The proof is a computational one and we proceed similarly as
in the proof of (a). As earlier, we identify the poset I with its acyclic
edge-bipartite graph ∆I and apply the inflation algorithm to ∆I . In this
way we obtain a matrix BI defining the Z-equivalence of the poset I with
the Euclidean diagram Ẽm, where m = |I| − 1. Hence I is principal and
the proof is complete.

Proof of Theorem 1.8. Assume that m ≤ 15 and I is a principal one-
peak poset. We compute a complete list of such posets I, with |I| =
m ≤ 15, and their Coxeter-Euclidean types DI by applying the inflation
algorithm [50] and Algorithm 3.1 described in Section 3. In particular,
the computations show that:

(a) there is no such a poset I that DI = Ãm−1,
(b) if DI = D̃m−1, then I is one of the posets listed in Theorem 1.7,
(c) if 7 ≤ m ≤ 9 and DI = Ẽm−1, then I is one of the posets listed in

(c), (d), and (e) of Theorem 1.8.

3. Algorithms

In this section, we outline a description of computational algorithms we
use in the proofs of Theorems 1.8 and 1.9. First, we discuss an algorithm
used in computation of all principal posets with at most 15 elements,
compare with [37] and [38].

Algorithm 3.1. Input: An integer 1 ≤ n ≤ 15.
Output: Finite sets princ[1], . . . , princ[n] of all connected non-negative

posets of corank 1 encoded in the form of their incidence matrices. That
is, the set princ[i] contains the principal posets with i vertices.

Step 1◦ Initialize the set princ[1] with the matrix
[

1
]
∈M1(Z).

Step 2◦ For every m from 2 to n:
Step 2.1◦ Initialize an empty list candidatem.
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Step 2.2◦ For every poset J ∈ princ[m − 1], generate a list of all
possible extensions of J to a poset with m vertices. In other words,
generate a list WJ ∋ w of all vectors w = [w2, . . . , wm] ∈ {0, 1}m−1 such
that the matrix

CJw
=

[
1 w

0 CJ

]
= [cij ] ∈Mm(Z)

is an incidence matrix of a poset Jw (matrix with the following transitivity
property: cij = 1 and cjs = 1 implies cis = 1, for 1 ≤ i, j, s ≤ m).

Step 2.3◦ For every poset J ∈ princ[m − 1] and for every vector
w ∈ WJ , construct the matrix CJw

∈ Mm(Z) and add the poset Jw to
the list candidatem if the symmetric matrix CJw

+ Ctr
Jw

is non-negative
of corank at most 1, (by checking, for example, if all diagonal minors of
the matrix are non-negative - the extended Sylvester criterion, see [16]).

Step 2.4◦ Construct the set princ[m] by selecting non isomorphic
posets from the list candidatem (using the Hasse digraph representation
in order to test poset isomorphism).

Step 3◦ Remove from the sets princ[1], . . . , princ[n] the matrices of
posets Jw that are not connected (using a graph search algorithm, such
as breadth-first search – BFS) or have the symmetric matrix CJw

+ Ctr
Jw

positive definite (for example, by checking if all principal minors of CJw
+

Ctr
Jw

are positive - Sylvester criterion).

Step 4◦ Return the sets princ[1], . . . , princ[n] as a result.

Remark 3.2. (a) Note that posets J , with |J | ≤ 3, need not to be
checked, because any such a poset has the shape

(
◦
)
,

(
◦ ◦

)
,

(
◦ → ◦

)
,(

◦ ◦ ◦
)
,

(
◦ ◦→◦

)
,

(
◦→◦→◦

)
,

(
◦→◦←◦

)
or

(
◦←◦→◦

)
and is positive.

(b) Note that Step 2.3◦ and Step 2.4◦ can be done simultaneously
by adding to the set princ[m] only these non-negative posets that have
Hasse digraphs not isomorphic to the posets that are already in the set
princ[m].

(c) In our implementation of the algorithm we use the igraph pack-
age (http://igraph.sourceforge.net/) to test digraph isomorphism
in step 2.4◦.

(d) A simple check of the equivalence of the degrees of vertices to detect
non-isomorphic digraphs before the usage of more advance algorithm in
the step 2.4◦ gave us a considerable speed up.
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(e) It is easy to efficiently implement the algorithm in a parallel
environment (for example, Step 3◦ can be executed in parallel without
need of any synchronisation).

In the proof of Theorem 1.9 we determine the Z-congruence CI∼ZǦDI ,
for any principal poset I, |I| ≤ 15, of the Coxeter-Euclidean type

DI∈{D̃m, m ≥ 4, Ẽ6, Ẽ7, Ẽ8}.

We do it by constructing a matrix B ∈Mn(Z) with n = |I|, such that CI =
Btr · ǦDI ·B. We essentially use the following theorem and Procedure 3.6.

Theorem 3.3. (a) Let D be one of the Euclidean diagrams D̃m, m ≥ 4,
Ẽ6, Ẽ7, Ẽ8, with vertices numbered as in Introduction. Let RD be the set of
roots of the Euler quadratic form qD of D. Then there exists a unique ΦD-
mesh translation quiver Γ(RD, ΦD) of ΦD-orbits of the set RD (called a
ΦD-mesh geometry of roots of D) such that Γ(RD, ΦD) admits a principal

Coxeter Φ∆-orbit configuration ΓǦD

D of simple roots of the form presented
below (see also [47] and [48, Table 4.7]).

(b) If I is a connected principal poset, with n ≥ 5 elements, of
the Coxeter-Euclidean type DI and B ∈ Gl(n,Z) is such a matrix that
ǦDI = B · ǦI ·B

tr, then the following diagram is commutative

Zn ΦD−−−−−→ Zn

h

y≃ h

y≃

Zn ΦI−−−−−→ Zn

(3.4)

where h = hB is the group isomorphism defined by hB(x) = x ·B.
If RI := RqI

is the set of roots of the unit quadratic form qI : ZI → Z

and Γ(RDI , ΦDI) is ΦDI-mesh geometry of roots of DI (with princi-

pal Coxeter ΦDI-orbit configuration ΓǦDI

DI ), then the group isomorphism
h = hB carries it to the ΦI-mesh geometry Γ(RI , ΦI) (with a principal
Coxeter ΦI-orbit configuration ΓCI

I ), induces the mesh translation quiver
isomorphism

h : Γ(RDI , ΦDI)
≃
−→Γ(RI , ΦI)

and the quiver isomorphism h : ΓǦDI

DI

≃
−→ΓCI

I . Moreover, the matrix B
has the form

B =




h(e1)
h(e2)

.

.

.
h(en)


. (3.5)
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Proof. Apply [46, Section 5], [46, Theorems 4.7 and Proposition 4.8] and
their proofs, see also [47], [48, Lemma 4.3], and [50].

Γ G

Ẽ6

Γ G

Ẽ7

ê3 ê2 ê1

e4

e6e7

e5

e8 e7 e6

e5

ê4 ê3 ê2 ê1

Γ G

Ẽ8

Γ G

D̃6

ê3 ê2 ê1

e4

e9 e8 e7 e6 e5

ê1

ẽ3 ê2

ẽ4

ẽ5
e7

e6

êj = −ej

ẽj = ê1 + · · · + êj

Procedure 3.6. Assume that I is a poset of the Coxeter-Euclidean type
DI∈{D̃n−1, Ẽ6, Ẽ7, Ẽ8}, with n = |I|.

To construct a matrix B that defines a Z-equivalence CI ∼Z ǦDI , we
proceed as follows.

1◦ First, by applying the mesh toroidal algorithm described in [46,
Proposition 4.5] and [47] (see also [48, Lemma 4.6 and Algorithm 4.8.2]),
we construct the ΦI -mesh translation quiver Γ(RI , ΦI), with a principal
Coxeter ΦI -orbit configuration ΓCI

I of simple roots of qI , together with a

mesh quiver isomorphism h : ΓǦDI

DI → ΓCI

I .

2◦ Next, we define the matrix B by setting

B =




h(e1)
h(e2)

...
h(en)


,

as in (3.5) and [48, Lemma 4.3].

3◦ Finally, we check the matrix equality ǦDI = B · CI ·B
tr.
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Remark 3.7. Procedure 3.6 has implementations in Maple and Python,
with an assistance of programming and graphics in Java.

Algorithm 3.8. Input: A non-negative poset I, with n elements, encoded
in the form of incidence matrix CI ∈Mn(Z).

Output: Reduced Coxeter number čI ∈ Z.

Step 1◦ Initialize the symbolic vector v := [v1, . . . , vn].

Step 2◦ Calculate the Coxeter matrix CoxI := −CI · C
−tr
I .

Step 3◦ For r = 1, 2, 3, . . .

Step 3.1◦ Calculate w := v · Coxr
I − v.

Step 3.2◦ If qI(w) := w ·CI ·w
tr equals zero then stop the calculations

and return čI as a result.

Remark 3.9. By [51, Theorem 18], Algorithm 3.8 returns čI in a finite
number of steps.

We use the following algorithm computing the incidence defect of any
principal poset.

Algorithm 3.10. Input: A principal poset I, with n elements, encoded
in the form of incidence matrix CI ∈Mn(Z).

Output: The incidence defect ∂I : Zn → Z.

Step 1◦ Initialize the symbolic vector v := [v1, . . . , vn] and calculate
the Coxeter matrix CoxI := −CI · C

−tr
I .

Step 2◦ Using Algorithm 3.8, compute the reduced Coxeter number
čI ∈ Z and calculate the vector w = [w1, . . . , wn] := v · Coxč

I − v.

Step 3◦ Compute the vector h ∈ Zn such that Ker qI = Z ·h by solving
in Z the system of Z-linear equations (CI + Ctr

I ) · vtr = 0 (for example,
using the procedure isolve of the LinearAlgebra package in MAPLE).

Step 4◦ Solve the symbolic system of linear equations λ · hI = w (in
Z), for the unknown λ, and return computed λ as a result.

Outline of proof of Theorem 1.9. Assume that I is a one-peak prin-
cipal poset with m := |I| ≤ 15. By Theorem 1.8, I is one of the four five
elements posets listed in 1.8(a), one of the 2.115 posets with 6 ≤ m ≤ 15
of the shape listed in Table 1.11, one of the 31 posets listed in Table 4.1,
one of the 132 posets listed in Table 4.2, or one of the 422 posets listed
in [21]. By applying Algorithms 3.8 and 3.10, for each of the posets I
from this finite list, we calculate its reduced Coxeter number čI and the
incidence defect ∂I : ZI → Z. In particular, we show that ∂I is non-zero.
It follows from [51, Theorem 1.18 (c)] that the Coxeter number cI of I is
infinite, see also [47, Corollary 4.15 (c)] and [49, Proposition 3.12].
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(a) By applying Procedure 3.6 as in [17, Section 7], for each of the
posets I from the finite list described above, we construct a Z-invertible
matrix BI such that ǦDI = BI ·CI ·B

tr
I . By setting B := Btr

I we get the
required equality ǦDI = Btr · CI ·B.

The proof is long and a computational one. Here we do not present a
complete proof, but we illustrate its idea on examples of several posets.
The proof for the remaining posets of the list is analogous.

First we illustrate an application of Procedure 3.6 for the posets D̃
(7)
5,3

and J Ẽ6
29 presented in Theorem 1.8 (b) and Table 4.1, respectively.

1◦ If we enumerate the elements of the poset J := D̃
(7)
5,3 from Theorem

1.8 (b) as follows

J =
1 2 3

4 5

6

then the incidence matrix CJ ∈ M6(Z), the Coxeter matrix and the
incidence quadratic form qJ : Z6 → Z are given as follows

CJ =




1 1 1 0 1 1
0 1 1 0 0 1
0 0 1 0 0 1
0 0 1 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1


 , CoxJ =




0 0 0 1 0 −1
0 0 0 0 1 −1

−1 1 0 0 1 −1
0 1 0 0 0 −1
0 0 1 0 0 −1

−1 0 1 −1 1 −1


 ,

qJ(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x1x2 + x3(x1 + x2 + x4)
+(x1 + x4)x5 + (x1 + x2 + x3 + x4 + x5)x6

=
(
x1 + 1

2x2 + 1
2x3 + 1

2x5 + 1
2x6

)2
+3

4

(
x2 + 1

3x3 −
1
3x5 + 1

3x6

)2

+2
3

(
x3 + 3

4x4 −
1
4x5 + 1

4x6

)2
+ 5

8

(
x4 + x5 + 3

5x6

)2
+ 2

5x2
6.

It follows that qJ : Z6 → Z is non-negative and Ker qJ = Z · hJ , where
hJ = [1, 0,−1, 1,−1, 0]; hence J is principal. By Theorem 1.7, the poset
J is of Euclidean type DJ = D̃5. A routine calculations show that

• coxJ(t) = t6 + t5 − t4 − 2t3 − t2 + t + 1 = cox
D̃5

(t),

• čJ = 6, cJ =∞,

• ∂̃J (v) = 2(v1 +v2 +v3 +v4 +v5) ·hJ , ∂J (v) = 2(v1 +v2 +v3 +v4 +v5),

and the set RJ of roots of qJ has the decomposition

RJ = Rred
J + Z · hJ ,
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where the finite set

Rred
J = {v ∈ Z6; v1 = 0 and qJ(v) = 1}

is a reducer of RJ in the sense of [47]. One shows that

|Rred
J | = 40, |∂0

JR
red
J | = 10, |∂−

J R
red
J | = |∂

+
J R

red
J | = 15,

where ∂0
JR

red
J , ∂−

J R
red
J , and ∂+

J R
red
J is the subset of Rred

J consisting of the
zero-defect vectors, negative-defect vectors, and positive-defect vectors,
respectively. It is easy to see that the negative-defect part ∂−

J RJ of RJ is
the set

∂−
J RJ = ∂−

J R
red
J + Z · hJ

and admits the following ΦJ -translation quiver structure Γ(∂−
J RJ , ΦJ):

00̂1001 0000̂10 1̂1̂11̂11 10̂10̂10

0̂10̂101 000̂100 00̂10̂11 00̂11̂11 1̂1̂11̂21 1̂100̂10 2̂1̂21̂21 10̂21̂11

1̂00000 0̂100̂11 1̂100̂11 1̂1̂10̂11 00̂1000 10̂21̂21 10̂11̂21 2̂1̂22̂31

0000̂11 0̂10000 10̂10̂11 00̂11̂10

O1

O2, O3

O4, O5

O6

Hence, by applying Procedure 3.6 and using the vectors in Γ(∂−
J RJ , ΦJ)

marked by the framed boxes, we obtain the Z-invertible matrix

BJ =




0 0 0 0 1 0
0 0 1 −1 1 −1
0 0 0 1 −1 0
0 1 −1 0 0 0
0 −1 0 0 0 0
1 −1 0 0 −1 1




such that ǦDJ = Ǧ
D̃5

= BJ · ǦJ ·B
tr
J .

2◦ If we enumerate the points of the poset I := J Ẽ6
29 from Table 4.1

as follows

I =

1

2

3

4

5

6

7

,
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then the incidence matrix CI ∈ M7(Z), the Coxeter matrix and the
incidence quadratic form qI : Z7 → Z have the forms

CI =




1 1 0 1 0 1 1
0 1 0 0 0 0 1
0 0 1 1 0 0 1
0 0 0 1 0 0 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1




, CoxI =




0 0 1 0 1 0 −1
−1 0 0 1 0 1 −1
−1 1 0 0 0 1 −1
−1 1 1 0 0 1 −1
−1 1 0 1 0 0 −1
−1 1 0 1 1 0 −1
−2 1 0 1 0 1 −1




,

qI(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7 + x1x2 + (x1 + x3)x4

+ (x1 + x5)x6 + (x1 + x2 + x3 + x4 + x5 + x6)x7

=
(
x1 + 1

2x2 + 1
2x4 + 1

2x6 + 1
2x7

)2
+ 3

4

(
x2 −

1
3x4 −

1
3x6 + 1

3x7

)2

+
(
x3 + 1

2x4 + 1
2x7

)2
+ 5

12

(
x4 −

4
5x6 + 1

5x7

)2

+
(
x5 + 1

2x6 + 1
2x7

)2
+ 3

20 (x6 + x7)2 .

It follows that qI : Z7 → Z is non-negative and Ker qI = Z · hI , where
hI = [1,−1, 0,−1, 0,−1, 1]; hence I is principal. By theorem 1.7 the poset
I is of Euclidean type DI = Ẽ6. A routine calculations show that

• coxI(t) = t7 + t6 − 2t4 − 2t3 + t + 1 = cox
Ẽ6

(t),

• čI = 6, cI =∞,

• ∂̃I(v) = (v1 − v7) · hI , ∂I(v) = v1 − v7,

and the set RI of roots of qI has the decomposition

RI = Rred
I + Z · hI ,

where the finite set

Rred
I = {v ∈ Z7; v1 = 0 and qJ(v) = 1}

is a reducer of RI in the sense of [47]. One shows that

|Rred
I | = 72, |∂0

IR
red
I | = 14, |∂−

I R
red
I | = |∂

+
I R

red
I | = 29,

where ∂0
IR

red
I , ∂−

I R
red
I , and ∂+

I R
red
I is the subset of Rred

I consisting of the
zero-defect vectors, negative-defect vectors, and positive-defect vectors,
respectively. It is easy to see that the negative-defect part ∂−

I RI of RI is
the set

∂−
I RI = ∂−

I R
red
I + Z · hI

and admits the following ΦI -translation quiver structure Γ(∂−
I RI , ΦI):
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1̂0̂11̂110 1̂100000 0̂100001 00̂10̂101

1̂0̂11̂111 2̂1̂11̂110 1̂000001 0̂1̂10̂102

1̂000010 0000̂101 1̂0̂11000 000̂1001

2̂1̂11010 1̂000̂111 1̂0̂11̂101 1̂0̂10001

2̂1̂11̂111 2̂0̂11̂111 1̂0̂10̂102 1̂̂1̂10̂102

2̂101̂110 1̂0̂11001 1̂0̂10̂111 1̂000̂101

1̂001000 00̂10001 1̂000̂110 00000̂11

O1

O2

O3

O4

O5

O6

O7

Hence, by applying Procedure 3.6 and using the vectors in Γ(∂−
I RI , ΦI)

distinguished by the framed boxes, we obtain the Z-invertible matrix

BI =




1 0 0 0 1 −1 0
0 0 1 0 0 0 −1
1 0 0 −1 0 0 0

−1 0 −1 1 0 0 0
0 0 0 0 −1 0 1
0 −1 0 0 0 0 1

−1 1 0 0 0 0 0




such that ǦDI = Ǧ
Ẽ6

= BI · ǦI ·B
tr
I .

Now we collect a final effect of the computational Procedure 3.13
(presented below) applied to principal posets of type Ẽ8. For example,
consider the principal posets

I1 := J Ẽ8
1 , I2 := J Ẽ8

31 , I3 := J Ẽ8
48 , I4 := J Ẽ8

147, I5 := J Ẽ8
412, I6 := J Ẽ8

422

from Theorem 1.8 (e). Using Procedure 3.13, computer calculations yield
the following Z-invertible matrices B1, . . . , B6 ∈M9(Z):

B1 =




5 3 4 −2 −1 −2 −2 −1 −2

5 4 3 −1 −2 −2 −1 −2 −2

6 3 4 −2 −2 −1 −2 −2 −2

−8 −5 −5 2 3 2 3 2 3

−3 −1 −2 1 1 1 0 1 1

−2 −2 −2 1 1 0 1 1 1

−3 −2 −1 1 0 1 1 1 1

−2 −1 −2 0 1 1 1 1 1

−3 −2 −2 1 1 1 1 1 0




, B2 =




1 1 0 −2 −2 −1 1 1 0

1 1 −1 −1 −2 −1 1 0 1

1 1 −1 −2 −1 −1 0 1 1

−2 −1 1 2 2 2 −1 −1 −1

0 −1 1 1 0 0 0 0 0

−1 0 0 1 1 0 0 0 −1

0 0 0 0 1 1 0 −1 0

0 −1 0 1 1 1 −1 0 −1

−1 −1 1 1 1 0 0 −1 0




,
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B3 =




0 0 1 0 0 0 1 0 −1

0 0 0 0 1 1 1 −1 −1

0 0 0 1 0 0 0 0 −1

0 0 0 −1 0 −1 −1 0 2

0 0 0 0 −1 0 0 0 1

0 0 0 −1 0 0 −1 1 0

0 1 −1 0 0 −1 0 0 1

1 −1 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0




, B4 =




0 2 2 −1 −1 −2 −1 0 0

1 1 1 0 0 −2 −2 0 1

0 1 2 0 −1 −2 −2 1 0

−1 −2 −2 0 1 3 3 −1 0

0 0 −1 0 0 1 1 0 0

0 −1 −1 0 1 1 1 0 −1

0 −1 −1 0 0 2 1 −1 0

0 −1 −1 1 0 0 1 0 0

−1 0 −1 0 1 1 0 0 0




,

B5 =




2 2 2 1 −1 −1 −2 −1 −1

1 3 1 1 −1 −1 −2 −1 −1

1 3 2 2 −1 −1 −3 −2 0

−2 −4 −2 −2 1 1 4 2 1

0 −1 −1 −1 0 1 1 1 0

−1 −2 −1 0 1 0 1 1 0

0 −1 −1 −1 1 0 1 0 1

−1 −1 0 −1 0 1 1 1 0

−1 −2 −1 −1 1 1 2 0 0




, B6 =




1 1 1 0 1 −1 0 −1 −1

1 2 1 0 0 0 −1 −1 −1

1 1 1 1 1 −1 −1 −1 −1

−1 −2 −1 −1 −1 1 1 1 2

−1 −1 0 0 −1 0 1 1 0

0 0 −1 0 0 0 0 0 1

0 −1 −1 −1 0 1 0 1 0

−1 0 0 0 0 0 0 0 1

−1 −1 −1 0 0 1 1 0 0




,

for the poset I1, I2, I3, I4, I5, and I6, respectively. One checks that ǦDI =
Ǧ

Ẽ8
= Bj · ǦIj

·Btr
j , for j = 1, . . . , 6.

(b) By (a) and [46, Theorems 4.7 and 4.8], for each of the posets
I from the finite list described above, there is a Z-invertible matrix B
such that ǦDI = B · ǦI ·B

tr and, by [46, Proposition 4.8], we have the
commutative diagram (3.4), with D = DI and h = hB . Hence, in view of
our remarks made in the first part of proof, (b) is a consequence of the
results in [46, Section 5].

(c) Given a principal poset I such that m := |I| ≤ 15, fix a matrix
BI ∈ Gl(m,Z) such that ǦDI = Btr

I · CI ·BI , as in (a). By applying the
technique used in [17, Section 7], one can construct a matrix C ∈ Gl(m,Z)
such that Ǧtr

DI = Ctr · ǦDI · C and C2 = E. Then

Ǧtr
DI = Btr

I · C
tr
I ·BI and Ǧtr

DI = Ctr · ǦDI · C = Ctr ·Btr
I · CI ·BI · C.

Hence we get

Ctr
I = B−tr

I · Ctr ·Btr
I · CI ·BI · C ·B

−1
I = C

tr
· CI · C,

where C = BI · C ·B
−1
I . It follows that C ∈ Gl(m,Z) and C

2
= E. This

finishes the proof of (c) and of Theorem 1.9.

Corollary 3.11. Assume that I is a principal one-peak poset such that
m = |I| ≤ 15. Then there exists a ΦI-mesh translation quiver of roots
Γ(RI , ΦI) satisfying the conditions stated in Theorem 3.3 (b).

Proof. Let DI be the Coxeter-Euclidean type of I. By Theorem 1.9 (a),
there exists a matrix B ∈ Gl(m,Z) such that ǦDI = B · ǦI ·B

tr and the
diagram (3.4) is commutative, where h = hB is the group isomorphism
defined by hB(x) = x · B. Therefore the corollary is a consequence of
Theorem 1.9 (b).
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We recall from [50] that a Z-invertible matrix B ∈ Mn(Z) defines a
Z-congruence ∆ ≈Z ∆′ between edge-bipartite graphs ∆, ∆′ in UBigrn if
the equality Ǧ∆′ = B · Ǧ∆ ·B

tr holds.

Now we outline an alternative, more general heuristic algorithm con-
structing a Z-invertible matrix B ∈ Mn(Z) defining the Z-congruence
Ǧ∆∼Z Ǧ∆′ between the non-symmetric Gram matrices Ǧ∆, Ǧ∆′ ∈Mn(Z)
of non-negative edge-bipartite graphs ∆ and ∆′, that is, satisfying the
equality Ǧ∆′ = B · Ǧ∆ ·B

tr. Its idea uses the following observations made
in [45, Proposition 2.8].

Lemma 3.12. Assume that ∆ ≈Z ∆′ are loop-free edge-bipartite graphs
in UBigrn and B ∈Mn(Z) is a Z-invertible matrix satisfying the equality
Ǧ∆′ = B · Ǧ∆ ·B

tr, that is, B defines the Z-congruence ∆ ≈Z ∆′.

(a) Cox∆′ = B · Cox∆ ·B
−1 and cox∆′(t) = cox∆(t).

(b) Each of the rows w of the matrix B is a root of the unit form
q∆ : Zn → Z of ∆, that is, we have q∆(w) = 1.

(c) Each of the rows of the matrix B−1 is a root of the unit form
q∆′ : Zn → Z of ∆′.

Proof. (a) Apply [45, Proposition 2.8].

(b) Denote by w(1), . . . , w(n) the rows of the matrix B. Then B has the
form B = [w(1), . . . , w(n)]tr and, given j ∈ {1, . . . , n}, we have ej ·B = w(j)

and

1 = q∆′(ej) = ej · Ǧ∆′ · etr
j

= ej · (B · Ǧ∆ ·B
tr) · etr

j = (ej ·B) · Ǧ∆ · (ej ·B)tr

= w(j) · Ǧ∆ · w
(j)tr

= q∆(w(j)).

(c) The equality Ǧ∆′ = B · Ǧ∆ ·B
tr yields Ǧ∆ = B−1 · Ǧ∆′ ·B−tr and

(b) applies. This finishes the proof.

It follows from Lemma 3.12, that in the situation we are interested
in, the unknown matrix B ∈ Mn(Z) defining a Z-congruence ∆ ≈Z ∆′

(that is, the equality Ǧ∆′ = B · Ǧ∆ · B
tr holds) satisfies the equation

Cox∆′ ·B−B ·Cox∆ = 0. Moreover, the rows w(1), . . . , w(n) of the matrix
B = [w(1), . . . , w(n)]tr are roots of the quadratic form q∆(v) = v · Ǧ∆ · v

tr.

Using these two observations we obtain the following heuristic proce-
dure used already in its "positive version" [18, Algorithm 7.5] for positive
edge-bipatite graphs.
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Procedure 3.13. Input: The non-symmetric Gram matrices
Ǧ∆, Ǧ∆′ ∈Mn(Z) of a pair of non-negative loop-free edge-bipartite graphs
∆ and ∆′ such that cox∆′(t) = cox∆(t).

Output: A Z-invertible matrix B ∈Mn(Z) such that Ǧ∆′ = B · Ǧ∆ ·
Btr, or error, if the matrix B has not been found.

Step 1◦ Compute the Coxeter matrices Cox∆ := −Ǧ∆ · Ǧ
−tr
∆ and

Cox∆′ := −Ǧ∆′ · Ǧ−tr
∆′ .

Step 2◦ By applying [47, Algorithm 3.9] compute a finite root reducer
Rred

∆ ⊆ R∆ = {v ∈ Zn; q∆(v) = 1} ⊆ Zn, that is, a finite set of roots of

the non-negative quadratic form q∆ : Zn −→ Z, q∆(v) = v · Ǧ∆ · v
tr, such

that R∆ = Rred
∆ + Kerq∆

.
Step 3◦ Construct an n× n square matrix B = [bij ]=[w(1), . . . ,w(n)]tr,

with n2 symbolic variables bij , i, j ∈ {1, . . . , n}, and compute the matrix

B̃ := [b̃ij ] = Cox∆′ ·B −B · Cox∆.

Solve the system

b̃ij = 0, for i, j ∈ {1, . . . , n}

of n2 linear equations and update the matrix B = [w(1), . . . , w(n)]tr with
calculated values.

Step 4◦ Find a row w(k) in the matrix B that contains any of the
variables bij and proceed to Step 5◦. If there is no such a row then proceed
to Step 6◦.

Step 5◦ For every root w ∈ Rred
∆ , replace the row w(k) in the matrix B

by the vector w, update the matrix B accordingly and proceed recursively
with Step 4◦.

Step 6◦ If det B = ±1 and Ǧ∆′ = B · Ǧ∆ ·B
tr, stop with B as a result.

Otherwise continue the search.
Step 7◦ If the search is completed and no matrix B has been found

return the error.

Remark 3.14. Our heuristic Procedure 3.13 is a backtracking algorithm
that incrementally checks all possible Z-invertible matrices
B =[w(1), . . . ,w(n)]tr, with w(1), . . . , w(n) lying in the finite set

Rred
∆ ∪ [Rred

∆ + h] ∪ [Rred
∆ − h],

where h ∈ Zn is a generator of Ker q∆, if we assume that ∆ and ∆′ are
principal edge-bipartite graphs.

Although we have not proved yet any theoretical result that would
guarantee the existence of a Z-invertible matrix B of such a form and
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satisfying Ǧ∆′ = B · Ǧ∆ ·B
tr (assuming that there exists a Z-congruence

∆ ≈Z ∆′), in our experience Procedure 3.13 finds a required matrix in less
than a minute, if n ≤ 15. For instance, each of the matrices B1, . . . , B6

listed in the outline of proof of Theorem 1.9 has been computed in several
seconds.

The following corollary announced in [51, Corollary 11] contains a
partial solution of Problem 1.5.

Corollary 3.15. Assume that I and J are principal one-peak posets, DI
and DJ are their Coxeter-Eulidean types, m = |I| = |J | and 2 ≤ m ≤ 15.
Let Γ(RI , ΦI) and Γ(RJ , ΦJ ) be the ΦJ -mesh translation quivers of roots
(see Corollary 3.11). The following conditions are equivalent.

(a) DI ∼= DJ .

(b) speccI = speccJ .

(c) CI ≈Z CJ (i.e., the incidence matrices CI and CJ of I and J are
Z-congruent).

(d) There exists a group isomorphism h : ZJ → ZI that induces the
mesh translation quiver isomorphism h : Γ(RJ , ΦJ)

≃
−→Γ(RI , ΦI).

Proof. (a)⇔(c) By Theorem 1.9 (a), we have CI ≈Z ǦDI and CJ ≈Z ǦDJ .
Therefore CI ≈Z CJ if and only if DI ∼= DJ .

(c)⇒(b) Note that the equality CI = Btr · CJ · B, with a matrix
B ∈ Gl(m,Z) implies that CoxI = Btr ·CoxJ ·B

−tr, see Lemma 3.12 (a).
Hence, coxI(t) = coxJ(t) and speccI = speccJ .

(c)⇒(d) Note that the equality CI = B · CJ · B
tr, with a matrix

B ∈ Gl(m,Z) implies the commutativity of the diagram (3.4), with D
and J interchanged. It follows that the group isomorphism h : ZJ → ZI

in (3.4) induces the mesh translation quiver isomorphism

h : Γ(RJ , ΦJ)
≃
−→Γ(RI , ΦI)

see [47], [48, Lemma 4.3], and [50].

(b)⇒(c) Assume that speccI = speccJ , that is, coxI(t) = coxJ(t).
Since, by Theorem 1.9 (a), speccDI = speccI = speccJ = speccDJ ,
the simple analysis of possible Coxeter polynomials (1.13) proves that
DI ∼= DJ . Hence, by applying Theorem 1.9 (a) again, we conclude that
CI ≈Z CJ .

(d)⇒(a) Assume that there exists a mesh translation quiver isomor-
phism h : Γ(RJ , ΦJ)

≃
−→Γ(RI , ΦI) induced by a group isomorphism

h : ZJ → ZI . By Theorem 1.9 (a), we have the isomorphisms
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Γ(RDJ , ΦDJ) ∼= Γ(RJ , ΦJ) ∼= Γ(RI , ΦI) ∼= Γ(RDI , ΦDI).
Hence, in view of [46, Corollary 5.7], we get the graph isomorphism
DI ∼= DJ .

The following example shows that the implication (b)⇒(c) in Corol-
lary 3.15 does not hold for an arbitrary pair of non-negative posets I and
J . We present such a pair that I is principal and J is non-negative of
corank two.

Example 3.16. Consider the following pair of one-peak posets I and J ,
with m = 7 vertices.

I =

1

2

3

4

5 6

7

J =

1

2

3

4

5

6

7

One easily checks that

(a) each of the posets I, J is non-negative, I is principal, J is not
principal, and

coxI(t) = coxJ(t) = t7 + t6 − t5 − t4 − t3 − t2 + t + 1 = cox
D̃6

(t),

(b) speccI = speccJ = specc
D̃6

,

(c) cI =∞, čI = čJ = cJ = 4,

(d) Ker qI = Z · [1, 1,−1,−1, 0, 0, 0],

(e) Ker qJ = Z · [1, 1,−1,−1, 0, 0, 0]⊕ Z · [1, 1, 0, 0, 1, 1,−2],

(f) ∂̃I : Z7 −→ Ker qI , ∂̃I(v) = (v1 + v2 + v3 + v4) · [1, 1,−1,−1, 0, 0, 0],

(g) ∂̃J : Z7 −→ Ker qJ is zero.

The matrices CI and CJ are not Z-congruent, because the poset I is
principal and the poset J is not.

4. Tables of one-peak principal posets of Coxeter-Euclidean

types Ẽ6, Ẽ7, and Ẽ8

In this section we present two tables containing all one-peak principal
posets of Coxeter-Euclidean types Ẽ6 and Ẽ7, respectively. A correspond-

ing table containing all one-peak principal posets J Ẽ8
1 ,. . . , J Ẽ8

422 of the
Coxeter-Euclidean type Ẽ8 can be found in [21].
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Table 4.1. Principal one-peak posets of Coxeter-Euclidean type Ẽ6

J
Ẽ6

1
J

Ẽ6

2
J

Ẽ6

3
J

Ẽ6

4
J

Ẽ6

5
J

Ẽ6

6
J

Ẽ6

7

1

2

3

4

5

6

∗

∗

∗

∗

∗

∗

1

2

34

5

6

∗

J
Ẽ6

8
J

Ẽ6

9
J

Ẽ6

10
J

Ẽ6

11
J

Ẽ6

12
J

Ẽ6

13
J

Ẽ6

14

∗

∗ ∗

12

3

4

5

6

∗

∗

∗

∗

J
Ẽ6

15
J

Ẽ6

16
J

Ẽ6

17
J

Ẽ6

18
J

Ẽ6

19
J

Ẽ6

20
J

Ẽ6

21∗ ∗ ∗ ∗

1 2

3

4

5

6

∗
∗ ∗

J
Ẽ6

22
J

Ẽ6

23
J

Ẽ6

24
J

Ẽ6

25
J

Ẽ6

26
J

Ẽ6

27
J

Ẽ6

28

∗ ∗

12

3

4

5

6

∗

∗

∗

1 2

3 45

6

∗
∗

J
Ẽ6

29
J

Ẽ6

30
J

Ẽ6

31

1

2

3

4

5

6

∗
∗

1 2 3

4 56

∗

Table 4.2. Principal one-peak posets of Coxeter-Euclidean type Ẽ7

J
Ẽ7

1
J

Ẽ7

2
J

Ẽ7

3
J

Ẽ7

4
J

Ẽ7

5
J

Ẽ7

6
J

Ẽ7

7

1

2

3

4

5

6

7

∗

∗

∗

∗

∗

∗

∗
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J
Ẽ7

8
J

Ẽ7

9
J

Ẽ7

10
J

Ẽ7

11
J

Ẽ7

12
J

Ẽ7

13
J

Ẽ7

14

∗

∗

∗

∗

∗

1

2

3

4

5

6

7

∗

∗

J
Ẽ7

15
J

Ẽ7

16
J

Ẽ7

17
J

Ẽ7

18
J

Ẽ7

19
J

Ẽ7

20
J

Ẽ7

21

∗

∗

∗

∗

∗

∗

∗

J
Ẽ7

22
J

Ẽ7

23
J

Ẽ7

24
J

Ẽ7

25
J

Ẽ7

26
J

Ẽ7

27
J

Ẽ7

28

∗

∗

∗ ∗ ∗ ∗

∗

J
Ẽ7

29
J

Ẽ7

30
J

Ẽ7

31
J

Ẽ7

32
J

Ẽ7

33
J

Ẽ7

34
J

Ẽ7

35∗ ∗

1

2

34

5

6

7

∗

∗

∗

∗

∗

J
Ẽ7

36
J

Ẽ7

37
J

Ẽ7

38
J

Ẽ7

39
J

Ẽ7

40
J

Ẽ7

41
J

Ẽ7

42

∗

∗ ∗ ∗ ∗

1

2

3

4

5

6

7

∗

∗

J
Ẽ7

43
J

Ẽ7

44
J

Ẽ7

45
J

Ẽ7

46
J

Ẽ7

47
J

Ẽ7

48
J

Ẽ7

49∗

∗

∗ ∗ ∗ ∗

1 2

3

4

5

6

7

∗
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J
Ẽ7

50
J

Ẽ7

51
J

Ẽ7

52
J

Ẽ7

53
J

Ẽ7

54
J

Ẽ7

55
J

Ẽ7

56

∗

∗ ∗ ∗ ∗ ∗

∗

J
Ẽ7

57
J

Ẽ7

58
J

Ẽ7

59
J

Ẽ7

60
J

Ẽ7

61
J

Ẽ7

62
J

Ẽ7

63

∗

12

3

4

5

6

7

∗
∗

∗

∗

1 2

3

4

5

6

7

∗

∗

J
Ẽ7

64
J

Ẽ7

65
J

Ẽ7

66
J

Ẽ7

67
J

Ẽ7

68
J

Ẽ7

69
J

Ẽ7

70

∗

∗

∗ ∗ ∗ ∗

1

2

3

4

5

6

7

∗

J
Ẽ7

71
J

Ẽ7

72
J

Ẽ7

73
J

Ẽ7

74
J

Ẽ7

75
J

Ẽ7

76
J

Ẽ7

77

∗

∗ ∗ ∗

12

3

4

5

6

7

∗

∗

∗

J
Ẽ7

78
J

Ẽ7

79
J

Ẽ7

80
J

Ẽ7

81
J

Ẽ7

82
J

Ẽ7

83
J

Ẽ7

84

1 2

3

4

5

6

7

∗
∗

∗ ∗

12

3

45

6

7

∗

∗

∗

J
Ẽ7

85
J

Ẽ7

86
J

Ẽ7

87
J

Ẽ7

88
J

Ẽ7

89
J

Ẽ7

90
J

Ẽ7

91

∗

∗ ∗ ∗ ∗ ∗ ∗

J
Ẽ7

92
J

Ẽ7

93
J

Ẽ7

94
J

Ẽ7

95
J

Ẽ7

96
J

Ẽ7

97
J

Ẽ7

98

1

2

3

45

6

7

∗
∗ ∗ ∗ ∗ ∗

12

3

4

5

6

7

∗
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J
Ẽ7

99
J

Ẽ7

100
J

Ẽ7

101
J

Ẽ7

102
J

Ẽ7

103
J

Ẽ7

104
J

Ẽ7

105

∗

∗

1 2

34

5

6

7

∗
∗ ∗ ∗

12

3

4

5

6

7

∗

J
Ẽ7

106
J

Ẽ7

107
J

Ẽ7

108
J

Ẽ7

109
J

Ẽ7

110
J

Ẽ7

111
J

Ẽ7

112

∗ ∗ ∗

1

2

3

4

5

6

7

∗
∗ ∗

1 2

3 45

6

7

∗

J
Ẽ7

113
J

Ẽ7

114
J

Ẽ7

115
J

Ẽ7

116
J

Ẽ7

117
J

Ẽ7

118
J

Ẽ7

119

∗

1 2

3

4

5

6

7

∗
∗

12

3

4

5

6

7

∗
∗ ∗ ∗

J
Ẽ7

120
J

Ẽ7

121
J

Ẽ7

122
J

Ẽ7

123
J

Ẽ7

124
J

Ẽ7

125
J

Ẽ7

126

1

2

3

4

5

6

7

∗
∗

1

23

4

5

6

7

∗
∗

1 2

3

4

5 6

7

∗

1

2

34

56

7

∗
∗

J
Ẽ7

127
J

Ẽ7

128
J

Ẽ7

129
J

Ẽ7

130
J

Ẽ7

131
J

Ẽ7

132

12

3

4

5 6

7

∗
∗

1 2

3

4

5

6

7

∗
∗

1 2

3 4

5

6

7

∗

1 23

4 56

7

∗

Remark 4.3. The computational technique introduced in this paper is
applied and developed in [22] for non-negative posets of corank two.
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