© Journal "Algebra and Discrete Mathematics"

Characterizing semigroups with commutative superextensions

Taras Banakh¹ and Volodymyr Gavrylkiv

Communicated by V. I. Sushchansky

ABSTRACT. We characterize semigroups X whose semigroups of filters $\varphi(X)$, maximal linked systems $\lambda(X)$, linked upfamilies $N_2(X)$, and upfamilies v(X) are commutative.

1. Introduction

In this paper we investigate the algebraic structure of various extensions of a semigroup X and detect semigroups whose extensions $\varphi(X)$, $\lambda(X), N_2(X), v(X)$ and their subsemigroups $\varphi^{\bullet}(X), \lambda^{\bullet}(X), N_2^{\bullet}(X), v^{\bullet}(X)$ are commutative.

The thorough study of various extensions of semigroups was started in [9] and continued in [1]–[6]. The largest among these extensions is the semigroup v(X) of all upfamilies on X.

A family \mathcal{F} of subsets of a set X is called an *upfamily* if $\emptyset \notin \mathcal{F} \neq \emptyset$ and for each set $F \in \mathcal{F}$ any subset $E \supset F$ of X belongs to \mathcal{F} . Each family \mathcal{F} of non-empty subsets of X generates the upfamily

$$\langle F : F \in \mathcal{F} \rangle = \{ E \subset X : \exists F \in \mathcal{F} \ F \subset E \}.$$

The space of all upfamilies on X is denoted by v(X). It is a closed subspace of the double power-set $\mathcal{P}(\mathcal{P}(X))$ endowed with the compact

¹The first author was partially financed by NCN grant DEC-2012/07/D/ST1/02087. **2010 MSC:** 20M10, 20M14, 20M17, 20M18, 54B20.

Key words and phrases: Commutative semigroup, superextension, semigroup of filters, semigroup of linked upfamilies.

Hausdorff topology of the Tychonoff product $\{0,1\}^{\mathcal{P}(X)}$. Identifying each point $x \in X$ with the *principal ultrafilter* $\langle x \rangle = \{A \subset X : x \in A\}$, we can identify X with a subspace of v(X). Because of that we call v(X) an extension of X. For an upfamily $\mathcal{F} \in v(X)$ by

$$\mathcal{F}^{\perp} = \{ E \subset X : \forall F \in \mathcal{F} \ E \cap F \neq \varnothing \}$$

we denote the transversal of \mathcal{F} . By [8], $(\mathcal{F}^{\perp})^{\perp} = \mathcal{F}$, so

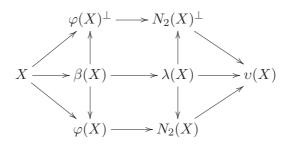
$$\perp: \upsilon(X) \to \upsilon(X), \ \perp: \mathcal{F} \mapsto \mathcal{F}^{\perp},$$

is an involution on v(X). For a subset $S \subset v(X)$ we put $S^{\perp} = \{\mathcal{F}^{\perp} : \mathcal{F} \in S\} \subset v(X)$.

The compact Hausdorff space v(X) contains many other important extensions of X as closed subspaces. In particular, it contains the spaces $N_2(X)$ of linked upfamilies, $\lambda(X)$ of maximal linked upfamilies, $\varphi(X)$ of filters, and $\beta(X)$ of ultrafilters on X; see [8]. Let us recall that an upfamily $\mathcal{F} \in v(X)$ is called

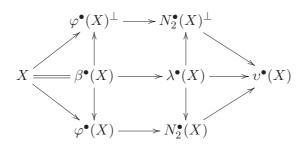
- linked if $A \cap B \neq \emptyset$ for any sets $A, B \in \mathcal{F}$;
- maximal linked if $\mathcal{F} = \mathcal{F}'$ for any linked upfamily $\mathcal{F}' \in v(X)$ that contains \mathcal{F} ;
- a filter if $A \cap B \in \mathcal{F}$ for any $A, B \in \mathcal{F}$;
- an ultrafilter if \mathcal{F} is a filter and $\mathcal{F} = \mathcal{F}'$ for any filter $\mathcal{F}' \in v(X)$ that contains \mathcal{F} .

The family $\beta(X)$ of all ultrafilters on X is called the *Stone-Čech extension* and the family $\lambda(X)$ of all maximal linked upfamilies is called the superextension of X, see [14] and [17]. It can be shown that $\lambda(X) = \{\mathcal{F} \in v(X) : \mathcal{F}^{\perp} = \mathcal{F}\}$, so $\lambda(X)^{\perp} = \lambda(X)$ and $\beta(X)^{\perp} = \beta(X)$. The arrows in the following diagram denote the identity inclusions between various extensions of a set X.



We say that an upfamily $\mathcal{U} \in v(X)$ is finitely supported if $\mathcal{U} = \langle F_1, \dots, F_n \rangle$ for some non-empty finite subsets $F_1, \dots, F_n \subset X$. By

 $v^{\bullet}(X)$ we denote the subspace of v(X) consisting of finitely supported upfamilies on X. Let $\varphi^{\bullet}(X) = \varphi(X) \cap v^{\bullet}(X)$, $\lambda^{\bullet}(X) = \lambda(X) \cap v^{\bullet}(X)$, $N_2^{\bullet}(X) = N_2(X) \cap v^{\bullet}(X)$. Since each finitely supported ultrafilter is principal, the set $\beta^{\bullet}(X) = \beta(X) \cap v^{\bullet}(X)$ coincides with X (identified with the subspace of all principal ultrafilters in v(X)). The embedding relations between these spaces of finitely supported upfamilies are indicated in the following diagram:



Any map $f: X \to Y$ induces a continuous map

$$vf: v(X) \to v(Y), \quad vf: \mathcal{F} \mapsto \{A \subset Y: f^{-1}(A) \in \mathcal{F}\}.$$

By [8], $vf(\mathcal{F}^{\perp}) = (vf(\mathcal{F}))^{\perp}$ and $vf(\beta(X)) \subset \beta(Y)$, $vf(\lambda(X)) \subset \lambda(Y)$, $vf(\varphi(X)) \subset \varphi(Y)$, $vf(N_2(X)) \subset N_2(Y)$, and $vf(v^{\bullet}(X)) \subset v^{\bullet}(X)$. If the map f is injective, then vf is a topological embedding, which allows us to identify the extensions $\beta(X)$, $\lambda(X)$, $\varphi(X)$, $N_2(X)$ and v(X) with corresponding closed subspaces in $\beta(Y)$, $\lambda(Y)$, $\varphi(Y)$, $N_2(Y)$ and v(Y), respectively.

If $*: X \times X \to X$, $*: (x,y) \mapsto xy$, is a binary operation on X, then there is an obvious way of extending this operation onto the space v(X). Just put

$$\mathcal{A} \circledast \mathcal{B} = \langle A * B : A \in \mathcal{A}, B \in \mathcal{B} \rangle$$

where $A * B = \{ab : a \in A, b \in B\}$ is the pointwise product of sets $A, B \subset X$. The upfamily $A \circledast B$ will be called the *pointwise product* of the upfamilies A, B. It is clear that this extension $\circledast : v(X) \times v(X) \to v(X)$ of the operation $* : X \times X \to X$ is associative and commutative if so is the operation *. So, for an associative binary operation * on X, its extension v(X) endowed with the operation \circledast of pointwise product becomes a semigroup, containing the subspaces $\varphi(X), \varphi^{\bullet}(X), N_2(X)$, and $N_2^{\bullet}(X)$ as subsemigroups. However, the subspaces $\beta(X)$ and $\lambda(X)$ are not subsemigroups in $(v(X), \circledast)$. To make $\beta(X)$ a semigroup extension of X, Ellis [7] suggested a less obvious extension of an (associative) binary

operation $*: X \times X \to X$ to an (associative) binary operation on $\beta(X)$ letting

 $\mathcal{A} * \mathcal{B} = \left\langle \bigcup_{a \in A} a * B_a : A \in \mathcal{A}, \{B_a\}_{a \in A} \subset \mathcal{B} \right\rangle$ (1)

for ultrafilters $\mathcal{A}, \mathcal{B} \in \beta(X)$ (see [15, §4]). It is clear that $\mathcal{A} \circledast \mathcal{B} \subset \mathcal{A} * \mathcal{B}$ but in general $\mathcal{A} \circledast \mathcal{B} \neq \mathcal{A} * \mathcal{B}$.

In 9 it was observed that the formula (1) determines an extension of the operation * to an (associative) binary operation *: $v(X) \times v(X) \rightarrow$ v(X) on the extension v(X) of X. So, for each semigroup (X,*), its extension v(X) endowed with the extended operation * is a semigroup, containing the subspaces $\beta(X)$, $\varphi(X)$, $\lambda(X)$, $N_2(X)$ as closed subsemigroups. Moreover, since $v^{\bullet}(X)$ is a subsemigroup of v(X), the subspaces $X = \beta^{\bullet}(X), \varphi^{\bullet}(X), \lambda^{\bullet}(X), N_2^{\bullet}(X)$ also are subsemigroups of v(X). Algebraic and topological properties of these semigroups have been studied in [9], [1]–[6]. In particular, in [6] and [3] we studied properties of extensions of groups, while [4] and [5] were devoted to extensions of semilattices and inverse semigroups, respectively. In contrast to the operation **, the extended operation * on the semigroup v(X) and its subsemigroups rarely is commutative. For example, by [6] a group X has commutative superextension $\lambda(X)$ if and only if X is a group of cardinality $|X| \leq 4$. According to [4], a semilattice X has commutative extension v(X) if and only if X is finite and linearly ordered.

Let X be a semigroup. A subsemigroup $S \subset v(X)$ is defined to be supercommutative if $\mathcal{A} * \mathcal{B} = \mathcal{A} \circledast \mathcal{B} = \mathcal{B} \circledast \mathcal{A} = \mathcal{B} * \mathcal{A}$ for any upfamilies $\mathcal{A}, \mathcal{B} \in S$. It is clear that each supercommutative subsemigroup $S \subset v(X)$ is commutative. The converse is not true as we shall see in Section 10.

In this paper we study the commutativity and supercommutativity of the semigroups v(X), $N_2(X)$, $\lambda(X)$, $\varphi(X)$, $\beta(X)$, $v^{\bullet}(X)$, $N_2^{\bullet}(X)$, $\lambda^{\bullet}(X)$, $\varphi^{\bullet}(X)$ and characterize semigroups X whose various extensions are commutative or supercommutative. In the preliminary Sections 2, 3 we shall analyze the structure of periodic commutative semigroups and projective extensions of semigroup, Section 5 is devoted to square-linear semigroups which will play a crucial role in Sections 7 and 8 devoted to the study of commutativity and supercommutativity of the semigroups v(X), $v^{\bullet}(X)$, $N_2(X)$ and $N_2^{\bullet}(X)$. In Section 6 we characterize semigroups X with (super)commutative extensions $\beta(X)$, $\varphi(X)$, $\varphi^{\bullet}(X)$, and in Section 9 we detect semigroups with commutative extensions $\lambda(X)$ and $\lambda^{\bullet}(X)$. In Section 10 we study the structure of semigroups X whose superextension $\lambda(X)$ is supercommutative.

2. The structure of periodic commutative semigroups

In this section we recall some known information on the structure of periodic commutative semigroups. A semigroup S is called *periodic* if each element $x \in S$ generates a finite semigroup $\{x^k\}_{k \in \mathbb{N}}$. A semigroup S generated by a single element x is called *monogenic*. If a monogenic semigroup is infinite, then it is isomorphic to the additive semigroup \mathbb{N} of positive integers. A finite monogenic semigroup $S = \{x^k\}_{k \in \mathbb{N}}$ also has simple structure (cf. [13, §1.2]): there are positive integer numbers n < m such that

- $S = \{x, \dots, x^{m-1}\}, m = |S| + 1 \text{ and } x^n = x^m;$
- $C_x = \{x^n, \dots, x^{m-1}\}$ is a cyclic subgroup of S;
- the cyclic subgroup C_x coincides with the minimal ideal of S;
- the neutral element e_x of the group C_x is a unique idempotent of S and the cyclic group C_x is generated by the element xe_x .

Such monogenic semigroups will be denoted by $\langle x \mid x^n = x^m \rangle$.

For a semigroup S let

$$E(S) = \{e \in S : ee = e\}$$

be the idempotent part of S. For each idempotent $e \in E(S)$ let

$$H_e = \{x \in S : \exists y \in S \ xyx = x, \ yxy = y, \ xy = e = yx\}$$

be the maximal subgroup of S containing the idempotent e. The union

$$C(S) = \bigcup_{e \in E(S)} H_e$$

of all (maximal) subgroups of S is called the *Clifford part* of S. The Clifford part C(S) is contained in the regular part

$$R(S) = \{x \in S : x \in xSx\}$$

of S. If a semigroup S is commutative, then R(S) = C(S) and the subsets E(S) and R(S) = C(S) are subsemigroups of S.

If a semigroup S is periodic, then for each element $x \in S$ the monogenic semigroup $\{x^k\}_{k\in\mathbb{N}}$ contains a unique idempotent e_x . So, we can consider the map

$$e_*: S \to E(S), \ e_*: x \mapsto e_x,$$

which projects the semigroup S onto its idempotent part E(S). The map

$$c_*: S \to C(S), c_*: x \mapsto e_x \cdot x,$$

projects the semigroup S onto its Clifford part. If a periodic semigroup S is commutative, then the projections $e_*: S \to E(S)$ and $c_*: S \to C(S)$ are semigroup homomorphisms. In this case, for every idempotent $e \in E(S)$, $S_e = \{x \in S : e_x = e\}$ is a subsemigroup of S with a unique idempotent e. So, the semigroup S decomposes into the disjoint union $S = \bigcup_{e \in E(S)} S_e$ of semigroups S_e parametrized by idempotents $e \in E(S)$.

3. Projection extensions of semigroups

A semigroup X is called a projection extension of a subsemigroup $Z \subset X$ if there is a function $\pi: X \to Z$ (called the projection of X onto Z) such that

- $\pi(z) = z$ for each $z \in Z$;
- $x \cdot y = \pi(x) \cdot \pi(y) \in Z$ for all $x, y \in X$.

It follows from $\pi(xy) = xy = \pi(x) \cdot \pi(y)$ that the projection $\pi: X \to Z$ necessarily is a homomorphism of X onto its subsemigroup Z.

If a map $\pi: X \to Z$ of semigroups X and Z is a homomorphism, then by [9] the map $v\pi: v(X) \to v(Z)$ is a homomorphism too. So, we have the following statement.

Proposition 3.1. If a semigroup X is a projection extension of a subsemigroup $Z \subset X$, then the projection $\pi: X \to Z$ induces a homomorphism $v\pi: v(X) \to v(Z)$ witnessing that the semigroup v(X) is a projection extension of the subsemigroup v(Z).

Corollary 3.2. Assume that a semigroup X is a projection extension of a subsemigroup $Z \subset X$, $\pi: X \to Z$ is a projection of X onto Z. Then each subsemigroup $S \subset v(X)$ with $v\pi(S) \subset S$ is a projection extension of the subsemigroup $v\pi(S) = S \cap v(Z)$. Consequently, the semigroup S is (super) commutative if and only if so is its subsemigroup $S \cap v(Z)$.

Corollary 3.3. Assume that a semigroup X is a projection extension of a subsemigroup $Z \subset X$, and $\varepsilon \in \{v, v^{\bullet}, N_2, N_2^{\bullet}, \varphi, \varphi^{\bullet}, \lambda, \lambda^{\bullet}, \beta, \beta^{\bullet}\}$. The extension $\varepsilon(X)$ of X is (super)commutative if and only if the extension $\varepsilon(Z)$ of the semigroup Z is (super)commutative.

4. Semicomplete digraphs

In this section we recall some information on digraphs. In the next section this information will be used for describing the structure of square-linear semigroups.

By an directed graph (briefly, a digraph) we shall understand a pair (X, Δ) consisting of a set X and a subset $\Delta \subset X \times X$. Elements $x \in X$ are called vertices and ordered pairs $(x, y) \in \Delta$ called edges of the digraph (X, Δ) . An edge $(x, y) \in \Delta$ is called pure if $(y, x) \notin \Delta$. A digraph (X, Δ) is called complete if $\Delta = X \times X$ and semicomplete if $\Delta \cup \Delta^{-1} = X \times X$, where $\Delta^{-1} = \{(y, x) : (x, y) \in \Delta\}$.

A sequence x_0, \ldots, x_n of vertices of a digraph (X, Δ) is called a (pure) cycle of length n if $x_0 = x_n$ and for every i < n the pair (x_i, x_{i+1}) is a (pure) edge of the digraph (X, Δ) . A cycle x_0, x_1, \ldots, x_n in a digraph (X, D) is called bipartite if the number n is even and for each numbers $i, j \in \{1, \ldots, n\}$ with odd difference i - j we get $(x_i, x_j) \notin \Delta \cap \Delta^{-1}$. Bipartite cycles can be equivalently defined as cycles $x_0, y_1, x_1, y_2, \ldots, y_n, x_n$ such that $(x_i, y_i) \notin \Delta \cap \Delta^{-1}$ for any $1 \leq i, j \leq n$.

It is easy to see that a cycle of length 4 is bipartite if and only if it is pure.

Lemma 4.1. A semicomplete digraph (X, Δ) contains a pure cycle of length 4 if and only if it contains a bipartite cycle.

Proof. Let x_0, x_1, \ldots, x_n be a bipartite cycle in the digraph of the smallest possible length n. The length n is even and cannot be equal to 2 as otherwise $(x_1, x_2) = (x_1, x_0) \in \Delta \cap \Delta^{-1}$. So, $n \ge 4$. We claim that n = 4. Assume conversely that n > 4 and consider the pair (x_0, x_3) . Since the cycle is bipartite and the digraph (X, Δ) is semicomplete, either (x_0, x_3) or (x_3, x_0) is a pure edge of the digraph. If $(x_3, x_0) \in \Delta$, then x_0, x_1, x_2, x_3, x_0 is a bipartite (and pure) cycle of length 4 in (X, Δ) . If $(x_0, x_3) \in \Delta$, then $x_0, x_3, x_5, \ldots, x_n$ is a bipartite cycle of length n = 1 in n

5. Square-linear semigroups

A semigroup S is called linear if $xy \in \{x,y\}$ for any elements $x,y \in S$. It follows that each element x of a linear semigroup is an idempotent. So, linear semigroups are bands, i.e., semigroups of idempotents. Commutative bands are called semilattices. So, each linear commutative semigroup is a semilattice. Each semilattice E is endowed with a partial order \leq defined by $x \leq y$ iff xy = x.

A semigroup S is called square-linear if $xy \in \{x^2, y^2\}$ for all elements $x, y \in S$.

Proposition 5.1. Let S be a square-linear commutative semigroup and $x, y, z \in S$ be any elements. Then

- 1) S is periodic and $x^3 = x^4 = e_x \in E(S)$;
- 2) the idempotent part E(S) of S is a linear semilattice;
- 3) the Clifford part C(S) of S coincides with E(S);
- 4) $xy = e_x e_y \text{ if } x^2, y^2 \in E(S);$
- 5) $xyz = e_x e_y e_z$;
- 6) if $x^2 \notin E(S)$, then e_x is the largest element of the semilattice E(S).

Proof. 1. It follows from $x^3 = x \cdot x^2 \in \{x^2, x^4\}$ that $x^3 = x^4 = e_x$ and hence $x^3 = x^n$ for all $n \ge 3$. So, the monogenic semigroup $\{x^n\}_{n \in \mathbb{N}} = \{x, x^2, x^3\}$ is finite and hence S is periodic.

- 2. If x, y are idempotents, then $xy \in \{x^2, y^2\} = \{x, y\}$ implies that the semilattice E(S) is linear.
- 3. The identity $x^3 = x^4$ implies that each subgroup of S is trivial and hence C(S) = E(S).
- 4. If $x^2, y^2 \in E(S)$, then $x^4 = x^2$ and hence $x^2 = x^4 = x^3 = e_x$. Then $xy \in \{x^2, y^2\} = \{e_x, e_y\}$ implies that xy is an idempotent and hence $xy = e_{xy} = e_x \cdot e_y$ as the projection $e_* : S \to E(S)$ is a homomorphism.
- 5. First we show that $xyz \in E(S)$. Since S is square-linear, we get $xy \in \{x^2, y^2\}$. We lose no generality assuming that $xy = x^2$. Now consider the product $xz \in \{x^2, z^2\}$. If $xz = x^2$, then $xyz = x^2z = x(xz) = x^3 \in E(S)$. If $xz = z^2$, then $xyz = x^2z = xxz = xz^2 = xzz = z^2z = z^3 \in E(S)$. Since the projection $e_*: S \to E(S)$ is a homomorphism, we conclude that $xyz = e_{xyz} = e_x e_y e_z$.
- 6. Assume that $x^2 \notin E(S)$ but the idempotent e_x is not maximal in the linear semilattice E(S). Then there is an idempotent $e \in E(S)$ such that $ee_x = e_x \neq e$. It follows that $xe \in \{x^2, e^2\}$. We claim that $xe \neq e$. Assuming that xe = e, we conclude that xee = ee = e. On the other hand, the preceding item guarantees that $xee = e_x e_e e_e = e_x ee = e_x \neq e$. So, $xe = x^2 \notin E(S)$, which contradicts $xe = xee \in E(S)$.

Each square-linear semigroup S endowed with the set of directed edges

$$\Delta = \{(x, y) \in S \times S : xy = x^2\}$$

becomes a semicomplete digraph. In fact, the algebraic structure of a square-linear semigroup S is completely determined by its digraph structure Δ and the duplication map $S \to S$, $x \mapsto x^2$. The semigroup operation $S \times S \to S$, $(x,y) \mapsto xy$, can be recovered from Δ and the duplication map by the formula

$$xy = \begin{cases} x^2 & \text{if } (x,y) \in \Delta, \\ y^2 & \text{if } (y,x) \in \Delta. \end{cases}$$

6. Commutativity of the semigroups $\beta(X)$, $\varphi(X)$ and $\varphi^{\bullet}(X)$

The following characterization was proved in Theorem 4.27 of [12].

Theorem 6.1. For a commutative semigroup X the following conditions are equivalent:

- 1) the semigroup $\beta(X)$ is commutative;
- 2) $\{a_k b_n : k, n \in \omega, k < n\} \cap \{b_k a_n : k, n \in \omega, k < n\} \neq \emptyset$ for any sequences $(a_n)_{n \in \omega}$ and $(b_n)_{n \in \omega}$ in X.

Corollary 6.2. If the semigroup $\beta(X)$ is commutative, then

- 1) for each square-linear subsemigroup $S \subset X$ the set $\{x^2 : x \in S\}$ is finite;
- 2) each subsemigroup of X contains a finite ideal;
- 3) each monogenic subsemigroup of X is finite.

Proof. Assume that the semigroup $\beta(X)$ is commutative.

1. Assume that X contains a square-linear subsemigroup $S \subset X$ with infinite subset $\{x^2 : x \in S\}$. Then there is a sequence $\{x_n\}_{n \in \omega}$ in S such that $x_n^2 \neq x_m^2$ for any $n \neq m$. Define a 2-coloring $\chi : [\omega]^2 \to \{0,1\}$ of the set $[\omega]^2 = \{(n,m) \in \omega^2 : n < m\}$ letting

$$\chi(n,m) = \begin{cases} 0 & \text{if } x_n x_m = x_n^2 \\ 1 & \text{if } x_n x_m = x_m^2. \end{cases}$$

By Ramsey's Theorem [16] (see also [10, Theorem 5]), there is an infinite subset $\Omega \subset \omega$ and a color $c \in \{0,1\}$ such that $\chi(n,m) = c$ for any pair $(n,m) \in [\omega]^2 \cap \Omega^2$. Let $\Omega = \{k_n : n \in \omega\}$ be the increasing enumeration of the set Ω . Then for the sequences $a_n = x_{k_{2n}}$ and $b_n = x_{k_{2n+1}}$, $n \in \omega$, we get

$$\{a_k b_n\}_{k < n} \cap \{b_k a_n\}_{k < n} \subset \{a_k^2\}_{k \in \omega} \cap \{b_k^2\}_{k \in \omega} =$$

$$= \{x_{k_{2n}}^2\}_{n \in \omega} \cap \{x_{k_{2n+1}}^2\}_{n \in \omega} = \emptyset,$$

which implies that the semigroup $\beta(X)$ is not commutative according to Theorem 6.1.

- 2. Let S be an infinite subsemigroup of X. Then the semigroup $\beta(S) \subset \beta(X)$ is commutative and hence contains at most one minimal left ideal. In this case Corollary 2.23 of [11] guarantees that the semigroup S contains a finite ideal.
- 3. By the preceding item, for every $x \in X$ the monogenic semigroup $\{x^k\}_{k\in\mathbb{N}}$ contains a finite ideal and hence is finite.

Theorem 6.3. For a commutative semigroup X and the semigroup $\varphi(X)$ of filters on X the following conditions are equivalent:

- 1) $\varphi(X)$ is commutative;
- 2) $\varphi(X)$ is supercommutative;
- 3) $\{a_k b_n\}_{k \leq n} \cap \{b_n a_{n+1}\}_{n \in \omega} \neq \emptyset$ for any sequences $(a_n)_{n \in \omega}$ and $(b_n)_{n \in \omega}$ in X.

Proof. We shall prove the implications $(2) \Rightarrow (1) \Rightarrow (3) \Rightarrow (2)$. The implication $(2) \Rightarrow (1)$ is trivial.

- $(1) \Rightarrow (3)$ Assume that the semigroup $\varphi(X)$ is commutative and take any sequences $(a_n)_{n \in \omega}$ and $(b_n)_{n \in \omega}$ in X. Consider the filter $\mathcal{A} = \langle A \rangle$ generated by the set $A = \{a_n\}_{n \in \omega}$ and the filter $\mathcal{B} = \{B \subset X : \exists n \ \forall m \geqslant n \ b_m \in B\}$. It follows that the set $C = \{a_k b_n\}_{k \leqslant n}$ belongs to the product $\mathcal{A} * \mathcal{B}$. Since the semigroup $\varphi(X)$ is commutative, $C \in \mathcal{A} * \mathcal{B} = \mathcal{B} * \mathcal{A}$ and hence there is a set $B \in \mathcal{B}$ such that $BA \subset C$. By the definition of the filter \mathcal{B} , the set B contains some element b_m . Then $b_m a_{m+1} \in BA = AB \subset C$ and hence the intersection $\{a_k b_n\}_{k \leqslant n} \cap \{b_n a_{n+1}\}_{n \in \omega} \ni b_m a_{m+1}$ is not empty.
- $(3)\Rightarrow (2)$ Assume that $\mathcal{A}*\mathcal{B}\neq\mathcal{A}\circledast\mathcal{B}$ for some filters $\mathcal{A},\mathcal{B}\in\varphi(X)$. Then $\mathcal{A}*\mathcal{B}\not\subset\mathcal{A}\circledast\mathcal{B}$ and some set $C\in\mathcal{A}*\mathcal{B}$ does not belong to the filter $\mathcal{A}\circledast\mathcal{B}$. This means that $A*\mathcal{B}\not\subset C$ for any sets $A\in\mathcal{A}$ and $B\in\mathcal{B}$. We lose no generality assuming that the set C is of the basic form $C=\bigcup_{a\in A}a*\mathcal{B}_a$ for some set $A\in\mathcal{A}$ and family $(B_a)_{a\in A}\in\mathcal{B}^A$. Pick any point $a_0\in A$ and consider the set $B_0=B_{a_0}\in\mathcal{B}$. Since $A*\mathcal{B}_0\not\subset C$, there are points $b_0\in\mathcal{B}_0$ and $a_1\in A$ such that $a_1b_0\notin C$. Now consider the set $B_1=B_0\cap B_{a_1}\in\mathcal{B}$. Since $A*\mathcal{B}_1\not\subset C$, there are points $b_1\in\mathcal{B}_1$ and $a_2\in A$ such that $a_2b_1\notin C$. Proceeding by induction, for every $n\in\omega$ we shall construct two sequences

of points $(a_n)_{n\in\omega}$ and $(b_n)_{n\in\omega}$ in X such that $a_n\in A$, $b_n\in\bigcap_{i=0}^n B_{a_i}$, and $a_{n+1}b_n\notin C$ for every $n\in\omega$.

Observe that for each $i \leq n$ we get $a_i b_n \in a_i B_{a_i} \subset C$ and hence $\{a_k b_n\}_{k \leq n} \cap \{a_{n+1} b_n\}_{n \in \omega} \subset C \cap (X \setminus C) = \emptyset$.

Proposition 6.4. For each commutative semigroup X the semigroup $\varphi^{\bullet}(X)$ is supercommutative. Moreover, $A*B = A \circledast B$ for each $A \in v^{\bullet}(X)$, $B \in \varphi(X)$.

Proof. It is sufficient to prove that $\mathcal{A} * \mathcal{B} \subset \mathcal{A} \circledast \mathcal{B}$ for each $\mathcal{A} \in v^{\bullet}(X)$, $\mathcal{B} \in \varphi(X)$. Let $C \in \mathcal{A} * \mathcal{B}$. We lose no generality assuming that the set C is of the basic form $C = \bigcup_{a \in A} a * B_a$ for some finite set $A \in \mathcal{A}$ and a family $(B_a)_{a \in A} \in \mathcal{B}^A$. Since the set A is finite, by definition of a filter, the intersection $\bigcap_{a \in A} B_a$ is nonempty and belongs to \mathcal{B} . Hence $C \supset \bigcup_{a \in A} a * (\bigcap_{a \in A} B_a) = A * (\bigcap_{a \in A} B_a) \in \mathcal{A} \circledast \mathcal{B}$.

Problem 6.5. Characterize semigroups X whose Stone-Čech extension $\beta(X)$ is supercommutative.

7. (Super)commutativity of semigroups v(X) and $v^{\bullet}(X)$

In this section we shall characterize semigroups X whose extensions $v^{\bullet}(X)$ and v(X) are commutative or supercommutative. The characterization will be given in terms of square-linear semigroups X endowed with the digraph structure

$$\Delta = \{(x, y) \in X \times X : xy = x^2\}.$$

Theorem 7.1. For a commutative semigroup X the following conditions are equivalent:

- 1) the semigroup $v^{\bullet}(X)$ is commutative;
- 2) $v^{\bullet}(X)$ is supercommutative;
- 3) $\mathcal{A} * \mathcal{B}^{\perp} = \mathcal{B}^{\perp} * \mathcal{A} \text{ for any filters } \mathcal{A}, \mathcal{B} \in \varphi^{\bullet}(X) \subset v^{\bullet}(X);$
- 4) $\mathcal{A} * \mathcal{B} = \mathcal{A} \circledast \mathcal{B}$ for any upfamilies $\mathcal{A} \in v^{\bullet}(X)$ and $\mathcal{B} \in v(X)$;
- 5) $\{xu, yv\} \cap \{xv, yu\} \neq \emptyset$ for any points $x, y, u, v \in X$;
- 6) X is a square-linear semigroup whose digraph (X, Δ) contains no bipartite cycles.

Proof. We shall prove the implications $(4) \Rightarrow (2) \Rightarrow (1) \Rightarrow (3) \Rightarrow (5) \Rightarrow (6) \Rightarrow (4)$ among which the implications $(4) \Rightarrow (2) \Rightarrow (1) \Rightarrow (3)$ are trivial.

- (3) \Rightarrow (5) Assume that $\{xu, yv\} \cap \{xv, yu\} = \emptyset$ for some points $x, y, u, v \in X$, and consider the filters $\mathcal{A} = \langle \{x, y\} \rangle$ and $\mathcal{B} = \langle \{u, v\} \rangle$, which belong to the semigroup $\varphi^{\bullet}(X)$. It is easy to see that $\mathcal{B}^{\perp} = \langle \{u\}, \{v\} \rangle$. Observe that $\mathcal{B}^{\perp} * \mathcal{A} = \langle \{ux, uy\}, \{vx, vy\} \rangle$ and $\{xu, yv\} \in \mathcal{A} * \mathcal{B}^{\perp}$. Since $\{xu, yv\} \notin \langle \{ux, uy\}, \{vx, vy\} \rangle$, we conclude that $\mathcal{A} * \mathcal{B}^{\perp} \neq \mathcal{B}^{\perp} * \mathcal{A}$.
- $(5)\Rightarrow (6)$ To show that the semigroup X is square-linear, take any two points $a,b\in X$ and put x=v=a and y=u=b. Then $\{ab\}=\{xu,yv\}\subset \{xv,yu\}=\{a^2,b^2\}$, which means that the semigroup X is square-linear. Next, we show that its digraph (X,Δ) contains no bipartite cycle. Assuming the converse and applying Lemma 4.1, we conclude that X contains a pure cycle x_0,x_1,x_2,x_3,x_4 of length 4. For every $0\leqslant i\leqslant 3$ the inclusion $(x_i,x_{i+1})\in \Delta\setminus \Delta^{-1}$ implies $x_ix_{i+1}=x_i^2\neq x_{i+1}^2$. Since $x_4=x_0$, we get $x_4x_1=x_0x_1=x_4^2\neq x_1^2$. Then for the points $x_1,y_2,x_3,y_3,y_4=x_4$, we get

$$\{xu, yv\} \cap \{uy, vx\} = \{x_1x_2, x_3x_4\} \cap \{x_2x_3, x_4x_1\} =$$

$$= \{x_1^2, x_3^2\} \cap \{x_2^2, x_4^2\} = \varnothing.$$

So, the condition (4) does not hold.

 $(6) \Rightarrow (4)$ Assume that the subgroup X is square-linear, but $\mathcal{A} * \mathcal{B} \neq \mathcal{A} \circledast \mathcal{B}$ for some upfamilies $\mathcal{A} \in v^{\bullet}(X)$ and $\mathcal{B} \in v(X)$. Then $\mathcal{A} * \mathcal{B} \not\subset \mathcal{A} \circledast \mathcal{B}$ and hence $C \notin \mathcal{A} \circledast \mathcal{B}$ for some set $C \in \mathcal{A} * \mathcal{B}$. We lose no generality assuming that C is of the basic form $C = \bigcup_{a \in A} a * B_a$ for some set $A \in \mathcal{A}$ and sets $B_a \in \mathcal{B}$, $a \in A$. Since $\mathcal{A} \in v^{\bullet}(X)$, we can assume that the set A is finite.

Taking into account that $C \notin A \circledast \mathcal{B}$, we conclude that $A * B_a \not\subset C$ for each $a \in A$. Choose any element $a_0 \in A$. By induction, for every $k \in \omega$ we shall choose points $b_k \in B_{a_k}$ and $a_{k+1} \in A$ with $a_{k+1} * b_k \notin C$ as follows. Assume that for some $k \in \omega$ a point $a_k \in A$ has been constructed. Consider the set $B_{a_k} * A = A * B_{a_k} \not\subset C$ and find two points $a_{k+1} \in A$ and $b_k \in B_{a_k}$ such that $b_k a_{k+1} \notin C$.

Since the set $A \supset \{a_k\}_{k \in \omega}$ is finite, for some point $a \in A$ the set $\Omega = \{k \in \omega : a_k = a\}$ is infinite. Fix any three numbers $p, q, r \in \Omega$ such that 1 . Since <math>X is a square-linear semigroup, $a_q b_q \in \{a_q^2, b_q^2\}$.

Now consider two cases.

(i)
$$a_qb_q=b_q^2$$
. In this case we shall show that
$$(b_{q+i},a_{q+i})\in\Delta \ \ \text{and} \ \ (a_{q+i+1},b_{q+i})\in\Delta$$

for every $i \in \omega$. This will be proved by induction on $i \in \omega$. If i = 0, then the inclusion $(b_q, a_q) \in \Delta$ follows from the equality $a_q b_q = b_q^2$. Assume that for some $i \in \omega$ we have proved that $(b_{q+i}, a_{q+i}) \in \Delta$, which is equivalent to $a_{q+i}b_{q+i} = b_{q+i}^2$. It follows from $b_{q+i}^2 = a_{q+i}b_{q+i} \neq b_{q+i}a_{q+i+1} \in \{b_{q+i}^2, a_{q+i+1}^2\}$ that $b_{q+i}a_{q+i+1} = a_{q+i+1}^2$ and hence $(a_{q+i+1}, b_{q+i}) \in \Delta$. Taking into account that

$$a_{q+i+1}^2 = b_{q+i} a_{q+i+1} \neq a_{q+i+1} b_{q+i+1} \in \{a_{q+i+1}^2, b_{q+i+1}^2\},$$

we see that $a_{q+i+1}b_{q+i+1} = b_{q+i+1}^2$ and $(b_{q+i+1}, a_{q+i+1}) \in \Delta$, which completes the inductive step.

Taking into account that $\{b_{q+i}^2\}_{i\in\omega} = \{a_{q+i}b_{q+i}\}_{i\in\omega} \subset \{a_kb_k\}_{k\in\omega} \subset C$ and $\{a_{q+i+1}^2\}_{i\in\omega} = \{b_{q+i}a_{q+i+1}\}_{i\in\omega} \subset \{b_ka_{k+1}\}_{k\in\omega} \subset X \setminus C$, we conclude that $\{b_{q+i}^2\}_{i\in\omega} \cap \{a_{q+i+1}^2\}_{i\in\omega} = \varnothing$, which implies that $(b_{q+i}, a_{q+j+1}) \notin \Delta \cap \Delta^{-1}$ for every $i, j \in \omega$.

Now we see that $a_r, b_{r-1}, a_{r-1}, \ldots, b_q, a_q$ is a bipartite cycle in the digraph (X, Δ) .

(ii) $a_q b_q = a_q^2$. In this case we shall show that

$$(a_{q-i}, b_{q-i}) \in \Delta$$
 and $(b_{q-i-1}, a_{q-i}) \in \Delta$

for every $0 \leqslant i < q$. This will be proved by induction on i < q. If i=0, then the inclusion $(a_q,b_q) \in \Delta$ follows from the equality $a_qb_q=a_q^2$. Assume that for some non-negative number i < q-1 we have proved that $(a_{q-i},b_{q-i}) \in \Delta$, which is equivalent to $a_{q-i}b_{q-i}=a_{q-i}^2$. It follows from $a_{q-i}^2=a_{q-i}b_{q-i}\neq b_{q-i-1}a_{q-i}\in\{b_{q-i-1}^2,a_{q-i}^2\}$ that $b_{q-i-1}a_{q-i}=b_{q-i-1}^2$ and hence $(b_{q-i-1},a_{q-i})\in\Delta$. Taking into account that $b_{q-i-1}^2=b_{q-i-1}a_{q-i}\neq a_{q-i-1}b_{q-i-1}\in\{a_{q-i-1}^2,b_{q-i-1}^2\}$, we see that $a_{q-i-1}b_{q-i-1}=a_{q-i-1}^2$ and $(a_{q-i-1},b_{q-i-1})\in\Delta$, which completes the inductive step.

Taking into account that

$$\{a_{q-i}^2\}_{i=0}^{q-1} = \{a_{q-i}b_{q-i}\}_{i=0}^{q-1} \subset \{a_kb_k\}_{k\in\omega} \subset C \text{ and}$$
$$\{b_{q-i-1}^2\}_{i=0}^{q-1} = \{b_{q-i-1}a_{q-i}\}_{i=0}^{q-1} \subset \{b_ka_{k+1}\}_{k\in\omega} \subset X \setminus C,$$

we conclude that $\{b_{q-i-1}^2\}_{i=0}^{q-1} \cap \{a_{q-i}^2\}_{i=0}^{q-1} = \varnothing$, which implies that $(b_{q-i-1}, a_{q-j}) \notin \Delta \cap \Delta^{-1}$ for every $0 \leqslant i, j < q$.

Now we see that $a_p, b_p, a_{p+1}, b_{p+1}, \dots, a_{q-1}, b_{q-1}, a_q$ is a bipartite cycle in the digraph (X, Δ) .

Theorem 7.2. For a commutative semigroup X the following conditions are equivalent:

- 1) the semigroup v(X) is commutative;
- 2) v(X) is supercommutative;
- 3) the semigroups $v^{\bullet}(X)$ and $\beta(X)$ are commutative;
- 4) $\mathcal{A} * \mathcal{B}^{\perp} = \mathcal{B}^{\perp} * \mathcal{A}$ for any filters $\mathcal{A}, \mathcal{B} \in \varphi(X)$;
- 5) $\{a_nb_n\}_{n\in\omega}\cap\{b_na_{n+1}\}_{n\in\omega}\neq\varnothing$ for any sequences $(a_n)_{n\in\omega}$ and $(b_n)_{n\in\omega}$ in X.

Proof. We shall prove the implications $(2) \Rightarrow (1) \Rightarrow (4) \Rightarrow (5) \Rightarrow (2)$ and $(1) \Rightarrow (3) \Rightarrow (5)$.

The implications $(2) \Rightarrow (1) \Rightarrow (4)$ are trivial.

 $(4) \Rightarrow (5)$ Assume that there are sequences $A = \{a_n\}_{n \in \omega}$ and $B = \{b_n\}_{n \in \omega}$ in X such that $\{a_nb_n\}_{n \in \omega} \cap \{b_na_{n+1}\}_{n \in \omega} = \emptyset$. Consider the filters $A = \langle A \rangle$ and $B = \langle B \rangle$. It follows that $\{b_n\} \in \mathcal{B}^{\perp} = \{C \subset X : C \cap B \neq \emptyset\}$ for every $n \in \omega$. Assume that $A * \mathcal{B}^{\perp} = \mathcal{B}^{\perp} * A$.

Since $\{a_nb_n\}_{n\in\omega}\in\mathcal{A}*\mathcal{B}^{\perp}=\mathcal{B}^{\perp}*\mathcal{A}$, there is $k\in\omega$ such that $b_k*A\subset\{a_nb_n\}_{n\in\omega}$, which is not possible as $b_ka_{k+1}\notin\{a_nb_n\}_{n\in\omega}$. So, $\mathcal{A}*\mathcal{B}^{\perp}\neq\mathcal{B}^{\perp}*\mathcal{A}$.

 $(5) \Rightarrow (2)$ Assume that $\mathcal{A} * \mathcal{B} \neq \mathcal{A} \circledast \mathcal{B}$ for some upfamilies $\mathcal{A}, \mathcal{B} \in v(X)$. Then $\mathcal{A} * \mathcal{B} \not\subset \mathcal{A} \circledast \mathcal{B}$ and hence $C \not\in \mathcal{A} \circledast \mathcal{B}$ for some set $C \in \mathcal{A} * \mathcal{B}$. We lose no generality assuming that C is of basic form $C = \bigcup_{a \in A} aB_a$ for some set $A \in \mathcal{A}$ and sets $B_a \in \mathcal{B}$, $a \in A$.

Taking into account that $C \notin A \otimes \mathcal{B}$, we conclude that $B_a * A = A * B_a \not\subset C$ for each $a \in A$. Choose any elements $a_0 \in A$. By induction, for every $k \in \omega$ we can choose points $b_k \in B_{a_k}$ and $a_{k+1} \in A$ such that $b_k a_{k+1} \notin C$. Then the sequences $(a_n)_{n \in \omega}$ and $(b_n)_{n \in \omega}$ have the required property $\{a_n b_n\}_{n \in \omega} \cap \{b_n a_{n+1}\}_{n \in \omega} \subset C \cap (X \setminus C) = \emptyset$, which shows that (5) does not hold.

The implication $(1) \Rightarrow (3)$ is trivial.

 $(3) \Rightarrow (5)$. Assume that the semigroups $\beta(X)$ and $v^{\bullet}(X)$ are commutative but $\{a_nb_n\}_{n\in\omega} \cap \{b_na_{n+1}\}_{n\in\omega} = \emptyset$ for some sequences $(a_n)_{n\in\omega}$ and $(b_n)_{n\in\omega}$. By Theorem 7.1, the semigroup X is square-linear and its digraph (X, Δ) contains no bipartite cycles.

Two cases are possible.

(i) $a_nb_n \neq b_n^2$ for all $n \in \omega$, and then $a_nb_n = a_n^2$ for all $n \in \omega$. Then for each $n \in \omega$ we get $\{b_n^2, a_{n+1}^2\} \ni b_na_{n+1} \notin \{a_kb_k\}_{k \in \omega} = \{a_k^2\}_{k \in \omega}$ and hence $b_na_{n+1} = b_n^2$. Then $\{a_n^2\}_{n \in \omega} \cap \{b_n^2\}_{n \in \omega} = \{a_nb_n\}_{n \in \omega} \cap \{b_na_{n+1}\}_{n \in \omega} = \varnothing$. If for every i < j we get $a_ib_j = a_i^2$ and $b_ia_j = b_i^2$, then $\{a_ib_j\}_{i < j} \cap \{b_ia_j\}_{i < j} = \varnothing$ and the semigroup $\beta(X)$ is not commutative by Theorem 6.1. So, there are numbers i < j such that $a_ib_j \neq a_i^2$ or $b_ia_j \neq b_i^2$.

If $a_ib_j \neq a_i^2$, then $a_ib_j = b_j^2$, and $a_i, b_i, a_{i+1}, b_{i+1}, \ldots, a_j, b_j, a_i$ if a bipartite cycle in the digraph (X, Δ) , which is not possible.

If $b_i a_j \neq b_i^2$, then $b_i a_j = a_j^2$, and then $b_i, a_{i+1}, b_{i+1}, \dots, b_{j-1}, a_j, b_i$ is a bipartite cycle in the digraph (X, Δ) , which is not possible.

(ii) $a_m b_m = b_m^2$ for some $m \in \omega$. Repeating the argument of the proof of the implication $(5) \Rightarrow (3)$ of Theorem 7.1, we can check that for every $i \in \omega$ $a_{m+i}b_{m+i} = b_{m+i}^2 \neq a_{m+i+1}^2 = b_{m+i}a_{m+i+1}$ and hence $\{b_{m+i}^2\}_{i\in\omega} \cap \{a_{m+i+1}^2\}_{i\in\omega} \subset \{a_k b_k\}_{k\in\omega} \cap \{b_k a_{k+1}\}_{k\in\omega} = \varnothing$. If for every i < j we get $a_{m+i}b_{m+j} = b_{m+j}^2$ and $b_{m+i}a_{m+j} = a_{m+j}^2$, then $\{a_{m+i}b_{m+j}\}_{i< j} \cap \{b_{m+i}a_{m+j}\}_{i< j} = \varnothing$ and the semigroup $\beta(X)$ is not commutative by Theorem 6.1. So, there are numbers i < j such that $a_{m+i}b_{m+j} \neq b_{m+j}^2$ or $b_{m+i}a_{m+j} \neq a_{m+j}^2$.

If
$$a_{m+i}b_{m+j} \neq b_{m+j}^2$$
, then $a_{m+i}b_{m+j} = a_{m+i}^2$, and $a_{m+i}, b_{m+j}, a_{m+j}, \dots, b_{m+i}, a_{m+i}$

is a bipartite cycle in the digraph (X, Δ) , which is not possible.

If
$$b_{m+i}a_{m+j} \neq a_{m+j}^2$$
, then $b_{m+i}a_{m+j} = b_{m+i}^2$, and $b_{m+i}, a_{m+j}, \dots, b_{m+i+1}, a_{m+i+1}, b_{m+i}$

is a bipartite cycle in the digraph (X, Δ) , which is a contradiction.

8. (Super)commutativity of semigroups $N_2^{\bullet}(X)$ and $N_2(X)$

In this section we detect semigroups with (super) commutative extensions $N_2(X)$ or $N_2^{\bullet}(X)$.

Theorem 8.1. For a commutative semigroup X the following conditions are equivalent:

- 1) the semigroup $N_2^{\bullet}(X)$ is commutative;
- 2) $N_2^{\bullet}(X)$ is supercommutative;
- 3) $\{xu, yv\} \cap \{xv, yu, xw, yw\} \neq \emptyset$ for any points $x, y, u, v, w \in X$;
- 4) $\mathcal{A} * \mathcal{B} = \mathcal{A} \circledast \mathcal{B}$ for any upfamilies $\mathcal{A} \in N_2^{\bullet}(X)$ and $\mathcal{B} \in N_2(X)$;
- 5) $\mathcal{A} * \mathcal{B} = \mathcal{B} * \mathcal{A} \text{ for any } \mathcal{A} \in \varphi^{\bullet}(X) \text{ and } \mathcal{B} \in N_2^{\bullet}(X);$
- 6) Either X is a square-linear semigroup whose digraph (X, Δ) contains no bipartite cycles or else X contains a 2-element subgroup H such that $x^3 \in H$ and $xy = x^3y^3$ for each points $x, y \in X$.

Proof. We shall prove the implications $(4) \Rightarrow (2) \Rightarrow (1) \Rightarrow (5) \Rightarrow (3) \Rightarrow (6) \Rightarrow (4)$ among which $(4) \Rightarrow (2) \Rightarrow (1) \Rightarrow (5)$ are trivial.

To prove that $(5) \Rightarrow (3)$, assume that $\{xu, yv\} \cap \{xv, yu, xw, yw\} = \emptyset$ for some points $x, y, u, v, w \in X$. Consider the filter $\mathcal{A} = \langle \{x, y\} \rangle$ and the

linked upfamily $\mathcal{B} = \langle \{u, w\}, \{v, w\} \rangle$. By (5), $\mathcal{A} * \mathcal{B} = \mathcal{B} * \mathcal{A}$. Observe that the set $\{xv, xw, yu, yw\} = x \cdot \{v, w\} \cup y \cdot \{u, w\}$ belongs to the upfamily $\mathcal{A} * \mathcal{B} = \mathcal{B} * \mathcal{A}$. Then either $\{u, w\} \cdot \{x, y\} \subset \{xv, xw, yu, yw\}$ or $\{v, w\} \cdot \{x, y\} \subset \{xv, xw, yu, yw\}$. None of the inclusions is possible as $xu, yv \notin \{xv, yu, xw, yw\}$.

 $(3)\Rightarrow (6)$ If the semigroup $v^{\bullet}(X)$ is commutative, then by Theorem 7.1, X is a square-linear semigroup whose digraph (X,Δ) contains no bipartite cycles. So, we assume that the semigroup $v^{\bullet}(X)$ is not commutative. Given any element $a\in X$, put $x=v=a,\ y=u=a^2,\ \text{and}\ w=a^3.$ Then the condition (3) implies $xu=yv=a^3\in\{xv,yu,xw,yw\}=\{a^2,a^4,a^5\},$ which yields $a^3=a^5$ for each $a\in X.$ So, the semigroup X is periodic and its set of idempotents $E=\{e\in X:e^2=e\}$ is not empty. We claim that the semilattice E is linear. Assuming the converse, find two idempotents $x,y\in E$ with $xy\notin\{x,y\}=\{x^2,y^2\}$ and put u=x,v=y,w=xy. Then $\{xu,yv\}\cap\{xv,yu,xw,yw\}=\{x^2,y^2\}\cap\{xy\}=\varnothing$, which contradicts the condition (3).

Next, we show that the semilattice E has the smallest element. Assume the opposite. Since the semigroup $v^{\bullet}(X)$ is not commutative, Theorem 7.1 yields four points $x, y, u, v \in X$ such that $\{xu, yv\} \cap \{xv, yu\} = \varnothing$. Consider the projection $e_*: X \to E$, $e_*: x \mapsto e_x$, of X onto its idempotent band. Since the linear semilattice E does not have the smallest idempotent, there is an idempotent $w \in E$ such that $we_{xu} = w \neq e_{xu}$ and $we_{yv} = w \neq e_{yv}$. It follows that $e_{xw} = e_x \cdot e_w = w \neq e_{xu}$ and hence $xw \neq xu$. By analogy we can prove that $\{xu, yv\} \cap \{xw, yw\} = \varnothing$, which implies $\{xu, yv\} \cap \{xv, yu, xw, yw\} = \varnothing$ and contradicts (3).

Therefore, the semilattice E has the smallest element, which will be denoted by e. We claim that the maximal group H_e containing this idempotent is not trivial. It follows from $\{xu,yv\} \cap \{xv,yu\} = \varnothing$ and $\{xu,yv\} \cap \{xv,yu,xe,ye\} \neq \varnothing \neq \{xv,yu\} \cap \{xu,yv,xe,ye\}$ that the set $\{xe,ye\}$ contains two elements and lies in the maximal subgroup H_e of the idempotent e. So, the group H_e is not trivial. The equality $a^3 = a^5$ holding for each element $a \in X$ implies that $a^2 = e$ for each element a of the group H_e . We claim that $|H_e| = 2$. In the other case, we could find three pairwise distinct points $a,b,ab \in H_e \setminus \{e\}$. Put x = u = a, y = v = b, and w = e. Then $\{xu,yv\} \cap \{xv,yu,xw,yw\} = \{e\} \cap \{ab,a,b\} = \varnothing$, which contradicts (3).

So, $H_e = \{e, h\}$ for some element $h \in H_e$. Next, we show that e is the unique element of the semilattice E. Assume that E contains some idempotent $f \neq e$ and consider the points x = f, y = h, u = e,

v = h, w = f. Observe that $\{xu, yv\} \cap \{xv, yu, xw, yw\} = \{fe, h^2\} \cap \{fh, he, ff, hf\} = \{e, e\} \cap \{h, f\} = \emptyset$, which contradicts (3).

Next, we check that $a^2 \in H_e$ for each $a \in X$. Assume conversely that $a^2 \notin H_e$. It follows from $a^3 = a^5$ that a^4 is an idempotent which coincides with e and hence $a^3 \in H_e$. If $a^3 = e$, then we can consider the points $x = a, y = h, u = a^2, v = h$ and w = a. Then $\{xu, yv\} \cap \{xv, yu, xw, yw\} = \{a^3, h^2\} \cap \{ah, ha^2, a^2, ha\} = \{e\} \cap \{h, a^2\} = \emptyset$, which contradicts (2). So, $a^3 = h$ and then $a^{2i+1} = h$ and $a^{2i+2} = e$ for all $i \in \mathbb{N}$. Consider the points $x = a, y = a^2, u = a^3, v = a^2$, and w = a. Then $\{xu, yv\} \cap \{xv, yu, xw, yw\} = \{a^4\} \cap \{a^3, a^5, a^2, a^3\} = \emptyset$, which contradicts (3).

Finally, we show that $ab \in H_e$ for any points $a, b \in X$. Assuming that $ab \notin H_e$ for some $a, b \in X$, consider the points x = a, y = b, u = b, v = a, and w = e. Then $\{xu, yv\} \cap \{xv, yu, xw, yw\} = \{ab\} \cap \{a^2, b^2, ae, be\} \subset \{ab\} \cap H_e = \emptyset$, which contradicts (2). So, $ab \in H_e$, and then $ab = (ab)^3 = a^3b^3$.

 $(6)\Rightarrow (4)$ If X is a square-linear semigroup whose digraph (X,Δ) contains no bipartite cycle, then by Theorem 7.1, $\mathcal{A}*\mathcal{B}=\mathcal{A}*\mathcal{B}$ for any upfamilies $\mathcal{A}\in v^{\bullet}(X)$ and $\mathcal{B}\in v(X)$. Now assume that X contains a two-element subgroup $H\subset X$ such that $x^3\in H$ and $xy=x^3y^3$ for any points $x,y\in X$. This means that for the projection $\pi:X\to H$, $\pi:x\mapsto x^3$, the semigroup X is a projection extension of the subgroup X. Then the semigroup $X_2(X)$ is a projection extension of the subsemigroup $X_2(H)$. Since |H|=2, by Proposition 6.4, the semigroup $X_2(H)=\varphi^{\bullet}(H)$ is supercommutative and hence for any linked upfamilies $\mathcal{A},\mathcal{B}\in N_2(X)$ we get

$$\mathcal{A} * \mathcal{B} = \upsilon \pi(\mathcal{A}) * \upsilon \pi(\mathcal{B}) = \upsilon \pi(\mathcal{A}) \circledast \upsilon \pi(\mathcal{B}) = \mathcal{A} \circledast \mathcal{B}.$$

Theorem 8.2. For a semigroup X the following conditions are equivalent:

- 1) the semigroup $N_2(X)$ is commutative;
- 2) $N_2(X)$ is supercommutative;
- 3) the semigroups $N_2^{\bullet}(X)$ and $\beta(X)$ are commutative;
- 4) $\mathcal{A} * \mathcal{B} = \mathcal{A} \circledast \mathcal{B}$ for any upfamilies $\mathcal{A} \in \varphi(X)$ and $\mathcal{B} \in N_2(X)$;
- 5) for every sequence $(a_i)_{i\in\omega}\in X^{\omega}$ and symmetric matrix $(b_{ij})_{i,j\in\omega}\subset X^{\omega\times\omega}$ we get $\{a_i\cdot b_{ij}\}_{i,j\in\omega}\cap\{b_{ii}\cdot a_{i+1}\}_{i\in\omega}\neq\varnothing$.
- 6) either the semigroup v(X) is commutative or else X contains a 2-element subgroup H such that $x^3 \in H$ and $xy = x^3y^3$ for each points $x, y \in X$.

Proof. It suffices to prove the implications $(2) \Rightarrow (1) \Rightarrow (3) \Rightarrow (6) \Rightarrow (2)$ and $(2) \Rightarrow (4) \Rightarrow (5) \Rightarrow (2)$. In fact, the implications $(2) \Rightarrow (1) \Rightarrow (3)$ and $(2) \Rightarrow (4)$ are trivial.

- $(3) \Rightarrow (6)$ Assume that the semigroups $N_2^{\bullet}(X)$ and $\beta(X)$ are commutative but the semigroup v(X) is not commutative. By Theorem 7.2, the semigroup $v^{\bullet}(X)$ is not commutative. Combining Theorems 7.1 and 8.1, we conclude that X contains a 2-element subgroup H such that $x^3 \in H$ and $xy = x^3y^3$ for each points $x, y \in X$.
- $(6)\Rightarrow (2)$ If v(X) is commutative, then by Theorem 7.2, it is supercommutative and so is its subsemigroup $N_2(X)$. If X contains a 2-element subgroup H such that $x^3\in H$ and $xy=x^3y^3$ for each points $x,y\in X$, then for the projection $\pi:X\to H$, $\pi:x\mapsto x^3$, the semigroup X is a projection extension of the subgroup H. By Proposition 3.1, the semigroup $N_2(X)$ is a projection extension of the subsemigroup $N_2(H)$. Since |H|=2, the semigroup $N_2(H)=\varphi^{\bullet}(H)$ is supercommutative by Proposition 6.4. Being a projection extension of the supercommutative semigroup $N_2(H)$, the semigroup $N_2(X)$ is supercommutative by Corollary 3.3.
- $(4) \Rightarrow (5)$ Assume that for some sequence $(a_i)_{i \in \omega} \in X^{\omega}$ and some symmetric matrix $(b_{ij})_{i,j \in \omega} \subset X^{\omega \times \omega}$ we get $\{a_ib_{ij}\}_{i,j \in \omega} \cap \{b_{ii}a_{i+1}\}_{i \in \omega} = \emptyset$. Consider the filter $\mathcal{A} = \langle A \rangle \in \varphi(X) \subset N_2(X)$ generated by the set $A = \{a_i\}_{i \in \omega}$ and the linked system \mathcal{B} generated by the family $\{B_i\}_{i \in \omega}$ of sets $B_i = \{b_{ij}\}_{j \in \omega}$, $i \in \omega$. Observe that the set $C = \{a_ib_{ij}\}_{i,j \in \omega}$ belongs to $\mathcal{A} * \mathcal{B}$. Assuming that $\mathcal{A} * \mathcal{B} = \mathcal{A} \circledast \mathcal{B}$, we would find a number $i \in \omega$ such that $A * B_i \subset C$, which is not possible as $a_{i+1}b_{ii} \notin C$.
- (5) \Rightarrow (2) Assuming that $\mathcal{A} * \mathcal{B}$ is not supercommutative, we could find two linked upfamilies $\mathcal{A}, \mathcal{B} \in N_2(X)$ such that $\mathcal{A} * \mathcal{B} \not\subset \mathcal{A} \circledast \mathcal{B}$. Then for some set $A \in \mathcal{A}$ and a family $(B_a)_{a \in A} \in \mathcal{B}^A$, we get $\bigcup_{a \in A} aB_a \not\in \mathcal{A} \circledast \mathcal{B}$. It follows that for every $a \in A$ the product $A * B_a$ is not contained in the set $C = \bigcup_{a \in A} a * B_a$, which allows us to construct inductively two sequences of points $(a_i)_{i \in \omega} \subset A^{\omega}$ and $(b_i)_{i \in \omega} \in X^{\omega}$ such that $b_i \in B_{a_i}$ and $a_{i+1}b_i \not\in C$ for every $i \in \omega$. For every numbers i < j put $b_{ii} = b_i$ and let $b_{ij} = b_{ji}$ be some point of the intersection $B_{a_i} \cap B_{a_j}$ (which is not empty by the linkedness of the upfamily \mathcal{B}). Then the sequence $(a_i)_{i \in \omega}$ and the symmetric matrix $(b_{ij})_{i,j \in \omega}$ have the required property $\{a_ib_{ij}\}_{i,j \in \omega} \cap \{b_{ii}a_{i+1}\} \subset C \cap (X \setminus C) = \varnothing$.

9. Commutativity of superextensions $\lambda(X)$

In this section we characterize semigroups having commutative extensions $\lambda(X)$ and $\lambda^{\bullet}(X)$.

Theorem 9.1. For a commutative semigroup X the following conditions are equivalent:

- 1) the semigroup $\lambda(X)$ is commutative;
- 2) for any symmetric matrices $(a_{ij})_{i,j\in\omega}, (b_{ij})_{i,j\in\omega} \in X^{\omega\times\omega}$ we get $\{a_{ii} \cdot b_{ij}\}_{i,j\in\omega} \cap \{b_{ii} \cdot a_{i+1,j}\}_{i,j\in\omega} \neq \varnothing$.

Proof. (1) \Rightarrow (2) Assuming that the semigroup $\lambda(X)$ is not commutative, find two maximal linked systems $\mathcal{A}, \mathcal{B} \in \lambda(X)$ such that $\mathcal{A} * \mathcal{B} \neq \mathcal{B} * \mathcal{A}$. The maximal linked upfamilies $\mathcal{A} * \mathcal{B}$ and $\mathcal{B} * \mathcal{A}$ are distinct and hence contain two disjoint sets $C \in \mathcal{A} * \mathcal{B}$ and $C' \in \mathcal{B} * \mathcal{A}$. For these sets there are sets $A \in \mathcal{A}, B \in \mathcal{B}$ and families of sets $(B_a)_{a \in A} \in \mathcal{B}^A, (A_b)_{b \in B} \in \mathcal{A}^B$ such that $\bigcup_{a \in A} aB_a \subset C$ and $\bigcup_{b \in B} bA_a \subset C'$.

By induction we can construct two sequences $\{a_{ii}\}_{i\in\omega}\subset A$ and $\{b_{ii}\}_{i\in\omega}$ such that $b_{ii}\in B\cap B_{a_{ii}}$ and $a_{i+1,i+1}\in A\cap A_{b_{ii}}$ for every $i\in\omega$. Since the upfamilies \mathcal{B} and \mathcal{A} are linked, for every numbers i< j we can choose points $b_{ij}\in B_{a_{ii}}\cap B_{a_{jj}}$ and $a_{i+1,j+1}\in A_{b_{ii}}\cap A_{b_{jj}}$, and put $b_{ji}=b_{ij}$ and $a_{j+1,i+1}=a_{i+1,j+1}$. Also put $a_{0i}=a_{i0}=a_{00}$ for all $i\in\omega$. In such way we have defined two symmetric matrices $(a_{ij})_{i,j\in\omega}$ and $(b_{ij})_{i,j\in\omega}$ with coefficients in the semigroup X. Observe that for each $i,j\in\omega$ we get $a_{ii}*b_{ij}\in a_{ii}*B_{a_{ii}}\subset C$ and $b_{ii}*a_{i+1,j}\in b_{ii}*A_{b_{ii}}\subset C'$, which implies that the sets $\{a_{ii}\cdot b_{ij}\}_{i,j\in\omega}$ and $\{b_{ii}\cdot a_{i+1,j}\}_{i,j\in\omega}$ are disjoint.

 $(2) \Rightarrow (1)$ Assume that there are two symmetric matrices $(a_{ij})_{i,j\in\omega}$, $(b_{ij})_{i,j\in\omega} \in X^{\omega\times\omega}$ such that the sets $\{a_{ii} \cdot b_{ij}\}_{i,j\in\omega}$ and $\{b_{ii} \cdot a_{i+1,j}\}_{i,j\in\omega}$ are disjoint. Consider the sets $A = \{a_{ii}\}_{i\in\omega}$ and $A_i = \{a_{ij}\}_{j\in\omega}$ which form a linked system $\{A, A_i\}_{i\in\omega}$ which can be enlarged to a maximal linked system \mathcal{A} . On the other hand, the sets $B = \{b_{ii}\}_{i\in\omega}$ and $B_i = \{b_{ij}\}_{j\in\omega}$ form a linked upfamily, which can be enlarged to a maximal linked upfamily \mathcal{B} . We claim that $\mathcal{A} * \mathcal{B} \neq \mathcal{B} * \mathcal{A}$. This follows from the fact that the maximal linked upfamilies $\mathcal{A} * \mathcal{B}$ and $\mathcal{B} * \mathcal{A}$ contains the disjoint sets

$$\{a_{ii}b_{ij}\}_{i,j\in\omega} = \bigcup_{a_{ii}\in A} a_{ii}B_i \in \mathcal{A} * \mathcal{B}$$

and

$$\{b_{ii}a_{i+1,j}\}_{i,j\in\omega} = \bigcup_{b_{ii}\in B} b_{ii}A_{i+1} \in \mathcal{B} * \mathcal{A}.$$

Therefore the semigroup \mathcal{A} is not commutative.

For a set X consider the subset

$$\lambda_3^{\bullet}(X) = \{ \mathcal{A} \in \lambda(X) : \exists Y \subset X \text{ such that } |Y| \leqslant 3 \text{ and } \mathcal{A} \in \lambda(Y) \subset \lambda(X) \}$$
 in $\lambda^{\bullet}(X)$.

Theorem 9.2. For a commutative semigroup X the following conditions are equivalent:

- 1) the semigroup $\lambda^{\bullet}(X)$ is commutative;
- 2) any two maximal linked systems $A, B \in \lambda_3^{\bullet}(X)$ commute;
- 3) any two maximal linked systems $A \in \lambda^{\bullet}(X)$ and $B \in \lambda(X)$ commute;
- 4) for any elements $a, b, c, x, y, z \in X$ the sets $\{ax, ay, cy, cz\}$ and $\{xc, xb, za, zb\}$ are not disjoint;
- 5) for any elements $x_0, x_1, x_2, x_3, x_4, x_5 \in X$ the sets $\{x_1x_2, x_2x_3, x_3x_4, x_4x_5\}$ and $\{x_1x_4, x_2x_5, x_0x_1, x_0x_5\}$ are not disjoint.

Proof. It suffices to prove the implications $(3) \Rightarrow (1) \Rightarrow (2) \Rightarrow (4) \Leftrightarrow (5) \Rightarrow (1)$. In fact, the implications $(3) \Rightarrow (1) \Rightarrow (2)$ are trivial while the equivalence $(4) \Leftrightarrow (5)$ follows from the observation that for any points $b = x_0$, $x = x_1$, $a = x_2$, $y = x_3$, $c = x_4$, $z = x_5$ in X we get

$$\{ax, ay, cy, cz\} \cap \{xc, xb, za, zb\} =$$

$$= \{x_1x_2, x_2x_3, x_3x_4, x_4x_5\} \cap \{x_1x_4, x_1x_0, x_5x_2, x_5x_0\}.$$

 $(2)\Rightarrow (4)$ Assume that for some elements $a,b,c,x,y,z\in X$ the sets $\{ax,ay,cy,cz\}$ and $\{xc,xb,za,zb\}$ are disjoint. Consider the maximal linked systems $\mathcal{A}=\{A\subset X:|A\cap\{a,b,c\}|\geqslant 2\}$ and $\mathcal{X}=\{A\subset X:|A\cap\{x,y,z\}|\geqslant 2\}$ and observe that $\mathcal{A},\mathcal{X}\in\lambda_3^\bullet(X)$ and the products $\mathcal{A}*\mathcal{X}$ and $\mathcal{X}*\mathcal{A}$ are distinct since they contain disjoint sets

$$a\{x,y\} \cup c\{y,z\} \in \mathcal{A} * \mathcal{X} \text{ and } x\{c,b\} \cup z\{a,b\} \in \mathcal{X} * \mathcal{A}.$$

 $(4)\Rightarrow (3)$ The proof of this implication is the most difficult part of the proof. Assume that (4) holds but there are two non-commuting maximal linked systems $\mathcal{A}\in\lambda^{\bullet}(X)$ and $\mathcal{B}\in\lambda(X)$. Then the maximal linked systems $\mathcal{A}*\mathcal{B}$ and $\mathcal{B}*\mathcal{A}$ contain disjoint sets. Consequently, we can find sets $A\in\mathcal{A}$ and $B\in\mathcal{B}$ and families $(B_a)_{a\in A}\in\mathcal{B}^A$ and $(A_b)_{b\in B}\in\mathcal{A}^B$ such that the sets $U_{\mathcal{A}\mathcal{B}}=\bigcup_{a\in A}a*B_a\in\mathcal{A}*\mathcal{B}$ and $U_{\mathcal{B}\mathcal{A}}=\bigcup_{b\in B}b*A_b\in\mathcal{B}*\mathcal{A}$ are disjoint. Since $\mathcal{A}\in\lambda^{\bullet}(X)$, we can additionally assume that the set A is finite.

By analogy with the proof of Theorem 9.1, construct inductively two sequences $(a_i)_{i\in\omega}\in A^{\omega}$ and $(b_i)_{i\in\omega}\in B^{\omega}$ such that $b_i\in B\cap B_{a_i}$ and $a_{i+1}\in A\cap A_{b_i}$. Since the set A is finite, there are two numbers k,m such that 0< k< m-1 and $a_k=a_m$.

Let $n=m-k\geqslant 2$ and consider the group $\mathbb{Z}_n=\{0,1,\ldots,n-1\}$ endowed with the group operation of addition modulo n, which will be denoted by the symbol \oplus . So, $1\oplus (n-1)=0$. For each $i\in \mathbb{Z}_n$ let $a_{ii}=a_{k+i}$ and $b_{ii}=b_{k+i}$. For every numbers i< j in \mathbb{Z}_n choose points $b_{ij}=b_{ji}\in B_{a_{ii}}\cap B_{a_{jj}}$ and $a_{ij}=a_{ji}\in A_{b_{i',i'}}\cap A_{b_{j',j'}}$ where $i',j'\in \mathbb{Z}_n$ are unique numbers such that $i=i'\oplus 1$ and $j'=j\oplus 1$. It follows that $a_{ii}b_{ij}\in a_{ii}B_{a_{ii}}\subset U_{\mathcal{AB}}$ and $b_{ii}a_{i\oplus 1,j}\in b_{ii}A_{b_{ii}}\in U_{\mathcal{BA}}$. So,

$$\{a_{ii} * b_{ij}\}_{i,j \in \mathbb{Z}_n} \cap \{b_{ii} * a_{i \oplus 1,j}\}_{i,j \in \mathbb{Z}_n} \subset U_{\mathcal{AB}} \cap U_{\mathcal{BA}} = \varnothing.$$

By induction on $i \in \mathbb{Z}_n$ we shall prove that $a_{00} * b_{ii} \in U_{\mathcal{AB}}$. This is trivial for i = 0. Assume that for some positive number i < n - 1 we have proved that $a_{00} * b_{ii} \in U_{\mathcal{AB}}$. Let

$$x_0 = a_{i+1,i \oplus 2}, \quad x_1 = b_{i,i}, \qquad x_2 = a_{00},$$

 $x_3 = b_{0,i+1}, \qquad x_4 = a_{i+1,i+1}, \quad x_5 = b_{i+1,i+1}.$

It follows that

$$\begin{aligned} &\{x_1x_2, x_2x_3, x_3x_4, x_4x_5\} = \\ &= \{b_{i,i} * a_{00}, a_{00} * b_{0,i+1}, b_{0,i+1} * a_{i+1,i+1}, a_{i+1,i+1} * b_{i+1,i+1}\} \subset \\ &\subset U_{\mathcal{AB}} \cup a_{00} * B_{a_{00}} \cup a_{i+1,i+1} * B_{a_{i+1,i+1}} \cup a_{i+1,i+1} * B_{a_{i+1,i+1}} \subset U_{\mathcal{AB}}. \end{aligned}$$

On the other hand,

$$\{x_0x_1, x_0x_5, x_1x_4\} = \{a_{i+1, i \oplus 2} * b_{i, i}, a_{i+1, i \oplus 2} * b_{i+1, i+1}, b_{i, i} * a_{i+1, i+1}\} \subset \\ \subset b_{i, i} * A_{b_{i, i}} \cup b_{i+1, i+1} * A_{b_{i+1, i+1}} \cup b_{i, i} * A_{b_{i, i}} \subset U_{\mathcal{B}\mathcal{A}}.$$

Then $\{x_1x_2, x_2x_3, x_3x_4, x_4x_5\} \cap \{x_0x_1, x_0x_5, x_1x_4\} \subset U_{\mathcal{AB}} \cap U_{\mathcal{BA}} = \varnothing$. By the condition (4), the intersection

$$\{x_1x_2, x_2x_3, x_3x_4, x_4x_5\} \cap \{x_0x_1, x_0x_5, x_1x_4, x_2x_5\}$$

is not empty, which implies that

$$a_{00} * b_{i+1,i+1} = x_2 x_5 \in \{x_1 x_2, x_2 x_3, x_3 x_4, x_4 x_5\} \subset U_{\mathcal{AB}}.$$

After completing the inductive construction, we conclude that $a_{00} * b_{n-1,n-1} \in U_{AB}$ which is impossible as

$$a_{00} * b_{n-1,n-1} = a_k * b_{k+n-1} = a_m * b_{m-1} = b_{m-1} * a_m \in U_{\mathcal{BA}}.$$

We shall apply Theorem 9.2 to detecting monogenic semigroups that have commutative superextensions.

Theorem 9.3. For a monogenic semigroup $X = \{x^k\}_{k \in \mathbb{N}}$ the following conditions are equivalent

- 1) $\lambda(X)$ is commutative;
- 2) $\lambda^{\bullet}(X)$ is commutative;
- 3) $x^n = x^m$ for some pair (n, m) in the set $\{(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5), (2, 6)\}.$

Proof. We shall prove the implications $(3) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3)$, among which the implication $(1) \Rightarrow (2)$ is trivial.

 $(3) \Rightarrow (1)$ Assume that $x^n = x^m$ for some pair (n, m) in the set

$$\{(1,2),(1,3),(2,3),(1,4),(2,4),(3,4),(1,5),(2,5),(3,5),(4,5),(2,6)\}.$$

If $(n, m) \in \{(1, 2), (1, 3), (1, 4), (1, 5)\}$ then X is isomorphic to a cyclic group of order ≤ 4 and $\lambda(X)$ is commutative by Theorem 5.1 of [6].

If (n,m)=(2,3), then the semigroup $\lambda(X)=X$ is commutative.

If $(n,m) \in \{(2,4),(3,4)\}$, then |X|=3 and $\lambda(X)=X \cup \{\triangle\}$ where $\triangle=\{A\subset X: |A|\geqslant 2\}$. Taking into account that xy=yx and $\triangle\cdot x=x\cdot\triangle$ for all $x,y\in X$, we see that the semigroup $\lambda(X)$ is commutative.

If (n,m)=(2,5), then $xa=x^4a$ for every $a\in X$ and hence $X=\{x,x^2,x^3,x^2\}$ is a projective extension of the cyclic subgroup $\{x^2,x^3,x^4\}$. In this case the commutativity of $\lambda(X)$ follows from the commutativity of $\lambda(C_3)$ according to Proposition 3.3.

By analogy, for (n, m) = (2, 6) the commutativity of the semigroup $\lambda(X)$ follows from the commutativity of the semigroup $\lambda(C_4)$.

Now consider the case (n, m) = (3, 5). In this case $X = \{x, x^2, x^3, x^4\}$ and the semigroup $\lambda(X)$ contains 12 elements:

$$k = \langle \{x^k\} \rangle,$$

 $\triangle_k = \langle \{A \subset X : |A| = 2, \ x^k \notin A\} \rangle \text{ and }$
 $\Box_k = \langle \{X \setminus \{x^k\}, A : A \subset X, \ |A| = 2, \ x^k \in A\} \rangle,$

where $k \in \{1, 2, 3, 4\}$. The following Cayley table of multiplication in the
semigroup $\lambda(X)$ implies the commutativity of $\lambda(X)$:

*	\triangle_1	\triangle_2	\triangle_3	\triangle_4	\Box_1	\square_2	\square_3	\Box_4
\triangle_1	4	3	4	3	3	4	3	4
\triangle_2	3	\triangle_1	3	\triangle_1	\triangle_1	3	\triangle_1	3
\triangle_3	4	3			3	4	3	4
\triangle_4	3	\triangle_1		\triangle_1	\triangle_1	3	\triangle_1	
\square_1	3	\triangle_1			\triangle_1			3
\square_2	4	3	4	3	3	4	3	4
\square_3	3	\triangle_1	3	\triangle_1		3	\triangle_1	3
\square_4	4	3	4	3	3	4	3	4

In the final case (n,m)=(4,5), the product of any two nonprincipal maximal linked upfamilies is equal to the principal ultrafilter $\langle \{x^4\} \rangle$, which implies that the semigroup $\lambda(X)$ is commutative.

 $(2)\Rightarrow (3)$ Let $X=\{x^k\}_{k\in\mathbb{N}}$ be a monogenic semigroup with commutative extension $\lambda^{\bullet}(X)$. If $|X|\leqslant 4$, then $x^n=x^m$ for some $(n,m)\in\{(1,2),(1,3),(2,3),(1,4),(2,4),(3,4),(1,5),(2,5),(3,5),(4,5)\}$. If $x^6=x^2$, then we are done. So, we assume that $x^6\neq x^2$ and $|X|\geqslant 5$. In this case the elements x,x^2,x^3,x^4,x^5 are pairwise distinct.

We claim that $x^7 \in \{x^3, x^4\}$. In the opposite case we can put $x_0 = x^4$, $x_1 = x^3$, $x_2 = x$, $x_3 = x^2$, $x_4 = x^2$, $x_5 = x$ and observe that

$$\{x_1x_2, x_2x_3, x_3x_4, x_4x_5\} \cap \{x_1x_4, x_2x_5, x_0x_1, x_0x_5\} = \{x^3, x^4\} \cap \{x^2, x^5, x^7\} = \emptyset,$$

which implies that the semigroup $\lambda^{\bullet}(X)$ is not commutative according to Theorem 9.2. This contradiction shows that $x^7 \in \{x^3, x^4\}$ and hence the monogenic semigroup X is finite.

If $x^7 = x^3$, then we can put $x_0 = x^5$, $x_1 = x_2 = x$, $x_3 = x^3$, $x_4 = x_5 = x^2$ and observe that

$$\{x_1x_2, x_2x_3, x_3x_4, x_4x_5\} \cap \{x_1x_4, x_2x_5, x_0x_1, x_0x_5\} =$$

$$= \{x^2, x^4, x^5\} \cap \{x^3, x^6, x^7\} = \emptyset$$

since $x^6 \neq x^2$. By Theorem 9.2, the semigroup $\lambda^{\bullet}(X)$ is not commutative. If $x^7 = x^4$, then we can put $x_0 = x_1 = x$, $x_2 = x^4$, $x_3 = x^3$, $x_4 = x_5 = x^2$ and observe that

$$\{x_1x_2, x_2x_3, x_3x_4, x_4x_5\} \cap \{x_1x_4, x_2x_5, x_0x_1, x_0x_5\} =$$

$$= \{x^5, x^7, x^4\} \cap \{x^3, x^6, x^2, x^3\} = \varnothing,$$

which implies that the semigroup $\lambda^{\bullet}(X)$ is not commutative according to Theorem 9.2.

Now we establish some structural properties of semigroups X having commutative superextensions $\lambda(X)$. A semigroup X is called a 0-bouquet of its subsemigroups X_{α} , $\alpha \in I$, if

- $X = \bigcup_{\alpha \in A} X_{\alpha}$;
- X has two-sided zero 0;
- $X_{\alpha} \cap X_{\beta} = X_{\alpha} * X_{\beta} = \{0\}$ for any distinct indices $\alpha, \beta \in I$.

In this case we write $X = \bigvee_{\alpha \in I} X_{\alpha}$.

Proposition 9.4. Assume that a semigroup $X = \bigvee_{\alpha \in I} X_{\alpha}$ is a 0-bouquet of its subsemigroups X_{α} , $\alpha \in I$. The superextension $\lambda(X)$ is commutative if and only if for each $\alpha \in I$ the semigroup $\lambda(X_{\alpha})$ is commutative.

Proof. The "only if" part is trivial. To prove the "if" part, assume that the semigroup $\lambda(X)$ is not commutative. By Theorem 9.1, there are two symmetric matrices $(a_{ij})_{i,j\in\omega}$ and $(b_{ij})_{i,j\in\omega}$ with the coefficients in X such that the sets $A = \{a_{ii} * b_{ij}\}_{i,j\in\omega}$ and $B = \{b_{ii} * a_{i+1,j}\}_{i,j\in\omega}$ are disjoint. Then $0 \notin A$ or $0 \notin B$.

First assume that $0 \notin A$. Find an index $\alpha \in I$ such that $a_{00} \in X_{\alpha}$. It follows from $0 \notin \{a_{00}b_{0j}\}_{j\in\omega}$ that $b_{0j} \in X_{\alpha}$ for all $j \in \omega$. Observe that for every $i \in \omega$ we get $a_{ii}b_{i0} = a_{ii}b_{0i} \neq 0$ and hence $a_{ii} \in X_{\alpha}$. Finally, for each $i, j \in \omega$, the inequality $a_{ii}b_{ij} \neq 0$ implies that $b_{ij} \in X_{\alpha}$. So, $\{a_{ii}\}_{i\in\omega} \cup \{b_{ij}\}_{i,j\in A} \subset X_{\alpha}$. Now for every $i, j \in \omega$ put

$$a'_{ij} = \begin{cases} a_{ij} & \text{if } a_{ij} \in X_{\alpha}, \\ 0 & \text{otherwise} \end{cases}$$

and observe that $(a_{ij})_{i,j\in\omega}$ is a symmetric matrix with coefficients in X_{α} . It follows that $\{a'_{ii}b_{ij}\}_{i,j\in\omega} = \{a_{ii}b_{ij}\}_{i,j\in\omega} = A \text{ and } \{b_{ii}a_{i+1,j}\}_{i,j\in\omega} \subset (B \cap X_{\alpha}) \cup \{0\}$. Since $A \cap (B \cup \{0\}) = \emptyset$, Theorem 9.1 implies that the semigroup $\lambda(X_{\alpha})$ is not commutative.

By analogy, we can treat the case $0 \notin B = \{b_{ii} * a_{i+1,j}\}_{i,j \in \omega}$. In this case there is $\alpha \in I$ such that $\{b_{ii}\}_{i \in \omega} \cup \{a_{i+1,j}\}_{i,j \in \omega} \subset X_{\alpha} \setminus \{0\}$. Changing the element a_{00} by 0, if necessary, we get $\{a_{ij}\}_{i,j \in \omega} \subset X_{\alpha}$. Now for every

 $i, j \in \omega$ put

$$b'_{ij} = \begin{cases} b_{ij} & \text{if } b_{ij} \in X_{\alpha}, \\ 0 & \text{otherwise.} \end{cases}$$

Observe that $(a_{ij})_{i,j\in\omega}$ and $(b'_{ij})_{i,j\in\omega}$ are symmetric matrices with coefficients in X_{α} such that $\{a_{ii}b_{ij}^{\dagger}\}_{i,j\in\omega}\subset A\cup\{0\}$ and $\{b'_{ii}a_{i+1,j}\}_{i,j\in\omega}=(b_{ii}a_{i+1,j}\}_{i,j\in\omega}=B$. Since $(A\cup\{0\})\cap B=\varnothing$, Theorem 9.1 implies that the semigroup $\lambda(X_{\alpha})$ is not commutative.

Now we detect regular semigroups X whose superextensions $\lambda(X)$ are commutative.

In the following theorem for a natural number $n \in \mathbb{N}$ by

$$C_n = \{ z \in \mathbb{C} : z^n = 1 \}$$

we denote the cyclic group of order n and by

$$L_n = \{0, \dots, n-1\}$$

the linear semilattice endowed with the operation of minimum.

For two semigroups (X,*) and (Y,*) by $X \sqcup Y$ we denote the semigroup $X \times \{0\} \cup Y \times \{1\}$ endowed with the semigroup operation

$$(a,i) \circ (b,j) = \begin{cases} (a*b,0) & \text{if } i=0 \text{ and } j=0, \\ (a,0) & \text{if } i=0 \text{ and } j=1, \\ (b,0) & \text{if } i=1 \text{ and } j=0, \\ (a \star b,1) & \text{if } i=1 \text{ and } j=1. \end{cases}$$

The semigroup $X \sqcup Y$ is called the *ordered union* of the semigroups X and Y. For example, the ordered union $L_1 \sqcup C_2$ is isomorphic to the multiplicative semigroup $\{-1,0,1\}$.

Theorem 9.5. The superextension $\lambda(X)$ of a regular semigroup X is commutative if and only if one of the following conditions holds:

- X is isomorphic to one of the semigroups: C_2 , C_3 , C_4 , $C_2 \times C_2$, $C_2 \times L_2$, $L_1 \sqcup C_2$, $C_2 \sqcup L_n$ for some $n \in \mathbb{N}$;
- $X = \bigvee_{\alpha \in A} X_{\alpha}$ for some subsemigroups X_{α} , $\alpha \in A$, isomorphic to $L_1 \sqcup C_2$ or L_n for $n \in \mathbb{N}$.

Proof. To prove the "if" part, assume that a semigroup X satisfies conditions (1) or (2). If X is isomorphic to one of the groups C_2 , C_3 , C_4 , or $C_2 \times C_2$, then its superextension $\lambda(X)$ is commutative according to

Theorem 5.1 of [6]. If X is isomorphic to $C_2 \times L_2$ or $C_2 \sqcup L_n$ for some $n \in \mathbb{N}$, then $\lambda(X)$ is commutative by Theorem 1.1 of [5].

Next, assume that $X = \bigvee_{\alpha \in A} X_{\alpha}$ is a 0-bouquet of its subsemigroups X_{α} , $\alpha \in A$, isomorphic to $L_1 \sqcup C_2$ or L_n , $n \in \mathbb{N}$. By Theorem 1.1 of [5], the superextension of the semigroups $L_1 \sqcup C_2$ and L_n , $n \in \mathbb{N}$, are commutative. Consequently, for every $\alpha \in X_{\alpha}$ the superextension $\lambda(X_{\alpha})$ is commutative and by Proposition 9.4, the superextension $\lambda(X)$ is commutative too. This completes the proof of the "if" part.

The prove the "only if" part we shall use the following:

Lemma 9.6. The superextension $\lambda(X)$ of a semigroup X is not commutative if X is isomorphic to one of the semigroups:

- 1) $L_1 \sqcup C_n$ for $n \geqslant 3$;
- 2) $C_n \sqcup L_1 \text{ for } n \geqslant 3$;
- 3) $L_1 \sqcup C_2 \sqcup L_1$;
- 4) $L_2 \sqcup C_2$;
- 5) $(C_2 \times C_2) \sqcup L_1$;
- 6) $L_1 \sqcup (C_2 \times C_2)$;
- 7) $C_2 \sqcup C_2$.
- *Proof.* 1. If $X = L_1 \sqcup C_n = \{e_1\} \sqcup \{a^i\}_{i=0}^{n-1}$ for some $n \ge 3$, then the maximal linked upfamilies $\square = \langle \{e_1, a^0\}, \{e_1, a\}, \{e_1, a^{-1}\}, \{a^0, a, a^{-1}\} \rangle$ and $\triangle = \langle \{a^0, a\}, \{a^0, a^{-1}\}, \{a, a^{-1}\} \rangle$ do not commute, since $\{e_1, a^0\} = a^0\{e_1, a^0\} \cup a\{e_1, a^{-1}\} \in \triangle * \square$ while $\{e_1, a^0\} \notin \square * \triangle$.
- 2. If $X = C_n \sqcup L_1 = \{a^i\}_{i=0}^{n-1} \sqcup \{e_2\}$ for some $n \geq 3$, then the maximal linked upfamilies $\square = \langle \{a^2, a\}, \{a^2, a^0\}, \{a^2, e_2\}, \{a^0, a, e_2\} \rangle$ and $\triangle = \langle \{a^0, e_2\}, \{a^0, a^2\}, \{e_2, a^2\} \rangle$ do not commute, since $\{a^2, e_2\} = a^2\{a^0, e_2\} \cup e_2\{a^2, e_2\} \in \square * \triangle$ while $\{e_2, a^2\} \notin \triangle * \square$.
- 3. If $X = L_1 \sqcup C_2 \sqcup L_1 = \{e_1\} \sqcup \{e_2, a\} \sqcup \{e_3\}$ where $a \neq a^2 = e_2$, then the maximal linked upfamilies $\square_3 = \langle \{e_1, e_3\}, \{e_2, e_3\}, \{a, e_3\}, \{e_1, e_2, a\} \rangle$ and $\square_a = \langle \{a, e_1\}, \{a, e_2\}, \{a, e_3\}, \{e_1, e_2, e_3\} \rangle$ do not commute, since $\{e_1, e_2\} = e_1\{e_1, e_2, e_3\} \cup e_2\{e_1, e_2, e_3\} \cup a\{a, e_1\} \in \square_3 * \square_a$ while $\{e_1, e_2\} \notin \square_a * \square_3$.
- 4. If $X = L_2 \sqcup C_2 = \{e_1, e_2\} \sqcup \{e_3, a\}$ where $a \neq a^2 = e_3$, then the maximal linked upfamilies $\square = \langle \{e_1, e_2\}, \{e_1, e_3\}, \{e_1, a\}, \{e_2, e_3, a\} \rangle$ and $\triangle = \langle \{e_2, a\}, \{e_2, e_3\}, \{a, e_3\} \rangle$ do not commute, since $\{e_2, e_3\} = e_2\{e_2, e_3\} \cup e_3\{e_2, e_3\} \cup a\{e_2, a\} \in \square * \triangle$ while $\{e_2, e_3\} \notin \triangle * \square$.
- 5. If $X = (C_2 \times C_2) \sqcup \{e_2\}$ where $C_2 \times C_2 = \{e_1, a, b, ab\}$ and $a^2 = b^2 = (ab)^2 = e_1$, then the maximal linked upfamilies
- $\square = \langle \{a, b\}, \{a, e_1\}, \{a, e_2\}, \{e_1, e_2, b\} \rangle \text{ and } \triangle = \langle \{e_1, e_2\}, \{e_1, a\}, \{e_2, a\} \rangle$

do not commute, since $\{a,e_2\}=a\{e_1,e_2\}\cup e_2\{e_2,a\}\in\square*\triangle$ and $\{a,e_2\}\notin\triangle*\square$.

- 6. If $X = \{e_1\} \sqcup (C_2 \times C_2)$ where $C_2 \times C_2 = \{e_2, a, b, ab\}$ and $a^2 = b^2 = (ab)^2 = e_2$, then the maximal linked upfamilies
- $\square = \langle \{e_1, e_2\}, \{e_1, a\}, \{e_1, b\}, \{e_2, a, b\} \rangle$ and $\triangle = \langle \{e_2, a\}, \{e_2, b\}, \{a, b\} \rangle$ do not commute, since $\{e_1, e_2\} = e_2\{e_1, e_2\} \cup a\{e_1, a\} \in \triangle * \square$ and $\{e_1, e_2\} \notin \square * \triangle$.
- 7. Finally assume that $X = C_2 \sqcup C_2 = \{e_1, a_1\} \cup \{e_2, a_2\}$ where $e_1 < e_2$ are idempotents of X, $a_1^2 = e_1$, $a_2^2 = e_2$, and $e_1 * a_2 = e_1$. In this case the maximal linked upfamilies

$$\Box_e = \langle \{e_1, a_1\}, \{e_1, a_2\}, \{e_1, e_2\}, \{a_1, a_2, e_2\} \rangle \text{ and }$$

$$\Box_a = \langle \{a_1, e_1\}, \{a_1, e_2\}, \{a_1, a_2\}, \{e_1, e_2, a_2\} \rangle$$

do not commute as $\{e_1, e_2\} = e_1\{e_1, e_2\} \cup e_2\{e_1, e_2\} \cup a_2\{e_1, a_2\} \in \square_a * \square_e$ while $\{e_1, e_2\} \notin \square_e * \square_a$.

Now we are ready to prove the "only if" part of Theorem 9.5. Assume that the superextension $\lambda(X)$ is commutative. In this case the regular semigroup X is commutative and consequently X is a Clifford inverse semigroup. By Theorem 5.1 of [6], the commutativity of $\lambda(X)$ implies that each subgroup of X has cardinality ≤ 4 . By Theorem 2.7 [5], the idempotent band $E(X) = \{x \in X : xx = x\}$ of X is a 0-bouquet of finite linear semilattices.

First we assume that E(X) is a finite linear semilattice, which can be written as $E(X) = \{e_1, \ldots, e_n\}$ for some idempotents $e_1 < \cdots < e_n$. For every $i \in \{1, \ldots, n\}$ by H_{e_i} we denote the maximal subgroup of X containing the idempotent e_i . As we have shown the group H_{e_i} has cardinality $|H_{e_i}| \leq 4$.

If n = 1, then the Clifford inverse semigroup X coincides with the group H_{e_1} and hence is isomorphic to $C_1 = L_1$, C_2 , C_3 , C_4 or $C_2 \times C_2$.

So, we assume that $n \geq 2$. Lemma 9.6(2,5) implies that for every i < n the maximal subgroup H_{e_i} has cardinality $|H_{e_i}| \leq 2$. For the maximal idempotent e_n of E(X) the complement $I = X \setminus H_{e_n}$ is an ideal in X. So, we can consider the quotient semigroup X/I, which is isomorphic to $L_1 \sqcup H_{e_n}$. The commutativity of $\lambda(X)$ implies the commutativity of the semigroup $\lambda(X/I)$. Now Lemma 9.6(1,6) implies that $|H_{e_n}| \leq 2$.

If $|E(X)| \ge 3$, then for any 1 < i < n, the maximal subgroup H_{e_i} is trivial according to Lemma 9.6(3) and then for the maximal idempotent e_n , the subgroup H_{e_n} is trivial according to Lemma 9.6(4). Therefore, all maximal groups H_{e_i} , $1 < i \le n$, are trivial. If the group H_{e_1} is trivial,

then X = E(X) is isomorphic to the linear semilattice L_n . If H_{e_1} is not trivial, then H_{e_1} is isomorphic to C_2 and X is isomorphic to $C_2 \sqcup L_{n-1}$.

It remains to consider the case |E(X)| = 2. In this case the groups H_{e_1} , H_{e_2} have cardinality ≤ 2 and then X is isomorphic to L_2 , $C_2 \sqcup L_1$, $L_1 \sqcup C_2$, $C_2 \times L_2$ or $C_2 \sqcup C_2$. However the case $X \cong C_2 \sqcup C_2$ is excluded by Lemma 9.6(7). This completes the proof of the case of linear semilattice E(X).

Now we consider the case of non-linear semilattice E(X). Write E(X) as a 0-bouquet $E(X) = \bigvee_{\alpha \in I} E_{\alpha}$ of finite linear semilattices E_{α} . Let e_0 be the minimal idempotent of the semilattice E(X). Since E(X) is not linear, there are two idempotents $e_1, e_2 \in E(X) \setminus \{e_0\}$ such that $e_1e_2 = e_0$. We claim that the maximal subgroup H_{e_0} containing the idempotent e_0 is trivial. It follows from the "linear" case, that $|H_{e_0}| \leq 2$. Assuming that H_{e_0} is not trivial, write $H_{e_0} = \{a, e_0\}$ and consider the maximal linked upfamilies $\Delta_0 = \langle \{a, e_1\}, \{e_1, e_2\}, \{a, e_2\} \rangle$ and $\Delta_a = \langle \{e_0, e_1\}, \{e_1, e_2\}, \{e_0, e_2\} \rangle$ which do not commute since $\Delta_0 * \Delta_a = \langle \{e_0\} \rangle \neq \langle \{a\} \rangle = \Delta_a * \Delta_0$. Consequently, the maximal subgroup H_{e_0} is trivial and hence for every $\alpha \in A$ the subsemigroup $X_{\alpha} = \bigcup_{e \in E_{\alpha}} H_e$ is isomorphic to $L_1 \sqcup C_2$ or L_n , $n \in \mathbb{N}$, by the preceding "linear" case.

Theorems 9.3 and 9.5 imply:

Corollary 9.7. If a semigroup X has commutative superextension $\lambda(X)$, then

- 1) for each $x \in X$ there is a pair $(n, m) \in \{(2, 5), (2, 6), (3, 5), (4, 5)\}$ such that $x^n = x^m$;
- 2) the idempotent semilattice $E(X) = \{x \in X : xx = x\}$ of X is a 0-bouquet of finite linear semilattices;
- 3) the regular part $R(X) = \{x \in X : x \in xXx\}$ of X is isomorphic to one of the following semigroups:
 - $L_1, C_2, C_3, C_4, C_2 \times C_2, C_2 \times L_2, C_2 \sqcup L_n \text{ for some } n \in \mathbb{N};$
 - a 0-bouquet $\bigvee_{\alpha \in A} X_{\alpha}$ of subsemigroups X_{α} , $\alpha \in I$, isomorphic to $L_1 \sqcup C_2$ or L_n for $n \geqslant 2$.

10. Supercommutativity of superextensions $\lambda(X)$

By Theorems 6.3, 7.1, 7.2, 8.1, 8.2, for any semigroup X, the semigroups v(X), $v^{\bullet}(X)$, $\varphi(X)$, $\varphi(X)$, $N_2(X)$, $N_2(X)$ are supercommutative if and only if they are commutative. In contrast, the supercommutativity of the superextension $\lambda(X)$ is not equivalent to its commutativity.

Theorem 10.1. For a monogenic semigroup $X = \{x^k\}_{k \in \mathbb{N}}$ the following conditions are equivalent:

- 1) the semigroup $\lambda(X)$ is supercommutative;
- 2) the semigroup $\lambda^{\bullet}(X)$ is supercommutative;
- 3) $x^n = x^m$ for some $(n, m) \in \{(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (4, 5)\}.$

Proof. We shall prove the implications $(3) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3)$ among which the implication $(1) \Rightarrow (2)$ is trivial.

 $(3) \Rightarrow (1)$. Assume that $x^n = x^m$ for some pair (n,m) from the set $\{(1,2),(1,3),(2,3),(2,4),(3,4),(4,5)\}$. For $(n,m) \in \{(1,2),(1,3),(2,3)\}$ the monogenic semigroup X has cardinality $|X| \leq 2$ and then the semigroup $\lambda(X) = X$ is supercommutative.

If (n,m)=(2,4), then the monogenic semigroup X has cardinality |X|=3 and for the unique non-principal maximal linked system $\triangle=\{A\subset X:|A|\geqslant 2\}$ in $\lambda(X)$ the product $\triangle\otimes\triangle$ is equal to the principal ultrafilter $\langle x^2\rangle=\triangle*\triangle$, which implies that the semigroup $\lambda(X)$ is supercommutative.

If $(n, m) \in \{(3, 4), (4, 5)\}$, then any two nonprincipal maximal linked systems \mathcal{A}, \mathcal{B} contain sets $A \in \mathcal{A}, B \in \mathcal{B}$ such that $x \notin A, x \notin B$. Then AB is a singleton, which implies $\mathcal{A} \circledast \mathcal{B} = \mathcal{A} * \mathcal{B}$. Consequently, the semigroup $\lambda(X)$ is supercommutative.

 $(2) \Rightarrow (3)$ Assume that for a monogenic semigroup $X = \{x^k\}_{k \in \mathbb{N}}$ the superextension $\lambda^{\bullet}(X)$ is supercommutative. Then it is commutative and by Theorem 9.3, $x^n = x^m$ for some pair (n, m) from the set

$$\{(1,2),(1,3),(2,3),(1,4),(2,4),(3,4),(1,5),(2,5),(3,5),(4,5),(2,6)\}.$$

We claim that $|m-n| \leq 2$. In the opposite case X contains a cyclic subgroup C of cardinality $|C| \geq 3$. The subgroup C contains an element $x \in C$ such that the points x^{-1}, x^0, x^1 are pairwise distinct. Then for the maximal linked system $\Delta = \langle \{x^{-1}, x^0\}, \{x^0, x^1\}, \{x^{-1}, x^1\} \rangle \in \lambda^{\bullet}(C) \subset \lambda^{\bullet}(X)$ the product

$$\triangle \circledast \triangle = \langle \{x^{-2}, x^{-1}, x^0\}, \{x^{-1}, x^0, x^1\}, \{x^0, x^1, x^2\} \rangle$$

does not belong to $\lambda(C)$, which implies that $\Delta \circledast \Delta \neq \Delta * \Delta$ and contradicts the supercommutativity of $\lambda(X)$. So, $|m-n| \leq 2$, which implies that $(n,m) \in \{(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(4,5)\}$. It remains to exclude the case (n,m)=(3,5). In this case $X=\{x,x^2,x^3,x^4\}$ and for

the maximal linked upfamilies $\square=\langle\{x^2,x^3,x^4\},\{x,x^2\},\{x,x^3\},\{x,x^4\}\rangle$ and $\triangle=\langle\{x,x^2\},\{x,x^3\},\{x^2,x^3\}\rangle$ we get

$$\square \circledast \triangle = \langle \{x^2, x^4\}, \{x^3, x^4\} \rangle \neq \square * \triangle,$$

which contradicts the supercommutativity of the semigroup $\lambda(X)$.

In the following theorem by V_3 we denote the semilattice $\{0,1\}^2 \setminus \{(1,1)\}$ endowed with the operation of coordinatewise minimum. Observe that a semilattice X is isomorphic to V_3 if and only if |X|=3 and X is not linear.

Theorem 10.2. The superextension $\lambda(X)$ of a regular semigroup X is supercommutative if and only if X is isomorphic to one of the semigroups: C_2 , $L_1 \sqcup C_2$, V_3 or L_n for $n \in \mathbb{N}$.

Proof. First we prove the "if" part of the theorem. If $X = C_2$, then its superextension $\lambda(X) = X$ is supercommutative as all maximal linked upfamilies on X are principal ultrafilters.

If $X = L_1 \sqcup C_2$, then $\lambda(X)$ is supercommutative since for the unique non-principal maximal linked system $\triangle = \{A \subset X : |A| \ge 2\}$ we get $\triangle \circledast \triangle = \triangle = \triangle * \triangle$.

If $X = V_3$, then $\lambda(X)$ is supercommutative since for the unique non-principal maximal linked system $\Delta = \{A \subset X : |A| \ge 2\}$ the products $\Delta \circledast \Delta = \langle \min V_3 \rangle = \Delta * \Delta$ coincide with the principal ultrafilter generated by the minimal element $(0,0) = \min V_3$ of the semilattice V_3 .

If $X = L_n$ for some $n \in \mathbb{N}$, then the supercommutativity of the semigroup $\lambda(X)$ follows from Theorem 2.5 of [4].

To prove the "only if" part, assume that X is a regular semigroup with supercommutative superextension $\lambda(X)$. First observe that every subgroup G of X has cardinality $|G| \leqslant 2$. In the opposite case the group G contains an element $x \in X$ such that $|\{x^1, x^0, x^{-1}\}| = 3$ where x^0 is the idempotent of the group G. Then for the maximal linked system $\Delta = \langle \{x^{-1}, x^0\}, \{x^0, x^1\}, \{x^{-1}, x^1\} \rangle$ the product $\Delta \circledast \Delta = \langle \{x^{-2}, x^{-1}, x^0\}, \{x^{-1}, x^0, x^1\}, \{x^0, x^1, x^2\} \rangle$ does not belong to $\lambda(X)$ and hence is not equal to $\Delta * \Delta$. This contradiction shows that all subgroups of X has cardinality $\leqslant 2$. This fact combined with Theorem 9.5 yields that X is isomorphic to one of the semigroups:

- $L_1, C_2, C_2 \bigsqcup L_n$ for some $n \in \mathbb{N}$;
- a 0-bouquet $\bigvee_{\alpha \in I} X_{\alpha}$ of subsemigroups X_{α} , $\alpha \in I$, isomorphic to $L_1 \sqcup C_2$ or L_n for $n \geq 2$.

It remains to exclude the semigroups from this list, whose superextensions are not supercommutative.

If $X = C_2 \sqcup L_n$, then X contains the semigroup $C_2 \sqcup L_1 = \{e_1, a\} \cup \{e_2\}$ where $a^2 = e_1 \neq a$ and $e_1 < e_2$ are idempotents. In this case for the maximal linked system $\Delta = \langle \{a, e_1\}, \{e_1, e_2\}, \{a, e_2\} \rangle$ we get $\Delta \circledast \Delta = \langle \{a, e_1\}, \{e_1, e_2\} \rangle \notin \lambda(X)$ and hence $\Delta \circledast \Delta \neq \Delta * \Delta$, which means that $\lambda(X)$ is not supercommutative.

If $X = L_1 \sqcup C_2 = \{e_1\} \cup \{e_2, a\}$ where $a^2 = e_2 > e_1$, then for the maximal linked system $\triangle = \langle \{a, e_1\}, \{e_1, e_2\}, \{a, e_2\} \rangle$ we get $\triangle \circledast \triangle = \langle \{e_1, e_2\}, \{e_2, a\} \rangle \notin \lambda(X)$ and hence $\triangle \circledast \triangle \neq \triangle * \triangle$, which means that $\lambda(X)$ is not supercommutative.

It remains to consider the case when $X = \bigcup_{\alpha \in I} X_{\alpha}$ is a 0-bouquet of subsemigroups X_{α} , $\alpha \in I$, isomorphic to L_n for $n \geq 2$. If |I| = 1, then X is isomorphic to L_n for some $n \geq 2$ and $\lambda(X)$ is supercommutative according to the "if"part.

If |I|=2, then $X=X_i\vee X_j$ for some non-trivial linear subsemilattices $X_i,X_j\subset X$ such that $X_j*X_j=X_i\cap X_j=\{\min X\}$. If $|X_i|=|X_j|=2$, then the semilattice X is isomorphic to the semilattice V_3 and its superextension $\lambda(X)$ is supercommutative as proved in the "if" part. So, we assume that $|X_i|\geqslant 3$ or $|X_j|\geqslant 3$. We loss no generality assuming that $|X_i|\geqslant 3$. Then we can find idempotents $e_0< e_1< e_2$ in X_i and $e_3\in X_j\setminus X_i$ such that $e_1e_3=e_2e_3=e_0=\min X$. In this case for the maximal linked system $\Delta=\langle\{e_1,e_2\},\{e_1,e_3\},\{e_2,e_3\}\rangle$ the product $\Delta\circledast\Delta=\langle\{e_0,e_1\},\{e_1,e_2\}\rangle\notin\lambda(X)$ and hence $\Delta\circledast\Delta\ne\Delta*$ which means that $\lambda(X)$ is not supercommutative.

If $|I| \geq 3$, then the semigroup X contains a 4-element semilattice $V_4 = \{e_0, e_1, e_2, e_3\}$ where $e_i e_j = e_0 = \min X$ for any distinct number $i, j \in \{1, 2, 3\}$. In this we can consider the maximal linked system $\triangle = \langle \{e_1, e_2\}, \{e_1, e_3\}, \{e_2, e_3\} \rangle \in \lambda(V_4) \subset \lambda(X)$ and observe that $\triangle \circledast \triangle = \langle \{e_0, e_1\}, \{e_0, e_2\}, \{e_0, e_3\} \rangle \notin \lambda(X)$. Consequently, $\triangle \circledast \triangle \neq \triangle * \triangle$ and the semigroup $\lambda(X)$ is not supercommutative.

Theorems 10.1 and 10.2 imply:

Corollary 10.3. If a semigroup X has supercommutative superextension $\lambda(X)$, then

- 1) for each $x \in X$ we get $x^4 \in \{x^2, x^5\}$;
- 2) the regular part $R(X) = \{x \in X : x \in xXx\}$ of X is isomorphic to C_2 , $L_1 \sqcup C_2$, V_3 or L_n for some $n \in \mathbb{N}$.

References

- [1] T. Banakh, V. Gavrylkiv, Algebra in superextension of groups, II: cancelativity and centers, Algebra Discr. Math. No.4 (2008), pp.1–14.
- [2] T. Banakh, V. Gavrylkiv, Algebra in superextension of groups: minimal left ideals, Mat. Stud. 31, (2009), 142–148.
- [3] T. Banakh, V. Gavrylkiv, Algebra in the superextensions of twinic groups, Dissert. Math. 473 (2010), 74pp.
- [4] T. Banakh, V. Gavrylkiv, Algebra in superextensions of semilattices, Algebra Discr. Math. 13:1 (2012) 26–42.
- [5] T. Banakh, V. Gavrylkiv, Algebra in superextensions of inverse semigroups, Algebra Discr. Math. 13:2 (2012) 147–168.
- [6] T. Banakh, V. Gavrylkiv, O. Nykyforchyn, Algebra in superextensions of groups, I: zeros and commutativity, Algebra Discr. Math. (2008), No.3, 1–29.
- [7] R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969.
- [8] V. Gavrylkiv, The spaces of inclusion hyperspaces over noncompact spaces, Mat. Stud. 28:1 (2007), 92–110.
- [9] V. Gavrylkiv, Right-topological semigroup operations on inclusion hyperspaces, Mat. Stud. 29:1 (2008), 18–34.
- [10] R. Graham, B. Rothschild, J. Spencer, Ramsey theory, John Wiley & Sons, Inc., New York, 1990.
- [11] N. Hindman, L. Legette, D. Strauss, The number of minimal left and minimal right ideals in βS , Topology Proc. **39** (2012), 45–68.
- [12] N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification, de Gruyter, Berlin, New York, 1998.
- [13] J.M. Howie, Fundamentals of semigroup theory, The Clarendon Press, Oxford University Press, New York, 1995.
- [14] J. van Mill, Supercompactness and Wallman spaces, Math. Centre Tracts. 85. Amsterdam: Math. Centrum., 1977.
- [15] I. Protasov, Combinatorics of Numbers, VNTL Publ., Lviv, 1997.
- [16] F. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264–286.
- [17] A. Verbeek, Superextensions of topological spaces, MC Tract 41, Amsterdam, 1972.

CONTACT INFORMATION

T. Banakh Ivan Franko University of Lviv, Ukraine and Jan

Kochanowski University, Kielce, Poland

E-Mail: t.o.banakh@gmail.com

V. Gavrylkiv Vasyl Stefanyk Precarpathian National Univer-

sity, Ivano-Frankivsk, Ukraine

E-Mail: vgavrylkiv@yahoo.com

Received by the editors: 11.02.2014 and in final form 23.04.2014.