On graphs with graphic imbalance sequences

Sergiy Kozerenko and Volodymyr Skochko

Communicated by V. V. Kirichenko

Abstract

The imbalance of the edge $e=u v$ in a graph G is the value $i m b_{G}(e)=\left|d_{G}(u)-d_{G}(v)\right|$. We prove that the sequence M_{G} of all edge imbalances in G is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called complete extensions of paths, cycles and complete graphs. Also, we formulate two interesting conjectures related to graphicality of M_{G}.

Introduction

The notion of edge imbalance was introduced in 1997 by Albertson [2] as a measure of irregularity of a graph. By definition irregularity of G is the following value:

$$
I(G)=\sum_{u v \in E(G)}\left|d_{G}(u)-d_{G}(v)\right|
$$

There is quite extensive literature on graphs irregularity (see [1-3,5-10] and references therein), which primarily consists of finding upper and lower bounds on $I(G)$. However, it seems like no author studied the sequence of edge imbalances in graphs as the main object. We hope that the present paper will open up things in this direction.

We consider only simple, finite and undirected graphs. By $V(G)$ and $E(G)$ we denote the vertex set and the edge set of a graph G respectively.

2010 MSC: 05C07, 05C99.
Key words and phrases: edge imbalance, graph irregularity, graphic sequence.

Two vertices $u, v \in V(G)$ are adjacent if they are joined by an edge, i.e. if $u v \in E(G)$. Two graphs G_{1} and G_{2} are isomorphic if there exists adjacency preserving bijection $\phi: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$. We write $G_{1} \simeq G_{2}$ if G_{1} and G_{2} are isomorphic.

The neighborhood of a vertex $u \in V(G)$ in a graph G is the set $N_{G}(u)=\{v \in V(G): u v \in E(G)\}$. The degree $d_{G}(u)$ of a vertex u in G is the number of its neighbors, i.e. $d_{G}(u)=\left|N_{G}(u)\right|$. A graph G is called regular if every vertex from G has the same degree.

The vertex $u \in V(G)$ is called isolated if $d_{G}(u)=0$. Further, the vertex $u \in V(G)$ is called a leaf if $d_{G}(u)=1$. The set of all leaves in G is denoted by $L(G)$.

The set of vertices $U \subset V(G)$ is called clique if every two vertices $u, v \in U$ are adjacent in G. A matching in a graph is a set of edges without common vertices.

A graph is connected if each pair of vertices is joined by a path. Otherwise graph is called disconnected. A maximal connected subgraph of a given graph G is called its connected component. The vertex $u \in V(G)$ is a cut-vertex if its deletion increases the number of connected components in G. A tree is a connected acyclic graph.

As usual, by $K_{n}, K_{1, n-1}, P_{n}$ and C_{n} we denote the complete graph, star, path and cycle with n vertices respectively. Note that by definition $K_{1,0}=K_{1}$.

The complement of a graph G is a graph \bar{G} with $V(\bar{G})=V(G)$ and $u v \in E(\bar{G})$ if $u v \notin E(G)$. The empty graph is a complement of complete graph.

Now let G_{1} and G_{2} be two graphs with disjoint vertex sets. The union of G_{1} and G_{2} is the graph $G=G_{1} \cup G_{2}$ with $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. We write $m H$ for the union $\cup_{i=1}^{m} G_{i}$ with $G_{i} \simeq H, 1 \leqslant i \leqslant m$.

Similarly, the join of G_{1} and G_{2} is the graph $G=G_{1}+G_{2}$ with $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v: u \in V\left(G_{1}\right), v \in\right.$ $\left.V\left(G_{2}\right)\right\}$.

The imbalance of the edge $e=u v$ in a graph G is the value $i m b_{G}(e)=$ $\left|d_{G}(u)-d_{G}(v)\right|$. The multiset of all edge imbalances in G is denoted by M_{G}. Note that irregularity $I(G)=\sum M_{G}$ is even for every graph G.

Now suppose we have a finite sequence M (or more correctly, a multiset) of nonnegative integers. The sequence M is called graphic if it is the degree sequence of some graph G. Every such graph G is called a realization of M. A well-known Erdos-Gallai theorem [4] states that the sequence
$M=\left\{a_{1} \geqslant \cdots \geqslant a_{n}\right\}$ is graphic if and only if the sum $\sum M$ is even and

$$
\sum_{i=1}^{r} a_{i} \leqslant r(r-1)+\sum_{i=r+1}^{n} \min \left\{r, a_{i}\right\}
$$

for all $1 \leqslant r \leqslant n-1$.
We associate with every finite sequence of integers $M=\left\{a_{1}, \ldots, a_{n}\right\}$ the function $f_{M}: \mathbb{Z} \rightarrow \mathbb{Z}$ in the following way:

$$
f_{M}(m)=\left|\left\{1 \leqslant i \leqslant n: a_{i}=m\right\}\right| .
$$

Also, by convention $m[n]$ denotes the sequence a_{1}, \ldots, a_{n} where $a_{i}=m$ for all $1 \leqslant i \leqslant n$. Thus, for example $\{1[2], 2[3]\}=\{1,1,2,2,2\}$. Note that the sequence $M=\{m[n]\}$ is graphic if and only if $m \leqslant n-1$ and $m n$ is even.

1. Results

Firstly, we formulate some easy properties of graphs whose imbalance sequences are graphic.

Proposition 1. Let G, G_{1}, G_{2} be graphs. Then

1) if $M_{G_{1}}$ and $M_{G_{2}}$ are graphic, then so is $M_{G_{1} \cup G_{2}}$;
2) if M_{G} is graphic, then $M_{K_{1}+G}$ is also graphic;
3) if G is a graph with constant edge imbalance, then M_{G} is graphic;

Proof. 1) Just observe that $M_{G_{1} \cup G_{2}}=M_{G_{1}} \cup M_{G_{2}}$.
2) If H is a realization of M_{G}, then it is easy to see that $H \cup \bar{G}$ is a realization of $M_{K_{1}+G}$.
3) If $\operatorname{imb}_{G}(e)=m \leqslant|E(G)|-1$ for all edges $e \in E(G)$, then since $I(G)=\sum M_{G}=m|E(G)|$ is always even, the sequence M_{G} is graphic.

Theorem 1. If T is a tree, then M_{T} is graphic.
Proof. Let T be a tree with $n \geqslant 1$ vertices. Firstly, suppose that $\mid V(T)-$ $L(T) \mid=0$. Then $T \simeq K_{2}$ and $M_{T}=\{0\}$ is obviously graphic. Similarly, if $|V(T)-L(T)|=1$, then $T \simeq K_{1, n-1}$ and $M_{T}=\{n-2[n-1]\}$ is also graphic.

Further the proof goes by induction on n. If $n=1$, then $T \simeq K_{1}$ and $M_{T}=\varnothing$ is trivially graphic. Now let T be a tree with $n \geqslant 2$ vertices. If $|V(T)-L(T)| \leqslant 1$, then we are done. If $|V(T)-L(T)| \geqslant 2$, then there exists a vertex $v \in V(T)$ that adjacent to $d_{T}(v)-1$ leaves in T. Thus there exists a unique non-leaf vertex $u \in V(T)$ adjacent to v.

Now consider a tree $T^{\prime}=T-\left(N_{T}(v) \cap L(T)\right)$. It is easy to check that

$$
M_{T}=\left(M_{T^{\prime}}-\left\{d_{T}(u)-1\right\}\right) \cup\left\{\left|d_{T}(u)-d_{T}(v)\right|, d_{T}(v)-1\left[d_{T}(v)-1\right]\right\}
$$

By induction hypothesis $M_{T^{\prime}}$ is graphic. Let H be its realization. Fix a vertex $x \in V(H)$ with $d_{H}(x)=i m b_{T^{\prime}}(u v)=d_{T}(u)-1$. We consider two cases.

Case 1: $d_{T}(u) \geqslant d_{T}(v)$.
Add to $H d_{T}(v)-1$ new vertices $x_{1}, \ldots, x_{d_{T}(v)-1}$ with edges $x_{i} x_{j}$ for $1 \leqslant i, j \leqslant d_{T}(v)-1$. Further, fix $d_{T}(v)-1$ neighbors $y_{1}, \ldots, y_{d_{T}(v)-1} \in$ $N_{H}(x)$ of x in H. Delete each edge $x y_{i}, 1 \leqslant i \leqslant d_{T}(v)-1$ and add new edges $x_{i} y_{i}$ for $1 \leqslant i \leqslant d_{T}(v)-1$. Obtained graph is a realization of M_{T}.

Case 2: $d_{T}(u) \leqslant d_{T}(v)-1$.
Let $N_{H}(x)=\left\{x_{1}, \ldots, x_{d_{T}(u)-1}\right\}$. Delete each edge $x x_{i}, 1 \leqslant i \leqslant$ $d_{T}(u)-1$ from H. Now add $d_{T}(v)-1$ new vertices $y_{1}, \ldots, y_{d_{T}(v)-1}$ with new edges $y_{i} y_{j}$ for $1 \leqslant i, j \leqslant d_{T}(v)-1$ and $x y_{k}$ for $d_{T}(u) \leqslant k \leqslant d_{T}(v)-1$. Also, add new edges $x_{k} y_{k}$ for $1 \leqslant k \leqslant d_{T}(u)-1$. Again, obtained graph is a realization of M_{T}.

Definition 1. A graph G is called cl-graph if $V(G)-L(G)$ induces a clique in G.

It is easy to see that if G is disconnected cl-graph, then $G \simeq H \cup m K_{2}$, where H is a connected cl-graph. Therefore M_{G} is graphic if and only if M_{H} is graphic.

Theorem 2. If G is a connected cl-graph graph, then M_{G} is graphic.
Proof. Let $V(G)-L(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. The proof goes by induction on n. If $n=1$, then G is a star and M_{G} is graphic by Theorem 1.

Now for every $1 \leqslant i \leqslant n$ consider the following value:

$$
l_{i}=\left|N_{G}\left(v_{i}\right) \cap L(G)\right| .
$$

At first suppose that there exists $1 \leqslant i_{0} \leqslant n$ such that $l_{i_{0}}=0$. In this case the vertex $v_{i_{0}}$ will be called bald.

From induction hypothesis it follows that $M_{G-v_{i_{0}}}$ is graphic. Suppose H its realization. Fix a bijection $f: E\left(G-v_{i_{0}}\right) \rightarrow V(H)$ with
$d_{H}(f(e))=i m b_{G-v_{i_{0}}}(e)$ for all edges $e \in E\left(G-v_{i_{0}}\right)$. Add $n-1$ new vertices x_{1}, \ldots, x_{n-1} with new edges $x_{i} f(e)$ for all $e=v_{i} u$, where $u \in$ $L\left(G-v_{i_{0}}\right), 1 \leqslant i \leqslant n-1$. It is easy to see that obtained graph is a realization of M_{G}.

Now let $l_{i} \geqslant 1$ for all $1 \leqslant i \leqslant n$. It means that for every $1 \leqslant i \leqslant n$ one can choose a vertex $u_{i} \in N_{G}\left(v_{i}\right) \cap L(G)$. Consider the graph $G^{\prime}=$ $G-\left\{u_{1}, \ldots, u_{n}\right\}$. We now show that if $M_{G^{\prime}}$ is graphic, then M_{G} is graphic too.

Suppose that H^{\prime} is a realization of $M_{G^{\prime}}$. Fix a bijection $g: E\left(G^{\prime}\right) \rightarrow$ $V\left(H^{\prime}\right)$ with $d_{H^{\prime}}(g(e))=i m b_{G^{\prime}}(e)$ for all edges $e \in E\left(G^{\prime}\right)$. Add n new vertices x_{1}, \ldots, x_{n} with new edges $x_{i} x_{j}, 1 \leqslant i, j \leqslant n$ and $x_{k} f(e)$ for all $e=v_{k} u$, where $u \in L\left(G^{\prime}\right), 1 \leqslant k \leqslant n$. Again, the obtained graph is a realization of M_{G}.

Therefore one can always reduce a cl-graph G to a cl-graph G_{0} with a bald vertex. But we have already proved that in this case $M_{G_{0}}$ is graphic. Thus for every cl-graph G the sequence M_{G} is graphic.

Let G be a graph with n vertices and $a: V(G) \rightarrow \mathbb{Z}_{+}$be a function with $a(v) \geqslant d_{G}(v)$ for all $v \in V(G)$.

Take n complete graphs $G_{v} \simeq K_{a(v)}, v \in V(G)$ with disjoint vertex sets. Since $a(v) \geqslant d_{G}(v)$, for every $v \in V(G)$ there exists injective map $\phi_{v}: N_{G}(v) \rightarrow V\left(G_{v}\right)$. A complete extension of G is a graph $G(a)$ which is obtained by taking the union of $G_{v}, v \in V(G)$ and adding new edges between $\phi_{v_{1}}\left(u_{1}\right)$ and $\phi_{v_{2}}\left(u_{2}\right)$ whenever $v_{1} v_{2} \in E(G)$ and $u_{1}=v_{2}, u_{2}=v_{1}$.

One can think of complete extension as of graph which is obtained from G by replacing each vertex $v \in V(G)$ with a complete graph of sufficiently large order.

Example 1. Fig. 1 shows a complete extension of the path $P_{3}=\left\{v_{1}-\right.$ $\left.v_{2}-v_{3}\right\}$ for $a\left(v_{1}\right)=2, a\left(v_{2}\right)=3, a\left(v_{3}\right)=1$.

Figure 1. Complete extension of P_{3}.

Proposition 2. Let G be a complete extension of a path $P_{n}, n \geqslant 1$. Then M_{G} is graphic.

Proof. Let $V\left(P_{n}\right)=\left\{v_{1}, \ldots, v_{n}\right\}, E\left(P_{n}\right)=\left\{v_{i} v_{i+1}: 1 \leqslant i \leqslant n-1\right\}$ and $G=P_{n}(a)$, where $a: V\left(P_{n}\right) \rightarrow \mathbb{Z}_{+}$with $a\left(v_{i}\right) \geqslant 2$ for all $2 \leqslant i \leqslant n-1$ and $a\left(v_{1}\right) \geqslant 1, a\left(v_{n}\right) \geqslant 1$.

Put $a_{i}=a\left(v_{i}\right)$ for each $1 \leqslant i \leqslant n$. We use induction on n.
If $n=1$, then G is a complete graph and thus $M_{G}=\{0, \ldots, 0\}$ is graphic.

Now let $n \geqslant 2$. Consider a path $P_{n-1}=P_{n}-\left\{v_{n}\right\}$ with a^{\prime} being restriction of a to $V\left(P_{n-1}\right)$ and put $G^{\prime}=P_{n-1}\left(a^{\prime}\right)$. One can check that

$$
\begin{aligned}
M_{G}= & \left(M_{G^{\prime}}-\left\{0\left[a_{n-1}-2\right], 1\right\}\right) \\
& \cup\left\{0\left[1+\frac{\left(a_{n}-1\right)\left(a_{n}-2\right)}{2}\right], 1\left[a_{n}+a_{n-1}-3\right],\left|a_{n-1}-a_{n}\right|\right\}
\end{aligned}
$$

From induction hypothesis it follows that $M_{G^{\prime}}$ is graphic. Suppose that H its realization. Fix a leaf $x^{\prime} \in L(H)$ and delete the corresponding edge $x^{\prime} x^{0}$ from H. Further, fix $a_{n-1}-2$ isolated vertices $x_{1}, \ldots, x_{a_{n-1}-2} \in$ $V(H)$. Now add a new vertex y and $a_{n}-1$ new vertices $y_{1}, \ldots, y_{a_{n}-1}$. Also, add $k=\frac{\left(a_{n}-1\right)\left(a_{n}-2\right)}{2}$ new isolated vertices z_{1}, \ldots, z_{k}.

We consider two cases.
Case 1: $a_{n}-1 \geqslant a_{n-1}-2$.
Add new edges $x_{i} y_{i}$ for all $1 \leqslant i \leqslant a_{n-1}-2$. Also, add new edges $y y_{i}$ for $a_{n-1}-1 \leqslant i \leqslant a_{n}-2$. Finally, add a new edge between x^{0} and $y_{a_{n}-1}$. Obtained graph is a realization of M_{G}.

Case 2: $a_{n-1}-2 \geqslant a_{n}$.
Add new edges $y_{i} x_{i}$ for all $1 \leqslant i \leqslant a_{n}-1$. Also, add new edges $y x_{i}$ for $a_{n} \leqslant i \leqslant a_{n-1}-2$. Finally, add a new edge between y and x^{0}. Again, the obtained graph is a realization of M_{G}.

To prove analogous results for complete extensions of cycles and complete graphs we use a simple lemma which is a straightforward consequence of Erdos-Gallai criterion.

Lemma 1. Let M be a sequence of nonnegative integers such that $\sum M$ is even and $2 f_{M}(1) \geqslant \sum M$. Then M is graphic.

Proposition 3. Let G be a complete extension of a cycle $C_{n}, n \geqslant 3$. Then M_{G} is graphic.

Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, \ldots, v_{n}\right\}, E\left(C_{n}\right)=\left\{v_{i} v_{i+1}: 1 \leqslant i \leqslant n-1\right\} \cup$ $\left\{v_{1} v_{n}\right\}$ and $G=C_{n}(a)$, where $a: V(G) \rightarrow \mathbb{Z}_{+}$with $a\left(v_{i}\right) \geqslant 2$ for all $1 \leqslant i \leqslant n$.

Now put $a_{i}=a\left(v_{i}\right)$ for each $1 \leqslant i \leqslant n$. Using induction on n we prove that the following inequality holds.

$$
\begin{equation*}
2 \sum_{i=1}^{n} a_{i}-4 n \geqslant \sum_{i=1}^{n-1}\left|a_{i}-a_{i+1}\right|+\left|a_{n}-a_{1}\right| \tag{1}
\end{equation*}
$$

Firstly, suppose that $n=3$. Without loss of generality we can assume that $a_{1} \geqslant a_{2} \geqslant a_{3}$. We have

$$
\begin{aligned}
\left(a_{1}-a_{2}\right)+\left(a_{2}-a_{3}\right)+\left(a_{1}-a_{3}\right) & =2 a_{1}-2 a_{3} \\
& =2\left(a_{1}+a_{2}+a_{3}\right)-2 a_{2}-4 a_{3} \\
& \leqslant 2\left(a_{1}+a_{2}+a_{3}\right)-12
\end{aligned}
$$

Now let $n \geqslant 4$. Further the proof splits into two casses.
Case 1: There exists $1 \leqslant k \leqslant n$ such that $a_{k-1} \leqslant a_{k} \leqslant a_{k+1}$, where $k-1$ and $k+1$ taken modulo n.

Without loss of generality we can assume that $k=n$. Therefore, let $a_{n-1} \leqslant a_{n} \leqslant a_{1}$. Using induction hypothesis and inequality $a_{n} \geqslant 2$ we obtain

$$
\begin{aligned}
2 \sum_{i=1}^{n} a_{i}-4 n & \geqslant 2 \sum_{i=1}^{n-1} a_{i}-4(n-1) \\
& \geqslant \sum_{i=1}^{n-2}\left|a_{i}-a_{i+1}\right|+\left|a_{n-1}-a_{1}\right| \\
& =\sum_{i=1}^{n-2}\left|a_{i}-a_{i+1}\right|+\left|a_{n-1}-a_{n}\right|+\left|a_{n}-a_{1}\right| \\
& =\sum_{i=1}^{n-1}\left|a_{i}-a_{i+1}\right|+\left|a_{n}-a_{1}\right|
\end{aligned}
$$

Case 2: For all $1 \leqslant k \leqslant n$ we have $a_{k-1} \leqslant a_{k} \geqslant a_{k+1}$ or $a_{k-1} \geqslant a_{k} \leqslant$ a_{k+1}.

In this case n is even as C_{n} should be bipartite. Furthermore, it holds that $a_{1} \leqslant a_{2} \geqslant \cdots \leqslant a_{n} \geqslant a_{1}$ or $a_{1} \geqslant a_{2} \leqslant \cdots \geqslant a_{n} \leqslant a_{1}$. Assume that $a_{1} \leqslant a_{2}$. Then

$$
2 \sum_{i=1}^{\frac{n}{2}}\left|a_{i}-a_{i+1}\right|+\left|a_{n}-a_{1}\right|=2 \sum_{i=1}^{\frac{n}{2}}\left(a_{2 i}-a_{2 i-1}\right) .
$$

Therefore

$$
2 \sum_{i=1}^{n} a_{i}-4 n-2 \sum_{i=1}^{\frac{n}{2}}\left(a_{2 i}-a_{2 i-1}\right)=4 \sum_{i=1}^{\frac{n}{2}} a_{2 i}-4 n \geqslant 4 \cdot 2 \cdot \frac{n}{2}-4 n=0
$$

Thus the inequality (1) holds. Now, it is easy to see that

$$
f_{M_{G}}(1) \geqslant \sum_{i=1}^{n}\left(a_{i}-2\right)=2 \sum_{i=1}^{n} a_{i}-4 n
$$

On the other hand

$$
\sum M_{G}-f_{M_{G}}(1) \leqslant \sum_{i=1}^{n-1}\left|a_{i}-a_{i+1}\right|+\left|a_{n}-a_{1}\right|
$$

Thus $2 f_{M_{G}}(1) \geqslant \sum M_{G}$ and the desired follows from Lemma 1.
Proposition 4. Let G be a complete extension of complete graph K_{n}, $n \geqslant 1$. Then M_{G} is graphic.

Proof. Let $V\left(K_{n}\right)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $G=K_{n}(a)$, where $a: V(G) \rightarrow \mathbb{Z}_{+}$ with $a\left(v_{i}\right) \geqslant n-1$ for all $1 \leqslant i \leqslant n$.

Put $a_{i}=a\left(v_{i}\right)$ for each $1 \leqslant i \leqslant n$. Without loss of generality we can assume that $a_{1} \geqslant a_{2} \geqslant \cdots \geqslant a_{n}$. Again, our goal is to show that $2 f_{M_{G}}(1) \geqslant \sum M_{G}$.

Firstly, observe that

$$
f_{M_{G}}(1) \geqslant \sum_{i=1}^{n}(n-1)\left(a_{i}-n+1\right)
$$

and

$$
\sum M_{G}-f_{M_{G}}(1) \leqslant \sum_{i, j}\left|a_{i}-a_{j}\right|=\sum_{i=1}^{n}(n-2 i+1) a_{i}
$$

Therefore it is sufficient to show that

$$
\begin{equation*}
\sum_{i=1}^{n}(n-1)\left(a_{i}-n+1\right) \geqslant \sum_{i=1}^{n}(n-2 i+1) a_{i} \tag{2}
\end{equation*}
$$

We have

$$
\sum_{i=1}^{n}(n-1)\left(a_{i}-n+1\right)=\sum_{i=1}^{n}(n-2 i+1) a_{i}+\sum_{i=1}^{n}(2 i-2) a_{i}-n(n-1)^{2}
$$

Using $a_{i} \geqslant n-1,1 \leqslant i \leqslant n$ we obtain

$$
\begin{aligned}
\sum_{i=1}^{n}(2 i-2) a_{i} & \geqslant 2(n-1) \sum_{i=1}^{n}(i-1) \\
& =2(n-1) \cdot \frac{(n-1) n}{2} \\
& =n(n-1)^{2}
\end{aligned}
$$

Thus the inequality (2) holds and the desired follows from Lemma 1.

2. Conjectures

As it can be seen from Fig. 2 there exist graphs whose imbalance sequences aren't graphic.

Figure 2. Graph whose imbalance sequence is not graphic.
In fact the following proposition is true.
Proposition 5. Let M be a finite sequence of nonnegative integers such that $\sum M$ is even. Then there exists a graph G with $M_{G}-M=\{0, \ldots, 0\}$.

Proof. For every even $m \in M$ construct a graph G_{m} in the following way. Take any $m+1$ - regular graph G such that G has a matching H of a size $\frac{m}{2}$ (for example $G=K_{m+1, m+1}$). Then delete all edges $E(H)$ from G and add a new vertex v with new edges from v to $V(H)$. Then again add a new vertex u and a new edge $u v$ to obtain a graph G_{m}. Clearly, $M_{G_{m}}=\{m, 0, \ldots, 0\}$.

Now since $\sum M$ is even, the number of odd integers $m \in M$ is even. Divide the multiset of odd integers from M into pairs. For every such pair $\left\{m_{1}, m_{2}\right\}$ take any $m_{1}+m_{2}+1$ - regular graph G^{\prime} with matching H^{\prime} of a size $\frac{m_{1}+m_{2}}{2}$. Again, delete all edges $E\left(H^{\prime}\right)$ from G^{\prime} and add two new vertices v_{1}, v_{2} with new edges from v_{1} to m_{1} vertices from $V\left(H^{\prime}\right)$ and new edges from v_{2} to remaining m_{2} vertices from $V\left(H^{\prime}\right)$. Finally, add two new vertices u_{1}, u_{2} with new edges $u_{1} v_{1}, u_{2} v_{2}$ to obtain a graph $G_{m_{1}, m_{2}}$. It is easy to see that $M_{G_{m_{1}, m_{2}}}=\left\{m_{1}, m_{2}, 0, \ldots, 0\right\}$.

Now take G as a union of G_{m} and $G_{m_{1}, m_{2}}$ for all even $m \in M$ and all pairs $\left\{m_{1}, m_{2}\right\}$ of odd integers from M. Clearly $M_{G}=M \cup\{0, \ldots, 0\}$.

The following conjecture originally appears on MathOverflow (question name "Graphs with graphic imbalance sequences").

Imbalance conjecture: Suppose that for all edges $e \in E(G)$ we have $i m b_{G}(e)>0$. Then M_{G} is graphic.

Remark 1. This conjecture was verified for all such graphs with $\leqslant 9$ vertices.

Also, note that since for all graphs G the irregularity $I(G)=\sum M_{G}$ is always even, then M_{G} is always pseudographic, i.e. it is the degree sequence of some pseudograph (multiple edges and loops allowed). Furthermore, if G has no vertices with zero imbalance, then $I(G)=\sum M_{G} \geqslant \max M_{G}+$ $|E(G)|-1 \geqslant 2 \max M_{G}$. This means that M_{G} is multigraphic, i.e. it is the degree sequence of some multigraph (only multiple edges allowed). The Imbalance conjecture naturally generalizes these facts.

To formulate our second conjecture we need to consider the mean imbalance of every nonempty graph G. By definition it is the following value:

$$
m(G)=\frac{I(G)}{|E(G)|}
$$

Here are some properties of mean imbalances.
Proposition 6. Let G be a nonempty graph. Then

1) $m(G)=0$ if and only if every component of G is regular;
2) $m(G) \leqslant|E(G)|-1$;
3) for every $q \in \mathbb{Q}_{+}$there exists a graph G with $m(G)=q$.

Proof. 1) It is easy.
2) Follows from the inequality $I(G) \leqslant|E(G)|(|E(G)|-1)$.
3) If $q \in \mathbb{Q}_{+}$, then $q=\frac{a}{b}$ for $a, b \in \mathbb{Z}_{+}$. Put $G=K_{1, a+1} \cup(a+1)(b-1) K_{2}$. We have

$$
m(G)=\frac{a(a+1)}{a+1+(a+1)(b-1)}=\frac{a}{b}=q .
$$

Now observe that if the imbalance of every edge in G is nonzero, then $m(G) \geqslant 1$. Sadly, this inequality can't ensure the graphicality of M_{G}. However, we believe that there exists a "universal" constant $c>0$ such that for every graph G with $m(G) \geqslant c$ the sequence M_{G} is graphic. Moreover, we think that $c=2$ because of the following result.

Proposition 7. The set of all mean imbalances of graphs with non-graphic imbalance sequences is dense in $[0,2]$.

Proof. For every $n \in \mathbb{N}$ and $1 \leqslant k \leqslant n$ construct a graph $G^{(n, k)}$ as follows. Take a complete graph $H \simeq K_{2 n+2}$ with the vertex set $V(H)=$ $\left\{v_{1}, \ldots, v_{2 n+2}\right\}$. Delete from H every edge $v_{2 i-1} v_{2 i}, 1 \leqslant i \leqslant k$ and add $2 k$ new vertices $u_{1}, \ldots, u_{2 k}$ with new edges $u_{j} v_{j}$ for $1 \leqslant j \leqslant 2 k$ to obtain $G^{(n, k)}$.

Since $1 \leqslant k \leqslant n$, the sequence $M_{G^{(n, k)}}=\{2 n[2 k]\}$ is not graphic. We have

$$
m\left(G^{(n, k)}\right)=\frac{4 n k}{(n+1)(2 n+1)+k}
$$

Now we show that the set $\left\{m\left(G^{(n, k)}\right): n \in \mathbb{N}, 1 \leqslant k \leqslant n\right\}$ is dense in [0, 2].

At first, observe that $m\left(G^{(n, 1)}\right) \rightarrow 0, n \rightarrow \infty$. Now let $r \in(0,2]$. Since $r>0$, there exists $n_{0} \in \mathbb{N}$ such that for all $n \geqslant n_{0}$ it holds that $\left\lfloor\frac{r n}{2}\right\rfloor \geqslant 1$. Furthermore, the inequality $r \leqslant 2$ implies $\left\lfloor\frac{r n}{2}\right\rfloor \leqslant n$ for every $n \in \mathbb{N}$. Now it is easy to see that

$$
\left.m\left(G^{\left(n n_{0},\left\lfloor\frac{r n n_{0}}{2}\right\rfloor\right.}\right)\right) \rightarrow r, n \rightarrow \infty
$$

Corollary 1. For every $\varepsilon>0$ there exists a graph G with non-graphic M_{G} such that $m(G) \geqslant 2-\varepsilon$.

Therefore we can formulate our final conjecture.
Conjecture: Suppose that for G we have $m(G) \geqslant 2$. Then M_{G} is graphic.

References

[1] H. Abdo, N. Cohen and D. Dimitrov, Bounds and computation of irregularity of a graph // Preprint, arXiv:1207.4804 (2012).
[2] M. O. Albertson, The irregularity of a graph // Ars Comb. 46 (1997), 219-225.
[3] F. K. Bell, A note on the irregularity of graphs // Lin. Algebra Appl. 161 (1992), 45-54.
[4] P. Erdos, T. Gallai, Graphs with prescribed degrees of vertices // Mat. Lapok 11 (1960), 264-274.
[5] F. Goldberg, A spectral bound for graph irregularity // Preprint, arXiv:1308.3867 (2013).
[6] P. Hansen, H. Melot, Variable neighborhood search for extremal graphs 9. Bounding the irregularity of a graph // DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 69 (2005), 253-264.
[7] M. A. Henning, D. Rautenbach, On the irregularity of bipartite graphs // Discrete Math. 307 (2007), 1467-1472.
[8] M. Tavakoli, F. Rahbarnia, M. Mirzavaziri, A. R. Ashrafi and I. Gutman, Extremely irregular graphs // Kragujevac J. Mat. 37(1) (2013), 135-139.
[9] W. Luo, B. Zhou, On irregularity of graphs // Ars Comb. 88 (2008), 55-64.
[10] W. Luo, B. Zhou, On the irregularity of trees and unicyclic graphs with given matching number // Util. Math. 83 (2010), 141-147.

Contact information

S. Kozerenko, V. Skochko
Department of Mechanics and Mathematics, Kyiv National Taras Shevchenko Univ., Volodymyrska str., 64, 01033 Kyiv, Ukraine E-Mail: kozerenkosergiy@ukr.net, vovaskochko@yandex.ua

Received by the editors: 14.05.2014
and in final form 14.05.2014.

