On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field

Yuriy Yu. Leshchenko and Vitaly I. Sushchansky

Abstract. The group $U J_{2}\left(\mathbb{F}_{q}\right)$ of unitriangular automorphisms of the polynomial ring in two variables over a finite field $\mathbb{F}_{q}, q=p^{m}$, is studied. We proved that $U J_{2}\left(\mathbb{F}_{q}\right)$ is isomorphic to a standard wreath product of elementary Abelian p-groups. Using wreath product representation we proved that the nilpotency class of $U J_{2}\left(\mathbb{F}_{q}\right)$ is $c=m(p-1)+1$ and the $(k+1)$ th term of the lower central series of this group coincides with the $(c-k)$ th term of its upper central series. Also we showed that $U J_{n}\left(\mathbb{F}_{q}\right)$ is not nilpotent if $n \geq 3$.

1. Introduction

Denote by $U J_{n}(\mathbb{F})$ the group of unitriangular automorphisms of the polynomial algebra in n variables over a field \mathbb{F}. This group over a field of characteristic zero was studied in [1] by V. Bardakov, M. Neshchadim and Yu. Sosnovsky. The case of $n=2$ and a field of prime characteristic was considered by Zh. Dovhei and V. Sushchansky in [3, 4].

Given a finite field \mathbb{F}_{q} with $q=p^{m}$ elements the group $U J_{2}\left(\mathbb{F}_{q}\right)$ is proved to be nilpotent and the nilpotency class has the upper bound $(q-1)(p-1)+1$ and the lower bound $m(p-1)+1[3]$. Some special subgroups of $U J_{2}(\mathbb{F})$, where \mathbb{F} is an arbitrary field of positive characteristic, were described in [4].

2010 MSC: 20D15, 20E22, 20E36, 20 F14.
Key words and phrases: polynomial ring, unitriangular automorphism, finite field, wreath product, nilpotent group, central series.

In present paper we consider a wreath product representation of $U J_{2}\left(\mathbb{F}_{q}\right)$ (section 3). Let the field \mathbb{F}_{q} and its additive group be denoted by the same symbol (it is an elementary Abelian p-group of rank m). By \mathbb{F}_{q}^{ω} we denote the countable restricted direct power of \mathbb{F}_{q}. Considering the standard wreath product $\mathcal{W}=\mathbb{F}_{q} \imath \mathbb{F}_{q}^{\omega}$, where \mathbb{F}_{q} is the active group, we prove that $U J_{2}\left(\mathbb{F}_{q}\right) \cong \mathcal{W}$ (Lemma 2). Using results of H . Liebeck [5] about nilpotent standard wreath products we obtain the nilpotency class of $U J_{2}\left(\mathbb{F}_{q}\right)$.

Theorem 1. $U J_{2}\left(\mathbb{F}_{q}\right)$ is nilpotent of class $m(p-1)+1$.
In Section 4 we describe the central series of $U J_{2}\left(\mathbb{F}_{q}\right)$. We prove
Theorem 2. Let $c=m(p-1)+1$. Then the $(i+1)$ th term of the lower central series and the $(c-i)$ th term of the upper central series of $U J_{2}\left(\mathbb{F}_{q}\right)$ are coincide.

Particularly, the center $\mathcal{Z}\left(U J_{2}\left(\mathbb{F}_{q}\right)\right)$ is the group of all pairs

$$
\left[0, \sum_{i \in \mathbb{N}} c_{i}\left(x^{q}-x\right)^{i}\right]
$$

where $c_{i} \in \mathbb{F}_{q}$ and $c_{i}=0$ for all but finitely many $i \in \mathbb{N}$.
In Section 5 we consider the group $U J_{2}(R)$ over an integral domain R of a prime characteristic. It is shown that if R is a polynomial ring in one variable over a finite field then $U J_{2}(R)$ is not nilpotent (Lemma 8) and we obtain

Theorem 3. For all $n \geq 3$ the group $U J_{n}\left(\mathbb{F}_{q}\right)$ is not nilpotent.

2. Basic definitions and notations

Let \mathbb{F}_{q} be a finite field with $q=p^{m}$ elements. Denote by $\mathbb{F}_{q}[x]$ and $\mathbb{F}_{q}[x, y]$ the algebras of polynomials over \mathbb{F}_{q} in one and two variables respectively. Every automorphism of $\mathbb{F}_{q}[x, y]$ is uniquely determined by images of x and y, i.e. by a pair of polynomials $\langle a(x, y), b(x, y)\rangle$, $a(x, y), b(x, y) \in \mathbb{F}_{q}[x, y]$. An automorphism corresponding to a pair $\langle\alpha x+a, \beta y+f(x)\rangle$, where $\alpha \neq 0$ and $\beta \neq 0$, is called triangular. Additionally, if $\alpha=\beta=1$ the automorphism is called unitriangular. Then the group $U J_{2}\left(\mathbb{F}_{q}\right)$ of unitriangular automorphisms of $\mathbb{F}_{q}[x, y]$ is isomorphic to the group of all pairs $u=[a, f(x)], a \in \mathbb{F}_{q}, f(x) \in \mathbb{F}_{q}[x]$, with multiplication

$$
[a, f(x)] \cdot[b, g(x)]=[a+b, f(x)+g(x+a)]
$$

Following [3,4] we define an elementary automorphism δ_{a} and a linear operator $\Delta_{a}, a \in \mathbb{F}_{q}$, on $\mathbb{F}_{q}[x]$ as follows:

$$
\delta_{a}(f(x))=f(x+a) \quad \text { and } \quad \Delta_{a}(f(x))=\delta_{a}(f(x))-f(x)
$$

Then $\Delta_{0} f(x)=0$ and $\Delta_{a} c=0$ for every $f(x) \in \mathbb{F}_{q}[x], a, c \in \mathbb{F}_{q}$, moreover, $\Delta_{a} \Delta_{b}=\Delta_{b} \Delta_{a}$ for all $a, b \in \mathbb{F}_{q}$.

The identity of $U J_{2}\left(\mathbb{F}_{q}\right)$ is the pair $i d=[0,0]$. The inverse of u is $u^{-1}=[-a,-f(x-a)]$ and the commutator of u and $v=[b, g(x)]$ is the pair

$$
\begin{equation*}
[u, v]=u v u^{-1} v^{-1}=\left[0, \Delta_{a}(g(x))-\Delta_{b}(f(x))\right] . \tag{1}
\end{equation*}
$$

Lemma 1. Let $f(x) \in \mathbb{F}_{q}[x]$ and $a \in \mathbb{F}_{q}$. Then

1) $\delta_{a}\left(x^{q}-x\right)=x^{q}-x$ and $\Delta_{a}\left(x^{q}-x\right)=0$;
2) $\delta_{a}\left[\left(x^{q}-x\right) f(x)\right]=\left(x^{q}-x\right) \delta_{a}(f(x))$;
3) $\Delta_{a}\left[\left(x^{q}-x\right) f(x)\right]=\left(x^{q}-x\right) \Delta_{a}(f(x))$;
4) $\bigcap_{a \in \mathbb{F}_{q}} \operatorname{Ker} \Delta_{a}=\mathbb{F}_{q}\left[x^{q}-x\right]$.

Proof. Parts 1), 2) and 3) can be obtained by direct computations. Let us prove part 4). From 1) we have $\mathbb{F}_{q}\left[x^{q}-x\right] \subseteq \operatorname{Ker} \Delta_{a}$ for every $a \in \mathbb{F}_{q}$. On the other hand, any polynomial $f(x) \in \bigcap_{a \in \mathbb{F}_{q}} \operatorname{Ker} \Delta_{a}$ can be written as

$$
\begin{equation*}
f(x)=\sum_{i=0}^{t}\left(x^{q}-x\right)^{i} f_{i}(x) \tag{2}
\end{equation*}
$$

where $\operatorname{deg} f_{i}(x)<q$ for all $i=0,1, \ldots, t$. Then, according to part 3) of this lemma, $\Delta_{a}(f(x))=\sum_{i=0}^{t}\left(x^{q}-x\right)^{i} \Delta_{a}\left(f_{i}\right)$.

Assume that there exists i such that $\operatorname{deg} f_{i}(x)>0$. Denote $g(x)=$ $\Delta_{a}\left(f_{i}(x)\right)$. Then $g(0)=f_{i}(a)-f_{i}(0)$. Since $f_{i}(x)$ is not a constant, there exists $a \in \mathbb{F}_{q}^{*}$ such that $g(0) \neq 0$. Thus, we obtain a contradiction $\left(\Delta_{a}\left(f_{i}(x)\right)\right.$ should be 0 for every $\left.a \in \mathbb{F}_{q}\right)$. Hence, $f_{i}(x)=$ const $\in \mathbb{F}_{q}$ for all $i=0,1, \ldots, t$.

3. $U J_{2}\left(\mathbb{F}_{q}\right)$ as a wreath product

The group $U J_{2}\left(\mathbb{F}_{q}\right)$ can be represented as a wreath product of two elementary Abelian p-groups. We consider the standard wreath product of \mathbb{F}_{q}^{ω} by \mathbb{F}_{q} :

$$
\mathcal{W}=\mathbb{F}_{q} \imath \mathbb{F}_{q}^{\omega}
$$

where \mathbb{F}_{q} is the active group. Elements of \mathcal{W} are pairs $[a, f(x)]$ such that $a \in \mathbb{F}_{q}, f(x)$ is a function from \mathbb{F}_{q} into \mathbb{F}_{q}^{ω}. Each such function can be uniquely determined by the almost-zero sequence $\left\langle f_{0}(x), f_{1}(x), \ldots\right\rangle$ of polynomials $f_{i}(x)$ reduced modulo the ideal generated by $x^{q}-x, i \in \mathbb{N}$ (in other words, each polynomial has degree less or equal to $q-1$ and $f_{i}(x) \equiv 0$ for all but finitely many $\left.i \in \mathbb{N}\right)$. The identity of \mathcal{W} is the pair $[0,\langle 0,0, \ldots\rangle]$. Now, if

$$
\begin{equation*}
u=\left[a,\left\langle f_{0}(x), f_{1}(x), \ldots\right\rangle\right] \quad \text { and } \quad v=\left[b,\left\langle g_{0}(x), g_{1}(x), \ldots\right\rangle\right] \tag{3}
\end{equation*}
$$

then

$$
\begin{gather*}
u^{-1}=\left[-a,\left\langle-f_{0}(x-a),-f_{1}(x-a), \ldots\right\rangle\right] ; \\
u v=\left[a+b,\left\langle f_{0}(x)+g_{0}(x+a), f_{1}(x)+g_{1}(x+a), \ldots\right\rangle\right] . \tag{4}
\end{gather*}
$$

Lemma 2. $U J_{2}\left(\mathbb{F}_{q}\right) \cong \mathcal{W}$
Proof. Let $u=[a, f(x)] \in U J_{2}\left(\mathbb{F}_{q}\right)$ and $f(x) \in \mathbb{F}_{q}[x]$ has the decomposition (2). Consider a mapping $\varphi: U J_{2}\left(\mathbb{F}_{q}\right) \mapsto \mathcal{W}$ which acts as follows:

$$
\varphi(u)=\left[a,\left\langle f_{0}(x), f_{1}(x), \ldots\right\rangle\right] \in \mathcal{W}
$$

Clearly, φ is a bijection. Now suppose $v=[b, g(x)] \in U J_{2}\left(\mathbb{F}_{q}\right)$. Then

$$
\begin{aligned}
u v & =[a, f(x)] \cdot[b, g(x)]=[a+b, f(x)+g(x+a)]= \\
& =\left[a+b, f(x)+\delta_{a}\left(\sum_{i \in \mathbb{N}} g_{i}(x)\left(x^{q}-x\right)^{i}\right)\right]= \\
& =\left[a+b, \sum_{i \in \mathbb{N}} f_{i}(x)\left(x^{q}-x\right)^{i}+\sum_{i \in \mathbb{N}} \delta_{a}\left[g_{i}(x)\right]\left(x^{q}-x\right)^{i}\right]= \\
& =\left[a+b, \sum_{i \in \mathbb{N}}\left[f_{i}(x)+g_{i}(x+a)\right]\left(x^{q}-x\right)^{i}\right] .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\varphi(u v) & =\left[a+b,\left\langle f_{0}(x)+g_{0}(x+a), f_{1}(x)+g_{1}(x+a), \ldots\right\rangle\right]= \\
& =\left[a,\left\langle f_{0}(x), f_{1}(x), \ldots\right\rangle\right] \cdot\left[b,\left\langle g_{0}(x), g_{1}(x), \ldots\right\rangle\right]=\varphi(u) \varphi(v)
\end{aligned}
$$

and φ is a homomorphism.
Remark 1. Elements of $U J_{2}\left(\mathbb{F}_{q}\right)$ can be considered as pairs of the type (3) with group operation defined as (4). In subsequent sections we use this representation.

Additionally, for every $i \in \mathbb{N}$ let the projection $\pi_{i}: U J_{2}\left(\mathbb{F}_{q}\right) \mapsto \mathbb{F}_{q} \imath \mathbb{F}_{q}$ to be defined as

$$
\pi_{i}\left(\left[a,\left\langle f_{0}, f_{1}, \ldots, f_{n}, \ldots\right\rangle\right]\right)=\left[a, f_{i}\right] .
$$

Obviously, π_{i} is an epimorphism. By W_{i} we denote a subgroup of $U J_{2}\left(\mathbb{F}_{q}\right)$ which consists of elements of the type $\left[a,\left\langle 0, \ldots, 0, f_{i}, 0, \ldots\right\rangle\right]$, where f_{i} is in the i th position. It is clear that $\left.W_{i} \cong \mathbb{F}_{q}\right\rangle \mathbb{F}_{q}$.

In [2] G. Baumslag proved the following simple criteria: A < B is nilpotent if and only if both A and B are nilpotent p-groups, B has finite exponent and A is finite. Additionally, H. Liebeck in [5] showed that if B is an Abelian p-group of exponent p^{k}, and A is the direct product of cyclic groups of orders $p^{\beta_{1}}, \ldots, p^{\beta_{n}}$, where $\beta_{1} \geq \beta_{2} \geq \ldots \geq \beta_{n}$ then A 亿 B has the nilpotency class

$$
\begin{equation*}
\sum_{i=1}^{n}\left(p^{\beta_{i}}-1\right)+1+(k-1)(p-1) p^{\beta_{1}-1} \tag{5}
\end{equation*}
$$

Now, using the wreath product representation of $U J_{2}\left(\mathbb{F}_{q}\right)$ we can prove Theorem 1.

Proof of Theorem 1. According to Lemma 2, the group $U J_{2}\left(\mathbb{F}_{q}\right)$ is isomorphic to the wreath product of \mathbb{F}_{q}^{ω} by \mathbb{F}_{q}. Thus in terms of Formula (5) we obtain:

1) the exponent of \mathbb{F}_{q}^{ω} equals p (i.e. $k=1$);
2) the group \mathbb{F}_{q} as an elementary Abelian group is the direct product of m cyclic groups of order p (i.e. $\beta_{1}=\beta_{2}=\ldots=\beta_{m}=1$).

Hence, $c\left(U J_{2}\left(\mathbb{F}_{q}\right)\right)=\sum_{i=1}^{m}(p-1)+1=m(p-1)+1$.

4. Central series of $U J_{2}\left(\mathbb{F}_{q}\right)$

Denote by $\operatorname{Sym}(\mathbb{N})$ the group of all permutations on $\mathbb{N}=\{0,1,2, \ldots\}$. Given $\sigma \in \operatorname{Sym}(\mathbb{N})$ the mapping $\Phi_{\sigma}: U J_{2}\left(\mathbb{F}_{q}\right) \mapsto U J_{2}\left(\mathbb{F}_{q}\right)$ is defined as follows:

$$
\Phi_{\sigma}\left(\left[a,\left\langle f_{0}, f_{1}, \ldots, f_{n}, \ldots\right\rangle\right]\right)=\left[a,\left\langle f_{\sigma(0)}, f_{\sigma(1)}, \ldots, f_{\sigma(n)}, \ldots\right\rangle\right] ;
$$

in other words, Φ_{σ} permutes factors in \mathbb{F}_{q}^{ω}. Simple calculations show that Φ_{σ} is an automorphism of $U J_{2}\left(\mathbb{F}_{q}\right)$ for every $\sigma \in \operatorname{Sym}(\mathbb{N})$.

Lemma 3. If K is a characteristic subgroup of $U J_{2}\left(\mathbb{F}_{q}\right)$ then $\pi_{0}(K)=$ $\pi_{i}(K)$ for every $i \in \mathbb{N}$.

Proof. Let us fix i. Suppose $u=\left[a, f_{0}\right]$ is an elements of $\pi_{0}(K)$ and $v=\left[a,\left\langle f_{0}, f_{1}, \ldots, f_{i}, \ldots\right\rangle\right] \in K$, where $f_{1}, f_{2}, \ldots, f_{i}, \ldots$ are polynomials from $\mathbb{F}_{q}[x] /\left(x^{q}-x\right)$. Consider the transposition $(1, i) \in \operatorname{Sym}(\mathbb{N})$. Since K is characteristic, $w=\Phi_{(1, i)}(v)=\left[a,\left\langle f_{i}, f_{1}, \ldots, f_{i-1}, f_{0}, f_{i+1}, \ldots\right\rangle\right] \in K$. Hence, $\pi_{i}(w)=\left[a, f_{0}\right]=u \in \pi_{i}(K)$ and $\pi_{0}(K) \subseteq \pi_{i}(K)$. Analogously, one can show that $\pi_{i}(K) \subseteq \pi_{0}(K)$.

The following lemma describes some properties of fully invariant subgroups of $U J_{2}\left(\mathbb{F}_{q}\right)$.

Lemma 4. If a fully invariant subgroup K of $U J_{2}\left(\mathbb{F}_{q}\right)$ contains an element $u=[c,\langle\ldots\rangle]$ with $c \neq 0$ then $K=U J_{2}\left(\mathbb{F}_{q}\right)$.

Proof. For every $i \in \mathbb{N}$ and $h(x) \in \mathbb{F}_{q}[x] /\left(x^{q}-x\right)$ we define the mapping $\Psi_{i}^{h(x)}: U J_{2}\left(\mathbb{F}_{q}\right) \mapsto U J_{2}\left(\mathbb{F}_{q}\right)$ as follows:

$$
\Psi_{i}^{h(x)}\left(\left[a,\left\langle f_{0}, f_{1}, \ldots, f_{i}, \ldots\right\rangle\right]\right)=[0,\langle\underbrace{0, \ldots, 0}_{i-1}, a h(x), 0, \ldots\rangle] .
$$

Direct calculations show that $\Psi_{i}^{h(x)}$ is an endomorphism.
Let us fix an index i and a polynomial $f(x) \in \mathbb{F}_{q}[x] /\left(x^{q}-x\right)$. Since K is fully invariant and $c \neq 0$, we obtain that K contains

$$
\begin{equation*}
u_{i}^{f(x)}=\Psi_{i}^{c^{-1} f(x)}(u)=[0,\langle\underbrace{0, \ldots, 0}_{i-1}, f(x), 0, \ldots\rangle] . \tag{6}
\end{equation*}
$$

Now, suppose $f_{0}(x)=g_{0}(x)+d x^{q-1}$, where $\mathbb{F}_{q} \ni d \neq 0$ and $\operatorname{deg} g_{0}(x)<$ $q-1$. We define the endomorphism $\Theta: U J_{2}\left(\mathbb{F}_{q}\right) \mapsto U J_{2}\left(\mathbb{F}_{q}\right)$ as follows:

$$
\Theta\left(\left[a,\left\langle f_{0}, f_{1}, \ldots, f_{i}, \ldots\right\rangle\right]\right)=[d,\langle 0,0, \ldots\rangle]
$$

Then for any given $d \in \mathbb{F}_{q}$ the subgroup K contains

$$
\begin{equation*}
v_{d}=\Theta\left(\left[0,\left\langle d x^{q-1}, 0,0, \ldots\right\rangle\right]\right)=[d,\langle 0,0, \ldots\rangle] \tag{7}
\end{equation*}
$$

Finally, elements of types (6) and (7) generate $U J_{2}\left(\mathbb{F}_{q}\right)$.
Corollary 1. If a fully invariant subgroup K of $\mathbb{F}_{q} \backslash \mathbb{F}_{q}$ contains an element $u=[a, f(x)]$ with $a \neq 0$ then $K=\mathbb{F}_{q} \imath \mathbb{F}_{q}$.

Lemma 5. Let V be a proper verbal subgroup of $U J_{2}\left(\mathbb{F}_{q}\right)$ generated by a collection of words \mathcal{V} and V_{i} be verbal subgroups of W_{i} with respect to the same collection \mathcal{V}. Then $V=\prod_{i \in \mathbb{N}} V_{i}$.

Proof. Given a word $w\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{V}$ and $u_{1}, u_{2}, \ldots, u_{n} \in U J_{2}\left(\mathbb{F}_{q}\right)$ consider $u=w\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in V$. Then, according to the group operation (4), we obtain $\pi_{i}(u)=w\left(\pi_{i}\left(u_{1}\right), \pi_{i}\left(u_{2}\right), \ldots, \pi_{i}\left(u_{n}\right)\right)$ for every $i \in \mathbb{N}$, i.e. u is contained in the direct product $\prod_{i \in \mathbb{N}} V_{i}$.

On the other hand, given $v=\left[0,\left\langle f_{0}, f_{1}, \ldots, f_{i}, \ldots\right\rangle\right] \in V$ (by Lemma 4, since V is a proper fully invariant subgroup of $U J_{2}\left(\mathbb{F}_{q}\right)$, the first component of v equals 0) we consider the element $v_{i}=\left[0,\left\langle 0, \ldots, 0, f_{i}, 0, \ldots\right\rangle\right] \in V_{i}$. Assume $v_{i}=i d$ for all $i \geq n$. Then $v=v_{0} v_{1} \ldots v_{n}$ and $v_{i}=w_{i, 1} w_{i, 2} \ldots w_{i, m_{i}}$, where $w_{i, j}, j=1,2, \ldots, m_{i}$, is a value of a word (from \mathcal{V}) in group W_{i}. The latter implies $\prod_{i \in \mathbb{N}} V_{i} \subseteq V$.

By $\gamma_{i}(G)$ and $\zeta_{j}(G)$ we denote the i th and j th terms of the lower central series and upper central series of G respectively (note that $i=1,2, \ldots$, while $j=0,1, \ldots)$. Given a word $w=w\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ and $g \in G$ let $w_{i}^{g}=w\left(\ldots, x_{i-1}, x_{i} g, x_{i+1}, \ldots\right)$ and ${ }^{g} w_{i}=w\left(\ldots, x_{i-1}, g x_{i}, x_{i+1}, \ldots\right)$. Recall that the marginal subgroup of G for the word w is the set of all $g \in G$ such that $w=w_{i}^{g}={ }^{g} w_{i}$ for all $x_{1}, x_{2} \ldots, x_{k} \in G$ and all $i \in\{1,2, \ldots, k\}$. Particularly, terms of the upper central series are marginal subgroups corresponding to simple commutators.

Proof of Theorem 2. Consider the $(c-i)$ th member of the upper central series as a marginal subgroup of $U J_{2}\left(\mathbb{F}_{q}\right)$ corresponding to the word $\left.\left[\ldots\left[x_{1}, x_{2}\right], x_{3}\right], \ldots, x_{c-i+1}\right]$. Suppose $u \in \zeta_{c-i}\left(U J_{2}\left(\mathbb{F}_{q}\right)\right)$. Then, according to (4), we obtain $\pi_{j}(u) \in \zeta_{c-i}\left(W_{j}\right)$ for all $j \in \mathbb{N}$. Thus,

$$
\zeta_{c-i}\left(U J_{2}\left(\mathbb{F}_{q}\right)\right) \leq \prod_{j \in \mathbb{N}} \zeta_{c-i}\left(W_{j}\right)=\prod_{j \in \mathbb{N}} \gamma_{i+1}\left(W_{j}\right)
$$

The last equality follows from the fact that the lower central series and upper central series of $\mathbb{F}_{q} \imath \mathbb{F}_{q}$ are coincide (for details see [7]). Since members of the lower central series are verbal subgroups, by Lemma 5 we have $\prod_{j \in \mathbb{N}} \gamma_{i+1}\left(W_{j}\right)=\gamma_{i+1}\left(U J_{2}\left(\mathbb{F}_{q}\right)\right)$. Thus, $\zeta_{c-i}\left(U J_{2}\left(\mathbb{F}_{q}\right)\right) \leq \gamma_{i+1}\left(U J_{2}\left(\mathbb{F}_{q}\right)\right)$.

On the other hand, $\gamma_{i+1}\left(U J_{2}\left(\mathbb{F}_{q}\right)\right) \leq \zeta_{c-i}\left(U J_{2}\left(\mathbb{F}_{q}\right)\right), i \in\{0,1, \ldots, c\}$ (see, for example, [6], Theorem 5.31) and we obtain the result.

In particular, the center $\mathcal{Z}\left(U J_{2}\left(\mathbb{F}_{q}\right)\right)$ of $U J_{2}\left(\mathbb{F}_{q}\right)$ is the subgroup of all pairs

$$
\left[0, \sum_{i \in \mathbb{N}} c_{i}\left(x^{q}-x\right)^{i}\right]
$$

where $c_{i} \in \mathbb{F}_{q}$ and $c_{i}=0$ for all but finitely many $i \in \mathbb{N}$. In terms of the wreath product representation $\mathcal{Z}\left(U J_{2}\left(\mathbb{F}_{q}\right)\right)$ is the group of pairs

$$
\left[0,\left\langle c_{0}, c_{1}, \ldots, c_{i}, \ldots\right\rangle\right]
$$

Hence, $\mathcal{Z}\left(U J_{2}\left(\mathbb{F}_{q}\right)\right) \cong \prod_{i \in \mathbb{N}} \mathbb{F}_{q}$.

5. $U J_{2}(R)$, where R is an integral domain

Let R be an integral domain (a non-trivial commutative ring with no non-zero zero divisors). Denote by $\operatorname{char}(R)$ the characteristic of R. In this section we assume that $1 \in R$ and $\operatorname{char}(R)=p$ (p is prime). Elements of $U J_{2}(R)$ are represented by pairs $[a, b(x)]$, where $a \in R$ and $b(x) \in R[x]$.

Lemma 6. If $u=[0, f(x)]$ and $v=[b, g(x)]$ are elements of $U J_{2}(R)$ then $[u, v]=u v u^{-1} v^{-1}=\left[0,-\Delta_{b}(f(x))\right]$.

The latter is a special case of Formula (1) that also holds for arbitrary integral domain.

Assume $R=\mathbb{F}_{q}[\xi]$ is the polynomial ring in variable ξ over \mathbb{F}_{q}. Now, elements of $R[x]$ can be considered as polynomials in variables ξ, x over \mathbb{F}_{q}. If $\xi^{k} x^{l}$ is a monomial then k is called the ξ-degree of the monomial and l is called the x-degree of that monomial. Also denote

$$
s_{m}^{n}=p^{m}+p^{m+1}+\ldots+p^{n}
$$

where $m, n \in \mathbb{N}(m \leq n)$. We need the following technical lemma.
Lemma 7. Suppose a polynomial $f(\xi, x) \in \mathbb{F}_{q}[\xi, x]$ contains the monomial $\xi^{d} x^{s_{m}^{n}}$ such that no other term of $f(\xi, x)$ has ξ-degree d. Then there exists $r \in \mathbb{N}$ such that the polynomial $f\left(\xi, x+\xi^{r}\right)-f(\xi, x)$ contains the monomial $\xi^{d+r p^{m}} x^{s_{m+1}^{n}}$ and no other term of $f\left(\xi, x+\xi^{r}\right)-f(\xi, x)$ has ξ-degree $d+r p^{m}$.

Proof. Let r denotes some fixed positive integer and $\xi^{d} x^{s_{m}^{n}}, c_{1} \xi^{a_{1}} x^{b_{1}}$, $c_{2} \xi^{a_{2}} x^{b_{2}}, \ldots, c_{t} \xi^{a_{t}} x^{b_{t}}$ are all terms of $f(\xi, x)$; here $a_{i}, b_{i} \in \mathbb{N}, c_{i} \in \mathbb{F}_{q}$. Then

$$
\begin{aligned}
\xi^{d}\left(x+\xi^{r}\right)^{s_{m}^{n}}-\xi^{d} x^{s_{m}^{n}} & =\xi^{d}\left(x+\xi^{r}\right)^{p^{m}} s_{0}^{n-m}-\xi^{d} x^{s_{m}^{n}}= \\
& =\xi^{d}\left(x^{p^{m}}+\xi^{r p^{m}}\right)^{s_{0}^{n-m}}-\xi^{d} x^{s_{m}^{n}}= \\
& =\xi^{d} x^{p^{m} s_{1}^{n-m}} \xi^{r p^{m}}+h(\xi, x)= \\
& =\xi^{d+r p^{m}} x^{s_{m+1}^{n}}+h(\xi, x),
\end{aligned}
$$

where $h(\xi, x)$ does not contain monomials of ξ-degree $d+r p^{m}$.
Let us also fix $i \in\{1,2, \ldots, t\}$. If $b_{i}=p^{m_{i}} d_{i}$, where $p \nmid d_{i}$, then by direct computations (as in the previous case) one can show that the polynomial $c_{i} \xi^{a_{i}}\left(x+\xi^{r}\right)^{b_{i}}-c_{i} \xi^{a_{i}} x^{b_{i}}$ contains only terms of the form

$$
\xi^{a_{i}+j r p^{m_{i}}} x^{p^{m_{i}}\left(d_{i}-j\right)}, \quad j=1,2, \ldots, d_{i}
$$

here we omit coefficients of respective monomials. Now, suppose that some of those monomials has ξ-degree $d+r p^{m}$. In other words, $a_{i}+j r p^{m_{i}}=$ $d+r p^{m}$ or

$$
\begin{equation*}
r\left(p^{m}-j p^{m_{i}}\right)=a_{i}-d \tag{8}
\end{equation*}
$$

If $p^{m}-j p^{m_{i}}=0$ then Equality (8) is false for all $r \in \mathbb{N}$, since $a_{i}-d \neq 0$. Otherwise, if for some i and j we have $p^{m}-j p^{m_{i}} \neq 0$ then (8) can be rewritten as

$$
\begin{equation*}
r=\frac{a_{i}-d}{p^{m}-j p^{m_{i}}} \tag{9}
\end{equation*}
$$

Since t and all a_{i} 's, b_{i} 's are finite we can choose r such that (9) does not hold for all possible i and j and, hence, $\xi^{d+r p^{m}} x^{s_{m+1}^{n}}$ is the unique monomial of ξ-degree $d+r p^{m}$ in $f\left(\xi, x+\xi^{r}\right)-f(\xi, x)$.

Lemma 8. If $R=\mathbb{F}_{q}[\xi]$ then $U J_{2}(R)$ is not nilpotent.
Proof. Let us fix $n \in \mathbb{N}$ and $u=\left[0, x^{s_{1}^{n}}\right] \in U J_{2}(R)$. We'll prove that there exist elements $v_{1}, \ldots, v_{n} \in U J_{2}(R)$ such that $\left[u, v_{1}, \ldots, v_{n}\right] \neq i d$.

Assume $v_{1}=\left[\xi^{r_{1}}, 0\right]$ for some $r_{1} \in \mathbb{N}$. According to Lemma 6 we obtain $\left[u, v_{1}\right]=\left[0, f_{1}(\xi, x)\right]$, where $f_{1}(\xi, x)=-\Delta_{\xi^{r_{1}}}\left(x^{s_{1}^{n}}\right)$. Here $x^{s_{1}^{n}}$ satisfies the conditions of Lemma 7, thus there exists r_{1} such that $f_{1}(\xi, x)$ contains the monomial $\xi^{r_{1} p} x^{s_{2}^{n}}$ (without considering the coefficient) which has the unique ξ-degree among all terms of $f_{1}(\xi, x)$. In general, there exist $r_{1}, r_{2}, \ldots, r_{i} \in \mathbb{N}$ such that after i steps we obtain $\left[u, v_{1}, \ldots, v_{i}\right]=\left[0, f_{i}(\xi, x)\right]$, where $f_{i}(\xi, x)$ has a monomial of x-degree s_{i+1}^{n} satisfying the conditions of Lemma 7. Finally, after n steps we obtain $\left[u, v_{1}, \ldots, v_{n}\right] \neq i d$ and the lemma is proved.

Regarding the latter lemma, it might be interesting to investigate the necessary and sufficient conditions for $U J_{2}(R)$ to be nilpotent.

Finally, we consider $U J_{n}\left(\mathbb{F}_{q}\right)$ for $n \geq 3$.
Proof of Theorem 3. Elements of the group $U J_{n}\left(\mathbb{F}_{q}\right)$ are represented by tuples

$$
\left[a_{1}, a_{2}\left(x_{1}\right), \ldots, a_{n}\left(x_{1}, \ldots, x_{n-1}\right)\right]
$$

where $a_{1} \in \mathbb{F}_{q}$ and $a_{i}\left(x_{1}, \ldots, x_{i-1}\right) \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{i-1}\right], i \in\{2,3, \ldots, n\}$. Let H be the subgroup of $U J_{n}\left(\mathbb{F}_{q}\right)$ that consists of all tuples

$$
\left[0, a_{1}\left(x_{1}\right), a_{2}\left(x_{1}, x_{2}\right), 0, \ldots\right],
$$

where $a_{1}\left(x_{1}\right) \in \mathbb{F}_{q}\left[x_{1}\right]$ and $a_{2}\left(x_{1}, x_{2}\right) \in \mathbb{F}_{q}\left[x_{1}, x_{2}\right]$. It is obvious that $H \cong U J_{2}\left(\mathbb{F}_{q}\left[x_{1}\right]\right)$. Using Lemma 8 we obtain the result.

References

[1] V. Bardakov, M. Neshchadim, Yu. Sosnovsky, Groups of triangular automorphisms of a free associative algebra and a polynomial algebra, J. Algebra, 362, 2012, pp. 201220.
[2] G. Baumslag, Wreath products and p-groups, Proc. Cambridge Philos. Soc., 55, 1959, pp. 224-231.
[3] Zh. Dovhei, Nilpotency of the group of unitriangular automorphisms of the polynomial ring of two variables over a finite field, Sci. Bull. of Chernivtsi Univ., Ser. Mathematics, 2, No. 2-3, 2012, pp. 66-69. (in Ukrainian)
[4] Zh. Dovhei, V. Sushchansky, Unitriangular automorphisms of the two variable polynomial ring over a finite field of characteristic $p>0$, Mathematical Bulletin of Shevchenko Scientific Society, 9, 2012, pp. 108-123. (in Ukrainian)
[5] H. Liebeck, Concerning nilpotent wreath products, Proc. Cambridge Philos. Soc., 58, 1962, pp. 443-451.
[6] J. Rotman An introduction to the theory of groups, 4th edit., Springer-Verlag, New York, NY, 1994.
[7] V. Sushchansky, Wreath products of elementary Abelian groups, Matematicheskie Zametki, 11, No. 1, 1972, pp. 61-72. (in Russian) (Eng. trans. Mathematical notes of the Academy of Sciences of the USSR, 11, No. 1, 1972, pp. 41-47.)

Contact information

Yu. Leshchenko

Institute of Physics, Mathematics and Computer Science, Bohdan Khmelnytsky National University of Cherkasy, Shevchenko blvd. 79, Cherkasy, Ukraine, 18031
E-Mail: ylesch@ua.fm

V. Sushchansky Institute of Mathematics, Silesian University of Technology, ul. Kaszubska 23, Gliwice, Poland, 44-100
E-Mail: vitaliy.sushchanskyy@polsl.pl

Received by the editors: 22.04 .2014
and in final form 22.04.2014.

