Construction of free \mathfrak{g}-dimonoids

Yuri Movsisyan, Sergey Davidov and Mher Safaryan

Communicated by A. V. Zhuchok

Abstract. In this paper, the concept of a \mathfrak{g}-dimonoid is introduced and the construction of a free \mathfrak{g}-dimonoid is described. (A \mathfrak{g}-dimonoid is a duplex satisfying two additional identities.)

Introduction

The concepts of a dimonoid and a dialgebra were introduced by Loday [1]. Dimonoids are a tool to study Leibniz algebras [1]. A dimonoid is a set with two binary associative operations satisfying the additional identities. A dialgebra is a linear analogue of the dimonoid. One of the first results about dimonoids is the description of the free dimonoid generated by the given set. Using properties of the free dimonoid, the free dialgebras were described and the cohomologies of dialgebras were studied in [1] In [2], using the concept of a dimonoid, the concept of a unileteral diring was introduced and the basic properties of dirings were studied. In $[4,5]$ free dimonoids and free commutative dimonoids were described. In [6] the concept of a duplex (which generalizes the concept of a dimonoid) and the construction of a free duplex were introduced. A duplex is a set equipped with two associative operations. In $[7,8]$ the concept of a Boolean bisemigroup (which generalizes the concept of a Boolean algebra) was introduced and a Stone-type representation theorem was proved (cf. [9-13]).

[^0]Key words and phrases: dimonoid, \mathfrak{g}-dimonoid, free algebra, canonical form

The concept of a 0 -dialgebra was introduced in [14]. The 0-dialgebra under the field F is a vector space under F with two binary operations, \dashv and \vdash, such that the following two identities are satisfied:

$$
(x \dashv y) \vdash z=(x \vdash y) \vdash z, \quad z \dashv(x \vdash y)=z \dashv(x \dashv y)
$$

In this paper the concept of a \mathfrak{g}-dimonoid (a generalized dimonoid) is introduced and the construction of a free \mathfrak{g}-dimonoid is described. (A \mathfrak{g}-dimonoid is a duplex satisfying two additional identities.)

1. Auxiliary results

Definition 1. An algebra $(\mathcal{A} ; \dashv, \vdash)$ is called a \mathfrak{g}-dimonoid if it satisfies the following identities:
(A1) $\quad(x \dashv y) \dashv z=x \dashv(y \dashv z)$,
(A2) $\quad(x \dashv y) \dashv z=x \dashv(y \vdash z)$,
(A3) $\quad(x \dashv y) \vdash z=x \vdash(y \vdash z)$,
(A4) $\quad(x \vdash y) \vdash z=x \vdash(y \vdash z)$.
An \mathfrak{g}-dimonoid $(\mathcal{A} ; \dashv, \vdash)$ is called a dimonoid, if it satisfies the following additional identity:

$$
(x \vdash y) \dashv z=x \vdash(y \dashv z) .
$$

Let us give an example of a \mathfrak{g}-dimonoid, which is not a dimonoid ([3]). Let X be an arbitrary nonempty set, $|X|>1$ and let X^{*} be the set of all finite nonempty words in the alphabet X. Denote the first (respectively, the last) letter of a word $\omega \in X^{*}$ by $\omega^{(0)}$ (respectively, by $\omega^{(1)}$). Define the following operations \dashv, \vdash on X^{*} by

$$
\omega \dashv u=\omega^{(0)}, \quad \omega \vdash u=u^{(1)}
$$

for all $\omega, u \in X^{*}$. It is easy to check that the binary algebra $\left(X^{*}, \dashv, \vdash\right)$ is a \mathfrak{g}-dimonoid, but is not a dimonoid.

Definition 2. A map $f: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ between \mathfrak{g}-dimonoids \mathcal{A}_{1} and \mathcal{A}_{2} is called a homomorphism if $f(x \dashv y)=f(x) \dashv f(y)$ and $f(x \vdash y)=f(x) \vdash$ $f(y)$ for all $x, y \in \mathcal{A}_{1}$. A bijective homomorphism between \mathfrak{g}-dimonoids is called an isomorphism.

A \mathfrak{g}-dimonoid F is called a free \mathfrak{g}-dimonoid if there exists a subset $X \subseteq F$ such that F is generated by X and for any \mathfrak{g}-dimonoid D and for any map $f: X \rightarrow D$ there exists a unique homomorphism of \mathfrak{g}-dimonoids $g: F \rightarrow D$ such that $g(x)=f(x)$ for all $x \in X$. If this holds, then we say that F is a free \mathfrak{g}-dimonoid with the system of free generators X $([15,16])$.

We recall the concept of a term of a \mathfrak{g}-dimonoid \mathcal{A} by the following: any element $x \in \mathcal{A}$ is a term of \mathcal{A}; if t_{1}, t_{2} are terms of \mathcal{A}, then $t_{1} \dashv t_{2}$ and $t_{1} \vdash t_{2}$ also are the terms of \mathcal{A}; and there are no other terms. By $t\left(x_{1}, \ldots, x_{n}\right)$ we mean a term with the elements x_{1}, \ldots, x_{n} each of which meets once and in the mentioned order.

Lemma 1. Let $(\mathcal{A} ; \dashv, \vdash)$ be a \mathfrak{g}-dimonoid. Then for any term $t=$ $t\left(x_{1}, \ldots, x_{n}\right), x \in \mathcal{A}$ the following equalities hold:
(i) $x \dashv t=x \dashv x_{1} \dashv \ldots \dashv x_{n}$,
(ii) $t \vdash x=x_{1} \vdash \ldots \vdash x_{n} \vdash x$.

Proof. Prove (i) by induction on n. If $n=1,2$ then the statement is obvious. Let it be true for $n<k$, where $k>2$. For $t=t_{1} * t_{2}$, where $* \in\{\dashv, \vdash\}, t_{1}=t_{1}\left(x_{1}, \ldots, x_{k_{1}}\right), t_{2}=t_{2}\left(x_{k_{1}+1}, \ldots, x_{k}\right), 0<k_{1}<k$, let us consider the following cases. If $*=\dashv$, then

$$
\begin{aligned}
x \dashv t & =x \dashv\left(t_{1} \dashv t_{2}\right) \stackrel{(A 1)}{=}\left(x \dashv t_{1}\right) \dashv t_{2} \\
& =\left(x \dashv x_{1} \dashv \ldots \dashv x_{k_{1}}\right) \dashv t_{2} \\
& =\left(x \dashv x_{1} \dashv \ldots \dashv x_{k_{1}}\right) \dashv x_{k_{1}+1} \dashv \ldots \dashv x_{k} \\
& =x \dashv x_{1} \dashv \ldots \dashv x_{k} .
\end{aligned}
$$

If $*=\vdash$, then

$$
\begin{aligned}
x \dashv t & =x \dashv\left(t_{1} \vdash t_{2}\right) \stackrel{(A 2)}{=}\left(x \dashv t_{1}\right) \dashv t_{2} \\
& =\left(x \dashv x_{1} \dashv \ldots \dashv x_{k_{1}}\right) \dashv t_{2} \\
& =\left(x \dashv x_{1} \dashv \ldots \dashv x_{k_{1}}\right) \dashv x_{k_{1}+1} \dashv \ldots \dashv x_{k} \\
& =x \dashv x_{1} \dashv \ldots \dashv x_{k} .
\end{aligned}
$$

Hence, (i) holds for $n=k$. (ii) is proved analogously.
Let e be an arbitrary symbol; introduce the following sets:

$$
I^{1}=\{e\}, \quad I^{n}=\{0,1\}^{n-1}=
$$

$$
\begin{gathered}
=\left\{\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right): \varepsilon_{k} \in\{0,1\}, k=\overline{1, n-1}\right\}, n>1 \\
I=\bigcup_{n \geqslant 1} I^{n} .
\end{gathered}
$$

If $l=0$ then the sequence $\varepsilon_{1}, \ldots, \varepsilon_{l}$ without brackets we consider empty, and the sequence $\left(\varepsilon_{1}, \ldots, \varepsilon_{l}\right)$ with brackets we consider e. For example, if $n=1$, then the sequence $(\varepsilon_{1}, \ldots, \varepsilon_{n-1}, \overbrace{1,1, \ldots, 1}^{m})$ is $(\overbrace{1,1, \ldots, 1}^{m})$.

Definition 3. Let $(\mathcal{A} ; \dashv, \vdash)$ be a \mathfrak{g}-dimonoid. For any $x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{A}$ and for any $\varepsilon \in I^{n}$ define the element

$$
x_{1} x_{2} \ldots x_{n} \varepsilon \in \mathcal{A}
$$

by induction on $n \geqslant 1$ in the following way:

1. $x_{1} e=x_{1}$,
2. $x_{1} x_{2} \ldots x_{n}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n-2}, 0\right)=x_{1} \vdash x_{2} \ldots x_{n}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n-2}\right)$, $x_{1} \ldots x_{n-1} x_{n}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n-2}, 1\right)=x_{1} \ldots x_{n-1}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n-2}\right) \dashv x_{n}$, if $n>1$.

In particular, if $\varepsilon=(\overbrace{1,1, \ldots, 1}^{n-1})$, then $x_{1} \ldots x_{n} \varepsilon=x_{1} \dashv \cdots \dashv x_{n}$; if $\varepsilon=(\overbrace{0,0, \ldots, 0}^{n-1})$, then $x_{1} \ldots x_{n} \varepsilon=x_{1} \vdash \cdots \vdash x_{n}$; and if $n=1$, then $x_{1} x_{2} \ldots x_{n}\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right)=x_{1} e$ (according to above agreement).

Lemma 2. In any \mathfrak{g}-dimonoid $(\mathcal{A} ; \dashv, \vdash)$ the following identities hold:

$$
\begin{aligned}
& \quad x_{1} x_{2} \ldots x_{n}\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right) \dashv y_{1} y_{2} \ldots y_{m}\left(\theta_{1}, \ldots, \theta_{m-1}\right) \\
& \quad=x_{1} x_{2} \ldots x_{n} y_{1} y_{2} \ldots y_{m}(\varepsilon_{1}, \ldots, \varepsilon_{n-1}, \overbrace{1,1, \ldots, 1}^{m}), \\
& \quad x_{1} x_{2} \ldots x_{n}\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right) \vdash y_{1} y_{2} \ldots y_{m}\left(\theta_{1}, \ldots, \theta_{m-1}\right) \\
& \text { Proof. } \quad=x_{1} x_{2} \ldots x_{n} y_{1} y_{2} \ldots y_{m}(\theta_{1}, \ldots, \theta_{m-1}, \overbrace{0,0, \ldots, 0}^{n}) .
\end{aligned}
$$

$$
\begin{aligned}
x_{1} x_{2} \ldots & x_{n}\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right) \dashv y_{1} y_{2} \ldots y_{m}\left(\theta_{1}, \ldots, \theta_{m-1}\right) \\
& \stackrel{(i)}{=} x_{1} x_{2} \ldots x_{n}\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right) \dashv y_{1} \dashv y_{2} \dashv \ldots \dashv y_{m} \\
& =x_{1} x_{2} \ldots x_{n} y_{1} y_{2} \ldots y_{m}(\varepsilon_{1}, \ldots, \varepsilon_{n-1}, \overbrace{1,1, \ldots, 1}^{m}),
\end{aligned}
$$

$$
\begin{aligned}
& x_{1} x_{2} \ldots x_{n}\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right) \vdash y_{1} y_{2} \ldots y_{m}\left(\theta_{1}, \ldots, \theta_{m-1}\right) \\
& \stackrel{(i i)}{=} x_{1} \vdash x_{2} \vdash \ldots \vdash x_{n} \vdash y_{1} y_{2} \ldots y_{m}\left(\theta_{1}, \ldots, \theta_{m-1}\right) \\
&=x_{1} x_{2} \ldots x_{n} y_{1} y_{2} \ldots y_{m}(\theta_{1}, \ldots, \theta_{m-1}, \overbrace{0,0, \ldots, 0}^{n}) .
\end{aligned}
$$

All terms of a given \mathfrak{g}-dimonoid can be described by the elements of the form (\star); namely, we can show that any term of a given \mathfrak{g}-dimonoid can be reduced to (\star).

Theorem 1. Let $t=t\left(x_{1}, \ldots, x_{n}\right)$ be a term of a given \mathfrak{g}-dimonoid. Then there is such $\varepsilon \in I^{n}$ that

$$
t=x_{1} x_{2} \ldots x_{n} \varepsilon
$$

Proof. Prove the theorem by induction on n. For $n=1,2$, the statement is obvious. Let it be true for $n<k$, where $k>2$. Suppose $t=t_{1}\left(x_{1}, \ldots, x_{k_{1}}\right) *$ $t_{2}\left(x_{k_{1}+1}, \ldots, x_{k}\right)$, where $* \in\{\dashv, \vdash\}, 0<k_{1}<k$.

Since $k_{1}<k, k-k_{1}<k$, then for the terms $t_{1}\left(x_{1}, \ldots, x_{k_{1}}\right)$ and $t_{2}\left(x_{k_{1}+1}, \ldots, x_{k}\right)$ there are such $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{k_{1}-1}\right), \theta=\left(\theta_{1}, \ldots, \theta_{k-k_{1}-1}\right)$ that

$$
\begin{gathered}
t_{1}\left(x_{1}, \ldots, x_{k_{1}}\right)=x_{1} x_{2} \ldots x_{k_{1}} \varepsilon \\
t_{2}\left(x_{k_{1}+1}, \ldots, x_{k}\right)=x_{k_{1}+1} x_{k_{1}+2} \ldots x_{k} \theta .
\end{gathered}
$$

If $*=-1$, then

$$
\begin{aligned}
t & =t_{1}\left(x_{1}, \ldots, x_{k_{1}}\right) \dashv t_{2}\left(x_{k_{1}+1}, \ldots, x_{k}\right) \\
& \stackrel{(i)}{=} t_{1}\left(x_{1}, \ldots, x_{k_{1}}\right) \dashv x_{k_{1}+1} \dashv \ldots \dashv x_{k} \\
& =x_{1} \ldots x_{k_{1}}\left(\varepsilon_{1}, \ldots, \varepsilon_{k_{1}-1}\right) \dashv x_{k_{1}+1} \dashv \ldots \dashv x_{k} \\
& \stackrel{2 .}{=} x_{1} \ldots x_{k}(\varepsilon_{1}, \ldots, \varepsilon_{k_{1}-1}, \overbrace{1,1, \ldots, 1}^{k-k_{1}}) .
\end{aligned}
$$

If $*=\vdash$, then

$$
\begin{aligned}
t & =t_{1}\left(x_{1}, \ldots, x_{k_{1}}\right) \vdash t_{2}\left(x_{k_{1}+1}, \ldots, x_{k}\right) \\
& \stackrel{(i i)}{=} x_{1} \vdash \ldots x_{k_{1}} \vdash t_{2}\left(x_{k_{1}+1}, \ldots, x_{k}\right) \\
& =x_{1} \vdash \ldots \vdash x_{k_{1}} \vdash x_{k_{1}+1} \ldots x_{k}\left(\theta_{1}, \ldots, \theta_{k-k_{1}-1}\right) \\
& \stackrel{2 .}{=} x_{1} \ldots x_{k}(\theta_{1}, \ldots, \theta_{k-k_{1}-1}, \overbrace{0,0, \ldots, 0}^{k_{1}}) .
\end{aligned}
$$

Therefore the theorem is valid for $n=k$.

By virtue of Theorem 1, any term of a given \mathfrak{g}-dimonoid can be reduced to the form (\star) which we call the canonical form of a given term. For example, for the term $\left(\left(x_{1} \dashv x_{2}\right) \vdash\left(x_{3} \dashv x_{4}\right)\right) \dashv\left(x_{5} \vdash x_{6}\right)$ the canonical form is:

$$
\begin{aligned}
\left(\left(x_{1} \dashv x_{2}\right)\right. & \left.\vdash\left(x_{3} \dashv x_{4}\right)\right) \dashv\left(x_{5} \vdash x_{6}\right) \\
& =\left(x_{1} x_{2}(1) \vdash x_{3} x_{4}(1)\right) \dashv x_{5} x_{6}(0) \\
& =x_{1} x_{2} x_{3} x_{4}(1,0,0) \dashv x_{5} x_{6}(0) \\
& =x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}(1,0,0,1,1) .
\end{aligned}
$$

Define operations \dashv and \vdash on I in the following way:

$$
\begin{aligned}
& \left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right) \dashv\left(\theta_{1}, \ldots, \theta_{m-1}\right)=(\varepsilon_{1}, \ldots, \varepsilon_{n-1}, \overbrace{1,1, \ldots, 1}^{m}), \\
& \left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right) \vdash\left(\theta_{1}, \ldots, \theta_{m-1}\right)=(\theta_{1}, \ldots, \theta_{m-1}, \overbrace{0,0, \ldots, 0}^{n}) .
\end{aligned}
$$

Lemma 3. The algebra $(I ; \dashv, \vdash)$ is a \mathfrak{g}-dimonoid.
Proof. The axioms $(A 1),(A 2),(A 3),(A 4)$ are checked directly.
Note that $(I ; \dashv, \vdash)$ is not a dimonoid.
Lemma 4. In the algebra $(I ; \dashv, \vdash)$ we have

$$
\underbrace{e e \ldots e}_{n} \varepsilon=\varepsilon
$$

for any $\varepsilon \in I^{n}$.
Proof. Prove by induction on n. If $n=1,2$, then the statement is clear. Let it be true for $n=k, k>1$ and let $\varepsilon \in I^{k+1}$.

If $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{k-1}, 0\right)=e \vdash \varepsilon^{\prime}$, where $\varepsilon^{\prime}=\left(\varepsilon_{1}, \ldots, \varepsilon_{k-1}\right)$, then

$$
\underbrace{e e \ldots e}_{k+1} \varepsilon=e \vdash \underbrace{e e \ldots e}_{k} \varepsilon^{\prime}=e \vdash \varepsilon^{\prime}=\varepsilon
$$

If $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{k-1}, 1\right)=\varepsilon^{\prime} \dashv e$, where $\varepsilon^{\prime}=\left(\varepsilon_{1}, \ldots, \varepsilon_{k-1}\right)$, then

$$
\underbrace{e e \ldots e}_{k+1} \varepsilon=\underbrace{e e \ldots e}_{k} \varepsilon^{\prime} \dashv e=\varepsilon^{\prime} \dashv e=\varepsilon \text {. }
$$

From definitions of operations \dashv, \vdash it follows:

Lemma 5. If $\alpha \in I^{n}, \theta \in I^{m}$, then $\alpha \dashv \theta, \alpha \vdash \theta \in I^{n+m}$.
Now we can prove the uniqueness of the canonical form for the \mathfrak{g} dimonoid $(I ; \dashv, \vdash)$.

Theorem 2. The canonical form is unique for any term of the \mathfrak{g}-dimonoid ($I ; \dashv, \vdash$).

Proof. Assume that for some term t there are two canonical forms:

$$
x_{1} x_{2} \ldots x_{n} \varepsilon=y_{1} y_{2} \ldots y_{m} \theta
$$

for some $\varepsilon \in I^{n}$ and $\theta \in I^{m}$.
Replacing all variables by $e \in I$, we get:

$$
\underbrace{e e \ldots e}_{n} \varepsilon=\underbrace{e e \ldots e}_{m} \theta
$$

whence and from Lemma 4 it follows $\varepsilon=\theta$. Hence, $(\star \star)$ has the following form:

$$
x_{1} x_{2} \ldots x_{n} \varepsilon=y_{1} y_{2} \ldots y_{n} \varepsilon
$$

Let the variables x_{k} and y_{k} be different for some $1 \leqslant k \leqslant n$. In the last equality, replacing all variables except y_{k} by e and replacing the variable y_{k} by (1) we get:

$$
\varepsilon=e \ldots e(1) e \ldots e \varepsilon
$$

which is contradiction, because $\varepsilon \in I^{n}$ and $e \ldots e(1) e \ldots e \varepsilon \in I^{n+1}$ due to Lemma 5. Therefore, the canonical forms $x_{1} x_{2} \ldots x_{n} \varepsilon$ and $y_{1} y_{2} \ldots y_{m} \theta$ graphically coincide, which proves the uniqueness of the canonical form of the term t.

2. Free \mathfrak{g}-dimonoids

Let us turn to the construction of a free \mathfrak{g}-dimonoid. Let X be an arbitrary and nonempty set. Denote:

$$
Y_{n}=X^{n} \times I^{n}, \quad n \in \mathcal{N}
$$

where $X^{n}=\underbrace{X \times X \times \ldots \times X}_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{k} \in X, k=\overline{1, n}\right\}$,

$$
\mathcal{G}(X)=\bigcup_{n \geqslant 1} Y_{n} .
$$

For convenience the elements of $\mathcal{G}(X)$ are denoted by $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \varepsilon$ instead of $\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right), \varepsilon\right)$, where $\varepsilon \in I^{n}$; we consider the sets $X \times I^{1}$ and X being the same, that is, we identify the symbol $x \in X$ with the element $x e \in \mathcal{G}(X)$. Define operations \dashv, \vdash on $\mathcal{G}(X)$ in the following way:

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{k}\right) \varepsilon \dashv\left(x_{k+1}, x_{k+2}, \ldots, x_{l}\right) \theta=\left(x_{1}, x_{2}, \ldots, x_{l}\right)(\varepsilon \dashv \theta), \\
& \left(x_{1}, x_{2}, \ldots, x_{k}\right) \varepsilon \vdash\left(x_{k+1}, x_{k+2}, \ldots, x_{l}\right) \theta=\left(x_{1}, x_{2}, \ldots, x_{l}\right)(\varepsilon \vdash \theta) .
\end{aligned}
$$

Theorem 3. The binary algebra $(\mathcal{G}(X) ; \dashv, \vdash)$ is a free \mathfrak{g}-dimonoid with the system of free generators X.

Proof. The fact that the algebra $\mathcal{G}(X)$ is a \mathfrak{g}-dimonoid follows from Lemma 3. From the definition of operations \dashv, \vdash it follows that $\mathcal{G}(X)$ is generated by X. Namely, if $\left(x_{1}, \ldots, x_{n}\right) \varepsilon \in \mathcal{G}(X)$, where $\varepsilon=\left(\varepsilon^{\prime}, 1\right)=\varepsilon^{\prime} \dashv e$, then

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{n}\right) \varepsilon & =\left(x_{1}, \ldots, x_{n}\right)\left(\varepsilon^{\prime} \dashv e\right) \\
& =\left(x_{1}, \ldots, x_{n-1}\right) \varepsilon^{\prime} \dashv x_{n} e=\left(x_{1}, \ldots, x_{n-1}\right) \varepsilon^{\prime} \dashv x_{n}
\end{aligned}
$$

Analogously, if $\varepsilon=\left(\varepsilon^{\prime}, 0\right)=e \vdash \varepsilon^{\prime}$, then

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{n}\right) \varepsilon & =\left(x_{1}, \ldots, x_{n}\right)\left(e \vdash \varepsilon^{\prime}\right) \\
& =x_{1} e \vdash\left(x_{2}, \ldots, x_{n}\right) \varepsilon^{\prime}=x_{1} \vdash\left(x_{2}, \ldots, x_{n}\right) \varepsilon^{\prime}
\end{aligned}
$$

Hence, using induction, we can prove that any element $\left(x_{1}, \ldots, x_{n}\right) \varepsilon \in$ $\mathcal{G}(X)$ can be written as a word in the alphabet x_{1}, \ldots, x_{n} and \dashv, \vdash.

Let us prove that it is a free \mathfrak{g}-dimonoid. Let $(\mathcal{D} ; \dashv, \vdash)$ be an arbitrary \mathfrak{g}-dimonoid and $\varphi: X \rightarrow \mathcal{D}$ be an arbitrary map. Define the map $\psi_{0}:(\mathcal{G}(X) ; \dashv, \vdash) \rightarrow(\mathcal{D} ; \dashv, \vdash)$ in the following way:

$$
\psi_{0}\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right) \varepsilon\right)=\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \ldots \varphi\left(x_{n}\right) \varepsilon
$$

The map ψ_{0} matches with φ on X :

$$
\psi_{0}(x)=\psi_{0}(x e)=\varphi(x) e=\varphi(x), x \in X
$$

Show that ψ_{0} is a homomorphism. From Lemmas 2 and 3 it follows:

$$
\begin{aligned}
\psi_{0}\left(\left(x_{1},\right.\right. & \left.\left.x_{2}, \ldots, x_{k}\right) \varepsilon \dashv\left(x_{k+1}, x_{k+2}, \ldots, x_{l}\right) \theta\right) \\
& =\psi_{0}\left(\left(x_{1}, x_{2}, \ldots, x_{l}\right)(\varepsilon \dashv \theta)\right)=\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \ldots \varphi\left(x_{l}\right)(\varepsilon \dashv \theta) \\
& =\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \ldots \varphi\left(x_{k}\right) \varepsilon \dashv \varphi\left(x_{k+1}\right) \varphi\left(x_{k+2}\right) \ldots \varphi\left(x_{l}\right) \theta \\
& =\psi_{0}\left(\left(x_{1}, x_{2}, \ldots, x_{k}\right) \varepsilon\right) \dashv \psi_{0}\left(\left(x_{k+1}, x_{k+2}, \ldots, x_{l}\right) \theta\right)
\end{aligned}
$$

$$
\begin{aligned}
\psi_{0}\left(\left(x_{1},\right.\right. & \left.\left.x_{2}, \ldots, x_{k}\right) \varepsilon \vdash\left(x_{k+1}, x_{k+2}, \ldots, x_{l}\right) \theta\right) \\
& =\psi_{0}\left(\left(x_{1}, x_{2}, \ldots, x_{l}\right)(\varepsilon \vdash \theta)\right)=\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \ldots \varphi\left(x_{l}\right)(\varepsilon \vdash \theta) \\
& =\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \ldots \varphi\left(x_{k}\right) \varepsilon \vdash \varphi\left(x_{k+1}\right) \varphi\left(x_{k+2}\right) \ldots \varphi\left(x_{l}\right) \theta \\
& =\psi_{0}\left(\left(x_{1}, x_{2}, \ldots, x_{k}\right) \varepsilon\right) \vdash \psi_{0}\left(\left(x_{k+1}, x_{k+2}, \ldots, x_{l}\right) \theta\right) .
\end{aligned}
$$

Prove that if $\psi:(\mathcal{G}(X) ; \dashv, \vdash) \rightarrow(\mathcal{D} ; \dashv, \vdash)$ is a homomorphism coinciding with φ on X, then $\psi \equiv \psi_{0}$.

We have that the maps ψ and ψ_{0} match on Y_{1}. Let they match on the sets Y_{1}, \ldots, Y_{n}. Then

$$
\begin{aligned}
& \psi\left(\left(x_{1},\right.\right. \\
& \left.\left.\quad x_{2}, \ldots, x_{n+1}\right)\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}, 0\right)\right) \\
& \quad=\psi\left(x_{1} \vdash\left(x_{2}, \ldots, x_{n+1}\right)\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right)\right) \\
& \quad=\psi\left(x_{1}\right) \vdash \psi\left(\left(x_{2}, \ldots, x_{n+1}\right)\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right)\right) \\
& \quad=\psi_{0}\left(x_{1}\right) \vdash \psi_{0}\left(\left(x_{2}, \ldots, x_{n+1}\right)\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right)\right) \\
& \quad=\psi_{0}\left(x_{1} \vdash\left(x_{2}, \ldots, x_{n+1}\right)\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right)\right) \\
& \quad=\psi_{0}\left(\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}, 0\right)\right), \\
& \begin{aligned}
\psi\left(\left(x_{1},\right.\right. & \left.\left.x_{2}, \ldots, x_{n+1}\right)\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}, 1\right)\right) \\
& =\psi\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right) \dashv x_{n+1}\right) \\
& =\psi\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right)\right) \dashv \psi\left(x_{n+1}\right) \\
& =\psi_{0}\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right)\right) \dashv \psi_{0}\left(x_{n+1}\right) \\
& =\psi_{0}\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right) \dashv x_{n+1}\right) \\
& =\psi_{0}\left(\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}, 1\right)\right) .
\end{aligned}
\end{aligned}
$$

Hence

$$
\psi\left(\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)\right)=\psi_{0}\left(\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)\right)
$$

for any $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in Y_{n+1}$. So, the maps ψ and ψ_{0} coincide on Y_{n+1}. Therefore, $\psi \equiv \psi_{0}$.

Let us give another description of a free \mathfrak{g}-dimonoid. Let $F[X]$ be the free semigroup with the system of free generators X. For any word $\omega \in F[X]$ we denote the length of ω by $|\omega|$. Define operations \dashv, \vdash on the set

$$
F G=\left\{(\omega, \varepsilon): \omega \in F[X], \varepsilon \in I^{|\omega|}\right\}
$$

in the following way:

$$
\left(\omega_{1}, \varepsilon\right) \dashv\left(\omega_{2}, \theta\right)=\left(\omega_{1} \omega_{2}, \varepsilon \dashv \theta\right),
$$

$$
\left(\omega_{1}, \varepsilon\right) \vdash\left(\omega_{2}, \theta\right)=\left(\omega_{1} \omega_{2}, \varepsilon \vdash \theta\right),
$$

where $\left(\omega_{1}, \varepsilon\right),\left(\omega_{2}, \theta\right) \in F G$. It is easy to verify that the binary algebra $(F G ; \dashv, \vdash)$ is a \mathfrak{g}-dimonoid, which we denote by $F G[X]$.

Theorem 4. The \mathfrak{g}-dimonoids $(\mathcal{G}(X) ; \dashv, \vdash)$ and $F G[X]$ are isomorphic.
Proof. Define the map $\sigma: \mathcal{G}(X) \rightarrow F G[X]$ in the following way:
$\sigma:\left(x_{1}, x_{2}, \ldots, x_{k}\right) \varepsilon \mapsto\left(x_{1} x_{2} \ldots x_{k}, \varepsilon\right),\left(x_{1}, x_{2}, \ldots, x_{k}\right) \varepsilon \in \mathcal{G}(X)$.
From the definition it follows that σ is a bijection and a homomorphism.

Hence, the binary algebra $F G[X]$ is also a free \mathfrak{g}-dimonoid with the system of free generators X.

Lemma 6. The \mathfrak{g}-dimonoid $(I ; \dashv, \vdash)$ is a free \mathfrak{g}-dimonoid which is isomorphic to the \mathfrak{g}-dimonoid $F G[X]$, where $|X|=1$.

Proof. Let $X=\{a\}$. Define the map

$$
\tau:(I ; \dashv, \vdash) \rightarrow F G[X]
$$

in the following way: $\tau(\varepsilon)=\left(a^{n}, \varepsilon\right) \in F G[X]$ for all $\varepsilon \in I^{n}, n \geqslant 1$. From the definition it follows that the map τ is a bijection. Prove that it is a homomorphism. Indeed, by Lemma $5, \varepsilon \dashv \theta, \varepsilon \vdash \theta \in I^{n+m}$ for any $\varepsilon \in I^{n}$, $\theta \in I^{m}$, hence

$$
\begin{aligned}
& \tau(\varepsilon \dashv \theta)=\left(a^{n+m}, \varepsilon \dashv \theta\right)=\left(a^{n}, \varepsilon\right) \dashv\left(a^{m}, \theta\right)=\tau(\varepsilon) \dashv \tau(\theta), \\
& \tau(\varepsilon \vdash \theta)=\left(a^{n+m}, \varepsilon \vdash \theta\right)=\left(a^{n}, \varepsilon\right) \vdash\left(a^{m}, \theta\right)=\tau(\varepsilon) \vdash \tau(\theta) .
\end{aligned}
$$

Therefore, τ is an isomorphism.

Thus, the free \mathfrak{g}-dimonoid of rank 1 coincides with the \mathfrak{g}-dimonoid $(I ; \dashv, \vdash)$ up to isomorphism.

Acknowledgement

Thanks to the referees for useful remarks.

References

[1] J.L. Loday, Dialgebras, In: Dialgebras and related operads, Lecture Notes in Math. 1763, Springer, Berlin, 2001, pp. 7-66.
[2] K. Liu, A class of some ring-like objects, submitted, arXiv: math.RA/0311396.
[3] A.V. Zhuchok, Dimonoids, Algebra and Logic, vol.50, 4(2011), pp. 323-340.
[4] A.V. Zhuchok, Free dimonoids, Ukrainian Mathematical Journal, vol.63, 2(2011), pp. 196-208.
[5] A.V. Zhuchok, Free commutative dimonoids, Algebra and Discrete Mathematics, vol.9, 1(2010), pp. 109-119.
[6] T. Pirashvili, Sets with two associative operations, Central European Journal of Mathematics, 2(2003), pp. 169-183.
[7] Yu.M. Movsisyan, Boolean bisemigroups. Bigroups and local bigroups, CSIT Proceedings of the Conference, September 19-23, Yerevan, 2005, Armenia, pp. 97-104.
[8] Yu.M. Movsisyan, On the representations of De Morgan algebras, Trends in logic III, 2005, Studialogica, Warsaw, http://www.ifispan.waw.pl/studialogica/Movsisyan.pdf
[9] J.A. Brzozowski, A characterization of De Morgan algebras, International Journal of Algebra and Computation, 11(2001), pp. 525-527.
[10] J.A. Brzozowski, De Morgan bisemilattices, Proceedings of the 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000), p. 173, May 23-25.
[11] J.A. Brzozowski, Partially ordered structures for hazard detection, Special Session: The Many Lives of Lattice Theory, Joint Mathematics Meetings, San Diego, CA, January 6-9, 2002.
[12] Yu.M. Movsisyan, Binary representations of algebras with at most two binary operations. A Cayley theorem for distributive lattices, International Journal of Algebra and Computation, vol.19, 1(2009), pp. 97-106.
[13] Yu.M. Movsisyan, V.A. Aslanyan, Boole-De Morgan algebras and quasi-De Morgan functions, Communications in Algebra, vol.42, 11(2014), pp. 4757-4777.
[14] P.S. Kolesnikov, Variety of dialgebras and conform algebras, Sib. Mat. J., vol.49, 2(2008), pp. 322-329.
[15] S. Burris, H.P. Sankappanavar, A course in universal algebra, Springer, 1981.
[16] B.I. Plotkin, Universal algebra, algebraic logic, and databases, Kluwer Academic Publisher, 1994.

Contact information

Yu. Movsisyan, S. Davidov, M. Safaryan

Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
E-Mail: yurimovsisyan@yahoo.com, davidov@ysu.am, mher.safaryan@gmail.com
URL: www.ysu.am
Received by the editors: 20.06.2013
and in final form 01.04.2014.

[^0]: 2010 MSC: 03C05, 08B20, 20M05.

