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On a factorization of an iterated wreath product

of permutation groups

Beata Bajorska and Vitaliy Sushchansky

Abstract. We show that if each group of permutations
(Gi, Mi), i ∈ N has a factorization then their infinite iterated

wreath product
∞

≀
i=1

Gi also has a factorization. We discuss some

properties of this factorization and give examples.

1. Introduction

We say that a group G is factorized by its subgroups G1, ..., Gn if

G = G1 · · · Gn = {g1g2 · · · gn, gi ∈ Gi, i = 1, ..., n} (1)

i.e. G is a product of Gi’s [1]. Then equality (1) is called a factorization

of G. We call G factorizable if there exist a natural number n > 2 and
subgroups G1, ..., Gn of G satisfying (1).

The factorization (1) of G is called exact if each pair of Gi’s intersects
trivially, that is Gi ∩Gj = {1}, i 6= j. One can examine the nature of that
factorization. Firstly, let us consider an exact factorization of a group by
two subgroups, namely G = KH. If both K and H are normal, then G is
just their direct product. If one is normal, then G is a semidirect product,
and if none is normal then G is a Zappa-Szép product of subgroups
K, H (see [10, 12]). It can be extended to any finite number of groups
in the natural way. Note, however, that G is a Zappa-Szép product of
its subgroups G1, ..., Gn if Gi ∩ 〈Gj , j 6= i〉 = {1}, i = 1, .., n, where 〈X〉
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denotes a group generated by X. So the exactness of a factorization is
not sufficient for G to be a Zappa-Szép product of its subgroups (if there
are more than two).

In case of infinite iterated wreath products of permutation groups,

say G =
∞

≀
i=1

Gi (defined in section 2.1), two kinds of factorizations are

considered:

1) if we partition N (i.e. the set of indices) into several (m, say) subsets
Ni and define corresponding subgroups of G, namely

GNi
= {g ∈ G, [g]j = 1 for every j ∈ N − Ni}

then G = GN1 · · · GNm (see e.g. [9]).

2) if each group Gi is factorized by its subgroups then (for both the
finite and infinite iterated wreath products) we define the corre-
sponding subgroups factorizing G (see e.g. [6, 8]).

Factorizations done in the first manner were used mainly to construct

subgroups of
∞

≀
i=1

Zp for some prime p having some extra properties and

giving a negative answer to some open problems, for instance a non-locally
finite π-group factorized by locally finite subgroups or a group factorized
by two locally finite p-groups which contains an element of an infinite
order [7–9].

Since factorizations of wreath products seem to be a nice source of
examples, it may be interesting to investigate their nature in a systematic
way. Our paper is meant to be one step forward.

The paper is organized as follows. In section 2 we recall a definition
of an infinite iterated wreath product and two of its standard subgroups.
Section 3 is devoted to investigating the factorization (of the second type)
and its basic properties connected with the properties of factorization of
each constituent. Also, the factorization of the two standard subgroups is
considered. In section 4 we describe the factorization under the assumption
that each constituent is a soluble group and give some examples.

The notions we use are standard or defined. For more details the
reader is referred to the bibliography, e.g. [1, 2, 11].
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2. Preliminaries

2.1. An infinite iterated wreath product

Let (G1, M1), (G2, M2), ... be an infinite sequence of permutation
groups and let M =

∏

i∈N Mi. Then the infinite iterated wreath

product of groups in this sequence [4], denoted by
∞

≀
i=1

Gi (or
∞

≀
i=1

(Gi, Mi)

if the sets are important), is a permutation group on the set M consisting
of all maps g satisfying the following two conditions:

1) for every x = (x1, x2, ...) ∈ M , if y = xg, then i-th coordinate of y
depends only on the first i coordinates of x and on g

2) for any fixed sequence (x0
1, ..., x0

i−1) ∈ M1 × · · · Mi−1 the map
gi(x

0
1, ..., x0

i−1) : xi → yi induced by g is a permutation of Mi

belonging to Gi

Therefore g can be uniquely written as an infinite sequence, called an
array, namely

g = [g1, g2(x1), g3(x1, x2), ....],

where g1 ∈ G1 and for every i > 2 gi is a function on M1 × · · · × Mi−1

taking values in Gi, that is gi ∈ G
M1×···×Mi−1

i .

The action of g ∈
∞

≀
i=1

Gi on m = (m1, m2, m3, ...) ∈ M is defined com-

ponentwise, namely

mg =
(

mg1
1 , m

g2(m1)
2 , m

g3(m1,m2)
3 , ...

)

(2)

Thus the product of g = [g1, g2(x1), ...] and h = [h1, h2(x1), ...] is given
by the rule

gh =
[

g1h1, g2(x1)h2 (xg1
1 ) , g3(x1, x2)h3

(

xg1
1 , x

g2(x1)
2

)

, ....
]

(3)

The identity is
e = [1, 1, 1, ....], (4)

where each component is a constant function taking identity of each group
as the value and the inverse of g is

g−1 =









g−1
1 , g−1

2

(

x
g−1

1
1

)

, g−1
3









x
g−1

1
1 , x

g−1
2

(

x
g

−1
1

1

)

2









, ...









(5)
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To make the notation shorter, in order to define multiplication in the
wreath product it is enough to refer to the to the n-th component of
the array instead of writing the whole one. So, let ḡn denote the initial
segment of g of length n and let m̄n denote the initial segment of m of
length n, that is

ḡn = [g1, ..., gn(x1, ..., xn−1)], m̄n = (m1, m2, ..., mn) (6)

Then (2) implies the following action of ḡn on m̄n

m̄ḡn
n =

(

mg1
1 , m

g2(m1)
2 , m

g3(m1,m2)
3 , ..., mgn(m1,...,mn−1)

n

)

(7)

Now, if [g]n denotes the n-th component of the array g, then, taking (7)
under consideration, (3) and (5) can be written as

[gh]1 = g1h1, [gh]n = gn(x̄n−1)hn

(

x̄
ḡn−1

n−1

)

, n > 2

[g−1]1 = g−1
1 , [g−1]n = g−1

n

(

x̄
ḡn−1

n−1

)

, n > 2
(8)

2.2. Standard subgroups in an iterated wreath product

1. There is another way to extend the definition of a wreath product
of a finite number groups into an infinite one, (Gi, Mi), i ∈ N say. This

time we take groups G(n) :=
n

≀
i=1

Gi together with the natural embeddings

G(n) → G(n+1) defined as [g1, ..., gn(x̄n−1)] → [g1, ..., gn(x̄n−1), 1]. Then
the direct limit of this system of groups also is an iterated wreath product.

We shall denote it by
n

≀
i=1

f Gi and call it a finitary iterated wreath

product of groups (Gi, Mi), i ∈ N [2]. Note that it is isomorphic to the

proper subgroup of
∞

≀
i=1

Gi, namely the one containing all elements of the

form g = [g1, g2(x1), ..., gn(x1, ..., xn−1), 1, 1, ...] for some natural n.

It is easy to see that
n

≀
i=1

f Gi is locally finite if and only if every Gi is

finite.

Also, if each Gi is transitive on Mi, then generators of G :=
∞

≀
i=1

f Gi can

be defined as follows: for each i we define the set Ĝi of those arrays in G,
all components of which except i-th are trivial and the i-th component of
which is a function having a nontrivial value at exactly one point. Then
∞

≀
i=1

f Gi = 〈Ĝi, i ∈ N〉.
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However, G :=
n

≀
i=1

f Gi never acts transitively on M :=
∞
∏

i=1
Mi and

the orbits can be described as follows: elements a = (a1, a2, ...) and
b = (b1, b2, ...) in M are called cofinal if there exists a natural number k
such that for every n > k we have an = bn. Cofinality is an equivalence
relation in M and equivalence classes are the orbits of action of G on M .

2. For any group (G, M) consider an iterated wreath product
∞

≀
i=1

G of an

infinite number of copies of G, which is sometimes called a wreath power

of G, and take any g ∈
∞

≀
i=1

G. Now, for an arbitrary s ∈ N and for an

arbitrary m(s) := (m1, ..., ms) ∈ M s define an m(s)-th remainder for g
to be

g(s)
m := [g1, g2(m1), ..., gs+1(m(s)), gs+2(m(s), x1), gs+3(m(s), x1, x2), ...]

Note that for a given m(s) the constituent gs+1(m(s)) is an element of G

and gs+k+1 is a function of x1, .., xk, that is gs+k+1 ∈ GMk

. Therefore

ḡ(s)
m := [gs+1(m(s)), gs+2(m(s), x1), gs+3(m(s), x1, x2), ...] ∈

∞

≀
i=1

G

and it is called the state of g for m(s). Now, let
∞

≀
i=1

fs G denote the set of

such elements g ∈
∞

≀
i=1

G that the set of all their states, i.e.

{ḡ(s)
m , s ∈ N, m(s) ∈ M s}

is finite. Now, if g and h have only a finite number of distinct states,

so have gh and g−1, thus
∞

≀
i=1

fs G is a subgroup of
∞

≀
i=1

G, called the finite

state iterated wreath product [2]. Moreover, each element of the form
[g1, g2(x1), ..., gn(x1, ..., xn−1), 1, 1, ...] has only a finite number of states
whence we finally get

∞

≀
i=1

f G <
∞

≀
i=1

fs G <
∞

≀
i=1

G

for every group (G, M).
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3. The factorizations

The theorem below is a generalization of Theorem 1.1. in [8].

Theorem 1. Let G =
∞

≀
i=1

Gi be an infinite wreath product of permutation

groups (Gi, Mi), i ∈ N, each of which is factorized by at most m subgroups,

that is

∀i ∈ N Gi = Gi1Gi2 · · · Gim (9)

with some Gik
possibly trivial. Now, let G[1]G[2], ..., G[m] be groups defined

in the following way: g(k) ∈ G[k] if and only if

g(k) = [g
(k)
1 , g

(k)
2 (x1), g

(k)
3 (x1, x2), ....], g

(k)
i ∈ G

M1×···×Mi−1

ik
(10)

Then

G = G[1]G[2] · · · G[m] (11)

Proof. Observe first that G[k], k = 1, ..., m are subgroups of G, which is
obvious since Gik

, k = 1, ..., m are subgroups of Gi. Taking (9) under
consideration for every g ∈ G we have

[g]1 = g
(1)
1 · · · g(m), [g]n = g(1)

n (x̄n−1) · · · g(m)
n (x̄n−1), n > 2 (12)

Now, for a given g ∈ G we define A(k) ∈ G[k] for k = 1, 2, ..., m in the

following way: [A(k)]1 = g
(k)
1 and for every natural n > 2

[A(1)]n = g(1)
n (x̄n−1), [A(k)]n = g(k)

n






x̄

(

ḡ
(1)
n−1···ḡ

(k−1)
n−1

)

−1

n−1






(13)

Note that the definition of [A(k)]n is correct since x̄
ūn−1

n−1 ∈ M1 ×· · ·×Mn−1

for every u ∈ G. Thus by the rule (3) of multiplication in the infinite

iterated wreath product we have [A(1) · · · A(m)]1 = g
(1)
1 · · · g(m) = [g]1 and

for every natural n > 2

[A(1) · · · A(m)]n =

g(1)
n (x̄n−1)g(2)

n





(

x̄
(g

(1)
1 )−1

n−1

)g
(1)
1



· · · g(m)
n
















x̄

(

ḡ
(1)
m−1···ḡ

(m−1)
m−1

)

−1

n−1







ḡ
(1)
m ···ḡ

(m−1)
m−1











= g(1)
n (x̄n−1)g(2)

n (x̄n−1) · · · g(m)
n (x̄n−1) = [g]n

(14)

whence g = A(1)A(2) · · · A(m) which proves (11) as required.
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A little bit more can be said about the nature of factorization (11) if
the nature of a factorization of each constituent is known. Namely,

Corollary 1. Let G =
∞

≀
i=1

Gi be an infinite iterated wreath product of

permutation groups (Gi, Mi), i ∈ N, each of which is factorized by at most

m permutation groups, that is

∀i ∈ N Gi = Gi1Gi2 · · · Gim

1) If the factorization of each Gi is exact, then the factorization of G
is exact.

2) If each Gi is a Zappa-Szép product of its subgroups, then G is a

Zappa-Szép product of its subgroups.

Proof. By Theorem 1, G = G[1]G[2] · · · G[m].

1) Take g = [g1, g2(x1), ...] ∈ G[j] ∩ G[l], j 6= l. Then g1 belongs both
to G1j

and G1l
and functions gi(x̄i−1) take values both in Gij

and Gil
for

every x̄i−1 ∈ M1 × · · · × Mi−1 and every natural i > 2. That means that
the only possible value of each function gi is 1, so by (4) g = e, which
means that the factorization is exact.

2) To prove that it is enough to show that for each i, k the group Gik

intersects trivially with the group generated by Gij
, j 6= k. The proof is

analogous to that of 1).

Corollary 2. Let G =
∞

≀
i=1

f Gi be a finitary iterated wreath product of

permutation groups (Gi, Mi), i ∈ N each of which is factorized by at most

m permutation subgroups. Then
∞

≀
i=1

f Gi can be factorized by m subgroups.

Moreover, if each Gi is a Zappa-Szép product of its subgroups, so is
∞

≀
i=1

f Gi.

Proof. By Theorem 1, G = G[1]G[2] · · · G[m], where each G[k] consists of

g(k) = [g
(k)
1 , g

(k)
2 (x1), g

(k)
3 (x1, x2), ....], g

(k)
i ∈ G

M1×···×Mi−1

ik

Now consider any element of
∞

≀
i=1

f Gi. Then it can be written as a product

of those elements from each G[k] which have only a finite number of

nontrivial components. Thus if G
[k]
f is a subset of G[k] consisting of all
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elements with only a finite number of nontrivial components, then it is
actually a subgroup of G[k], which gives the required factorization. The
last part follows from Corollary 1, part 2).

Corollary 3. Let
∞

≀
i=1

fs G be a finite state iterated wreath power of a permu-

tation group (G, M), which is factorized by m permutation subgroups. Then
∞

≀
i=1

fs G can be factorized by m subgroups. Moreover, if G is a Zappa-Szép

product of its subgroups, so is
∞

≀
i=1

fs G.

Proof. If G = G1 · · · Gm, then by Theorem 1,
∞

≀
i=1

G = G[1]G[2] · · · G[m],

where each G[k] consists of elements of the form

g(k) = [g
(k)
1 , g

(k)
2 (x1), g

(k)
3 (x1, x2), ....], g

(k)
i ∈ GM i−1

k

Now consider any element of
∞

≀
i=1

fs Gi. Then it can be written as a

product of those elements from each G[k] which have only a finite number

of states. Thus if G
[k]
fs is a subset of G[k] consisting of all elements with

only a finite number of states, then it is actually a subgroup of G[k], which
gives the required factorization. The last part follows from Corollary 1,
part 2).

Example 1. Since every finite soluble group has a finite normal series
with cyclic factors, by theorem of Krasner and Kaloujnine [5] it can be
embedded into a finite iterated wreath product of cyclic groups. Thus
every group having an infinite normal series with cyclic factors, all terms
of which intersect trivially (e.g. a residually finite or a residually soluble

group) can be embedded into an infinite iterated wreath product
∞

≀
i=1

Cni

of cyclic groups. Now, each Cni
is either a cyclic group of prime power

order or is isomorphic to a direct product of cyclic subgroups of prime
power orders. More exactly, if ni = qα1

1 · · · qαs
s , where qi are primes and

s ∈ N then Cni
∼= Cq

α1
1

× · · · × Cq
αs
s

. Therefore if there exists a natural

number n such that ni 6 n for every i ∈ N, then each Cni
can be viewed

as a direct product with the same finite number of factors, each of which
is either a cyclic group of prime power order less than n or is the trivial
group. Hence by Theorem 1 G can be written as a Zappa-Szép product
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of a finite number of infinite iterated wreath products of cyclic groups of
some prime power orders less than or equal to n.

4. Iterated wreath products of soluble groups

4.1. Sylow subgroups in an iterated wreath product

Note that an infinite wreath product G :=
∞

≀
i=1

Gi can be seen as the

inverse limit of groups G(n) :=
n

≀
i=1

Gi together with the natural projections

G(n+1) → G(n) defined as [g1, ..., gn+1(x̄n)] → [g1, ..., gn(x̄n−1)]. Thus if
every Gi is finite, G is profinite. If moreover each Gi is a p-group, so is
each G(n), whence G is a pro-p-group.

Now, following [11], the index |G : H| of a (closed) subgroup H of
a profinite group G is defined as the least common multiple of the indices
of the open subgroups of G containing H and the order |G| of G is defined
as |G : 1|. Therefore for every prime p a p-Sylow subgroup1 of G is a
subgroup P such that |P | is a (possibly infinite) power of p and |G : P | is
a supernatural number coprime to |P |. From that it follows that (similarly
as in the finite case) p-Sylow subgroups of a profinite group G are maximal
pro-p-subgroups of G.

Moreover, p-Sylow subgroups of an infinite wreath product
∞

≀
i=1

Gi can be

characterized by Sylow p-subgroups of each Gi, if they are finite. Indeed,
if (G1, M1), (G2, M2) are finite groups of permutations and (P1, M1),
(P2, M2) are their Sylow p-subgroups for some prime p then P1 ≀ P2 is
the Sylow p-subgroup of G1 ≀ G2 (which follows from the comparison of
orders). And conversely - each Sylow p-subgroup of a wreath product of
two finite groups is a wreath product of Sylow p-subgroups of constituents.
This property can be extended to a finite iterated wreath product of finite

permutation groups
n

≀
i=1

(Gi, Mi) for every natural n by induction whence

we finally get

Proposition 1. Let G =
∞

≀
i=1

Gi be an infinite iterated wreath product of

finite permutation groups (Gi, Mi), i ∈ N. Then a p-Sylow subgroup of G
is an infinite iterated wreath product of Sylow p-subgroups of Gi’s. �

1In case of profinite groups one rather say ”p-Sylow subgroup” than ”Sylow p-
subgroup” since they are usually not p-subgroups in a standard sense
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4.2. The factorization in wreath products of soluble groups

Recall that if π is any set of primes, then a (pro)finite group G is
called (pro-)π-group if every prime divisor of |G| belongs to π.

Theorem 2. Let π be any finite set of primes and let G =
∞

≀
i=1

Gi be

an infinite iterated wreath product of finite soluble permutation π-groups

(Gi, Mi), i ∈ N. Then a pro-π group G is a Zappa-Szép product of its

Sylow subgroups.

Proof. By theorem of P. Hall [3], every finite soluble group has a Sylow
basis, which is a set of pairwise permutable Sylow subgroups, one for
each prime p (note that a Sylow basis contains a trivial subgroup). Since
π is finite, say π = {p1, ..., pm}, then a Sylow basis for each constituent
contains at most m + 1 elements, say {1, P1, ..., Pm} with Pk being a
Sylow pk-subgroup. Since the subgroups in a Sylow basis are pairwise
permutable, a group generated by all Pi’s except j-th is a product of all
Pi’s except j-th, that is

〈Pi, i 6= j〉 =
∏

i6=j

Pi

Moreover, Pi’s are Sylow subgroups of G, thus |G| = |P1 · · · Pm| =
|P1| · · · |Pm|. From that and from the equality |HK| = |H||K|/|H ∩ K|
which is true for every pair of subgroups of a given group we finally get
that

∀j = 1, ..., m Pj ∩ 〈Pi, i 6= j〉 = {1} (15)

Now, let G =
∞

≀
i=1

Gi where each Gi is a soluble π-group. Then G is pro-π

and (15) means that each Gi is a Zappa-Szép product of at most m
subgroups, Gik

say, each of which is a Sylow pk-subgroup of Gi. Therefore
by Corollary 1 the product G = G[1] · · · G[m] is a Zappa-Szép product.
Next, by Proposition 1 each group G[k] is a pk-Sylow subgroup of G, which
finishes the proof.

We give some examples of iterated wreath products of soluble groups.

Example 2. Consider a wreath power of Cn
p , that is G =

∞

≀
i=1

Cn
p , where

Cn
p acts on Mn = {1, ..., p}n. Since Cn

p is a direct product of cyclic groups,
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then G is a Zappa-Szép product of groups G[k], each of which consists of
elements of the form

g(k) = [g
(k)
1 , g

(k)
2 (x1), g

(k)
3 (x1, x2), ....], g

(k)
i ∈

(

C̄(k)
p

)M i−1

where C̄
(k)
p is a product of n − 1 trivial groups and the group Cp, which

stands as the k-th constituent in this product. So G[k] ∼=
∞

≀
i=1

(Cp, Mn) for

every k and hence by Theorem 2 G is isomorphic to the Zappa-Szép

product of n copies of
∞

≀
i=1

(Cp, Mn), that is

∞

≀
i=1

(Cn
p , Mn) ∼=

(

∞

≀
i=1

(Cp, Mn)

)

⊲⊳ · · · ⊲⊳

(

∞

≀
i=1

(Cp, Mn)

)

.

Example 3. Take
∞

≀
i=1

(S3, X), where X = {1, 2, 3}. Since S3 is soluble

of order 6, it can be factorized by its Sylow 2- and 3-subgroups, which
are both cyclic. Although S3 is a semidirect product of (〈(1, 2, 3)〉, X), a
cyclic group of order 3 (which is normal), by (〈(1, 2)〉, X), a cyclic group of

order 2, the group
∞

≀
i=1

(S3, X) is not a semidirect product of
∞

≀
i=1

(〈(1, 2, 3)〉, X)

and
∞

≀
i=1

(〈(1, 2)〉, X). But it is a Zappa-Szép product, which follows from 2).

in Corollary 1, that means

∞

≀
i=1

(S3, X) ∼=

(

∞

≀
i=1

(C3, X)

)

⊲⊳

(

∞

≀
i=1

(C2, X)

)

.

Example 4. Take under consideration
∞

≀
i=1

(A4, X), X ={1, 2, 3, 4}. Each

of Sylow 3-subgroups of A4 has order 3 (there are 4 of them), which
makes it cyclic. Choose any and denote it by C3. Sylow 2-subgroups has
order 4 and there is only such subgroup (whence it is normal), namely
{(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}, which is the Klein 4-group. Thus
A4

∼= C3 ⋉ V4 since |C3||V4| = |A4| and A4 is generated by these two
subgroups. Therefore

∞

≀
i=1

(A4, X) ∼=

(

∞

≀
i=1

(V4, X)

)

⊲⊳

(

∞

≀
i=1

(C3, X)

)

.

Example 5. Finally, let G =
∞

≀
i=1

(S4, X), where X = {1, 2, 3, 4}. Each

of Sylow 3-subgroups of S4 has order 3 (there are 4 of them), which
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makes it cyclic, and each of Sylow 2-subgroups has order 8 (there are 3 of
them). Now, if we take {(1), (1, 2, 3), (1, 3, 2)} ∼= C3 and {(1), (1, 2, 3, 4),
(1, 3)(2, 4), (1, 4, 3, 2), (1, 3), (2, 4), (1, 2)(3, 4), (1, 4)(2, 3)} ∼= D4, then we
get S4

∼= C3 ⊲⊳ D4 since these two subgroups generate S4 and |C3||D4| =
|S4|. That gives us

∞

≀
i=1

(S4, X) ∼=

(

∞

≀
i=1

(D4, X)

)

⊲⊳

(

∞

≀
i=1

(C3, X)

)

.
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