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of the finite symmetric semigroup
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Abstract. In the present paper we give the description of
all L-cross-sections of the finite symmetric semigroup.

Introduction

Let ρ be an equivalence relation on a semigroup S. A subsemigroup
S′ of S is called a ρ-cross-section of S, provided that S′ contains exactly
one representative from each equivalence class. It is natural to investigate
the cross-sections with respect to those equivalences related somehow
to the semigroup operation: Green’s relations, conjugacy and various
congruences. The transformation semigroups are the classical objects
for investigation in semigroup theory (see [1]). This is explained by the
well-known fact that every (inverse) semigroup is embedded into some
symmetric (inverse) semigroup up to an isomorphism (see e.g. [2]).

In fact, the full transformation semigroup, the symmetric inverse semi-
group, and the semigroup of all partial transformations of n-element set
contain exactly one cross-section with respect to the relation of conju-
gation if n = 1, and do not contain any cross-section with respect to
the conjugacy if n > 1 (see [1]). The cross-sections of the mentioned
semigroups with respect to the congruences exist only for three types of
congruences [2].

1The author expresses gratitude to the referee for the number of helpful improving
proposals of the article.
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The description of cross-sections with respect to Green’s relations
in transformation semigroups and some others is much richer and more
varied. In [3] L. Renner has used so called order-preserving elements for
the investigation of reductive monoids. It turned out, that the set of
order-preserving elements forms an inverse monoid and is an H-cross-
section. In [4] D. Cowan and N. Reilly have proved that all H-cross-
sections of the full symmetric inverse semigroup on a set X (|X| 6= 3)
with fixed linear order consist exactly of order-preserving transformations
on X. Later, R- and, in a dual manner, L-cross-sections of the finite
symmetric inverse semigroup have been described by O. Ganyushkin and
V. Mazorchuk [5]. It transpires, that in contrast with H-cross-sections,
different R-(L-) cross-sections are not isomorphic in general, and the
number of mutually non-isomorphic R-(L-)cross-sections is equal to the
number of different partitions of the positive integer n into a sum of
positive integers. V. Pekhterev [6] shows that every finite poset can be
embedded into some idempotent D-cross-section of the finite symmetric
inverse semigroup. All H-, R(L)-cross-sections of the infinite symmetric
inverse semigroup have been described in [7].

The cross-sections with respect to Green’s relations have also been
investigated on other transformation semigroups. The complete descrip-
tion of all cross-sections with respect to Green’s relations on the variant
of symmetric inverse semigroup represented by the symmetric inverse
0-category is given in [8]. The description and classification of all R-(L-),
H-cross-sections of the Brauer semigroup can be found in [9].

For the full finite symmetric semigroup Tn all H- and R-cross-sections
have been described in [10]. It has been proved, that there exists a unique
R-cross-section up to an isomorphism. At the same time, a pair of non-
isomorphic L-cross-sections of T4 has been constructed in [11]. Thus, in
case of the symmetric semigroup the dual description of L-cross-sections
is not applicable and the question of the description of L-cross-sections
of Tn remains open-ended [1]. In addition, the description of H-, R- and
L-cross-sections of the strong endomorphism monoid of finite graphs
without multiply edges is reduced to the problem mentioned above [12].

The present paper contains the description of all L-cross-sections of
the full finite symmetric semigroup. The paper is organized as follows. All
the necessary preliminaries are contained in Section 1. In Section 2 the
notion of an L-family is introduced. We have also constructed a semigroup
LΓ
X and formulate the main result of the paper in Theorem 1, namely,

that LΓ
X is an L-cross-section of the semigroup Tn, and conversely, any
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L-cross-section of the symmetric semigroup Tn is given by LΓ
X for a

suitable L-family on X. The proof of Theorem 1 is given in Section 3.

1. Preliminaries

For any nonempty set X, the set of all transformations of X into itself,
written on the right, is a semigroup under the composition x(αβ) = (xα)β,
x ∈ X to be denoted by T(X). The semigroup T(X) is called a symmetric
semigroup. If |X| = n, then the symmetric semigroup T(X) will also
be denoted by Tn. We will write idX for the identity transformation on
X and just x if an image of transformation is {x}, x ∈ X. The image
and the rank of transformation α ∈ Tn is denoted by im(α) and rk(α)
respectively. If X ′ is a subset of X, then α|X′ is the restriction α to
X ′. We will assume X is finite. As the nature of elements of X is not
important for us, suppose further X = {1, 2, . . . , n}.

Let U be a nonempty subset of X. For a given family of subsets of X
denote by U the intersection of all the sets of this family that contain U .

It is well known that there always exist five equivalence relations
L,R,H,D,J on any semigroup, called Green’s relations. We recall, that
two elements in a semigroup S are called L-(R-)-equivalent, provided that
they generate the same principal left (right) ideal in S, and J-equivalent,
provided that they generate the same principal two-sided ideal. The
product of equivalence relations L and R is denoted by D, the H-relation
is defined as the intersection of L and R.

The description of Green’s relations on Tn is well known (see e.g. [2]).
We recall only that two transformations α, β ∈ Tn are L-equivalent if
and only if im(α) = im(β), and D-equivalent if and only if rk(α) = rk(β).
We will denote the D-class, which consists of all transformations of rank
k, 1 6 k 6 n by Dk.

Suppose further that L is an L-cross-section in Tn. Recall that a
transversal of a family of sets is a set which intersects each set of this
family in a single element. If α ∈ Tn is an arbitrary transformation,
then the relation ρα defined on X by: xραy if and only if xα = yα is an
equivalence. The ρα-class containing x ∈ X to be denoted by xρα , and
the set of all transversals of a quotient set X/ρα by Tα. Besides, we set

XL =
⋃

α∈L

X/ρα.
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Example 1. Let L be one of the L-cross-sections of T4 constructed
in [11]:

L =

{(

1234
1111

)

,

(

1234
2222

)

,

(

1234
3333

)

,

(

1234
4444

)

,

(

1234
1133

)

,

(

1234
1144

)

,

(

1234
2233

)

,

(

1234
2244

)

,

(

1234
1122

)

,

(

1234
3344

)

,

(

1234
1233

)

,

(

1234
1244

)

,

(

1234
1134

)

,

(

1234
2234

)

,

(

1234
1234

)}

.

For instance, if α =
(

1234
2234

)

, we have

X/ρα = {{1, 2}, {3}, {4}},

Tα = {{1, 3, 4}, {2, 3, 4}}.

The set XL for the given cross-section has the form:

XL = {{1, 2, 3, 4}, {1, 2}, {3, 4}, {1}, {2}, {3}, {4}}.

Recall that a binary tree is a finite set of elements that is either empty
or contains one element, called the root of the tree, and other elements
of the set are divided into two disjoint subsets, each of which is itself a
binary tree. Elements of a binary tree are called nodes. Thus, each node
in a binary tree has zero or two child nodes, which are below it in the
tree. A full binary tree is a tree in which every node other than a leaf has
two children.

2. The description of L-cross-sections in Tn

First note that in the case if n ∈ {1, 2} the symmetric semigroup Tn
clearly has the following unique L-cross-sections:

(i) L =

{(

1
1

)}

, if n = 1;

(ii) L =

{(

12
12

)

,

(

12
11

)

,

(

12
22

)}

, if n = 2.

We fix an arbitrary strict total order on the finite set X and define
the strict total order ≺ for subsets of X as follows. Suppose A,B are two
nonempty subsets from X. We will say that A ≺ B, if every a ∈ A less
than any b ∈ B.
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Let Y = {1, 2}, F (Y ) be a free semigroup over the alphabet Y ,
a ∈ F (Y ). Denote the last symbol in the word a by a0. The word of the
same length as a, which is different from a by the last symbol is denoted
by a∗.

Set A0 = X. If |A0| > 1, then define a family Γ of nonempty subsets
of X using the next algorithm. We present A0 in the form A0 = A1 ∪A2,
where A1 ≺ A2. If |Ai| > 1 for some i ∈ {1, 2} then break down Ai so
that Ai = Ai1 ∪ Ai2, where Ai1 ≺ Ai2. Further, we divide all the rest
non-one-element subsets in this way. It is clear that such an algorithm is
finite. Note, that if we consider all these subsets from A0, A1, A2, . . . to
one-element subsets as a vertex set, and set {Aa, Ab} is an edge if and
only if Aa ⊆ Ab, we get a full binary tree (see fig.1).

0
A X=

1
A

2
A

11
A

12
A

21
A

22
A

111
A

112
A

211
A

212
A

221
A

222
A

Figure 1. An arbitrary full binary tree

We will call a family Γ consisting of all these subsets from A0,A1,A2, . . .
to one-element subsets an L-family if for any Aa ∈ Γ, a ∈ F (Y ), |Aa| > 1
the condition |Aaib| 6 |Aa∗b|, i ∈ {1, 2}, i 6= a0 holds for all b ∈ F (Y )
such that Aaib, Aa∗b ∈ Γ.

We say that sets Aa and Aa∗ ∈ Γ, where a ∈ F (Y ), Y = {1, 2}, are
adjacent. The sets A1 and A2 assumed adjacent, too.

Example 2. Let X = {1, 2, 3, 4} be a naturally ordered set. We can
choose tree distinct L-families on X in this case:

Γ1 =

{

A0 = {1, 2, 3, 4}, A1 = {1}, A2 = {2, 3, 4}, A21 = {2},

A22 = {3, 4}, A221 = {3}, A222 = {4}

}

,

Γ2 =

{

A0 = {1, 2, 3, 4}, A1 = {1, 2}, A2 = {3, 4}, A11 = {1},

A12 = {2}, A21 = {3}, A22 = {4}

}

,

Γ3 =

{

A0 = {1, 2, 3, 4}, A1 = {1, 2, 3}, A2 = {4}, A11 = {1, 2},

A12 = {3}, A111 = {1}, A112 = {2}

}

.
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Lemma 1. Let an L-family Γ be defined on X, V be an arbitrary subset
of X, |V | > 1. There exists a unique adjacent pair Aa1, Aa2 ∈ Γ, a ∈
F (Y ) such that V is a union of two nonempty subsets from Aa1 and Aa2

respectively.

Proof. Clearly V is contained in some subset of Γ. Suppose Aa ∈ Γ
is the intersection of all elements of Γ that contain V . Since Aa1, Aa2

are the proper subsets of Aa, we have V ∩ Aa1 6= ∅, V ∩ Aa2 6= ∅ and
V = (V ∩Aa1)∪(V ∩Aa2). So, V has a form of the union of two nonempty
subsets of adjacent sets in Γ. Now we show that this adjacent pair is
unique.

Let Ab ∈ Γ, b ∈ F (Y ), b 6= a and V ⊆ Ab. Clearly, Aa ⊂ Ab. By
definition of the family Γ the last condition implies either Aa ⊆ Ab1 or
Aa ⊆ Ab2. Therefore V can not be represented as a union of nonempty
subsets of Ab1 and Ab2 respectively.

Let Γ be an L-family of subsets of X, M ⊆ X. Set

(a) if M = {m}, then for all a ∈ F (Y ) αAa

M = m.

(b) if |M | 6= 1, then define αAa

M as αAa

M |Aai
= αAai

Abi∩M
, where Ab, b ∈ F (Y )

is the intersection of all elements of an L-family Γ that contain M ,
i ∈ {1, 2}.

Remark 1. A map αAa

M is defined not for every pair Aa and M .

By LΓ
X denote the set of all transformations of the form αXM , where

M ⊆ X, M 6= ∅. We will write also αM instead of αXM .
The main result of this paper is the following theorem.

Theorem 1. For any L-family Γ of X the set LΓ
X is an L-cross-section

of the symmetric semigroup Tn. Conversely, any L-cross-section of the
symmetric semigroup Tn is given by LΓ

X for a suitable L-family Γ on X.

Example 3. Let {1, 2, 3, 4, 5} be naturally ordered. We are now going
to construct an L-cross-section LΓ

X of T5 for the next L-family:

Γ = {A0 = {1, 2, 3, 4, 5}, A1 = {1, 2}, A2 = {3, 4, 5}, A11 = {1},

A12 = {2}, A21 = {3}, A22 = {4, 5}, A221 = {4}, A222 = {5}}.

We will construct the transformation α with the image {1, 2, 4, 5}, i. e.
α = α{1,2,4,5}. Clearly, A0 = im(α). Thus, α ∈ Map(A0, A0) and

α|A1
= αA1

A1∩im(α) = αA1

{1,2}, α|A2
= αA2

A2∩im(α) = αA2

{4,5}
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imply that A1α ⊆ A1, A2α ⊆ A22 and next mappings are defined

α|A11
= αA11

A11∩im(α) = αA11

{1} , α|A12
= αA12

A12∩im(α) = αA12

{2} ,

α|A21
= αA21

A221∩im(α) = αA21

{4} , α|A22
= αA22

A222∩im(α) = αA22

{5} .

Thus,

α =

(

12345
12455

)

.

Similarly we obtain all the rest transformations α with im(α) = A0:

(

12345
12345

)

,

(

12345
12344

)

,

(

12345
12355

)

,

(

12345
11345

)

,

(

12345
22345

)

,

(

12345
11355

)

,

(

12345
11344

)

,

(

12345
11455

)

,

(

12345
22355

)

,

(

12345
22344

)

,

(

12345
22455

)

,

(

12345
12333

)

,

(

12345
12444

)

,

(

12345
12555

)

,

(

12345
11333

)

,

(

12345
11444

)

,

(

12345
11555

)

,

(

12345
22333

)

,

(

12345
22444

)

,

(

12345
22555

)

.

Now we define αA2
. In this case α{3,4,5} ∈ Map(A0, A2) and we have

α|A1
= αA1

A21∩im(α) = αA1

{3}, α|A2
= αA2

A22∩im(α) = αA2

{4,5}.

Since αA2

{4,5} ∈ Map(A2, A22) further we have α|A21
= αA21

A221∩im(α) = αA21

{4} ,

α|A22
= αA22

A222∩im(α) = αA22

{5} . Consequently,

α =

(

12345
33455

)

.

Identically, we obtain two more transformations with the images in A2:

(

12345
33555

)

,

(

12345
33444

)

.

Let im(α) coincide with A1 (A22). Then

α|A1
= αA1

A11∩im(α) = αA1

{1}, α|A2
= αA2

A12∩im(α) = αA2

{2}
(

α|A1
= αA1

A221∩im(α) = αA1

{4}, α|A2
= αA2

A222∩im(α) = αA2

{5}

)



34 L-cross-sections of the finite symmetric semigroup

and we get
(

12345
11222

)

,

(

12345
44555

)

.

If im(α) coincides with one of the rest five classes, we get the following
constant transformations:

(

12345
11111

)

,

(

12345
22222

)

,

(

12345
33333

)

,

(

12345
44444

)

,

(

12345
55555

)

.

3. The proof of Theorem 1

First make sure that LΓ
X is an L-cross-section of the symmetric

semigroup.

Lemma 2. The set LΓ
X forms a semigroup with respect to the composition

of transformations.

Proof. Let Γ be an arbitrary L-family on X. Take arbitrary elements
ϕ,ψ ∈ LΓ

X and consider the composition ϕψ. Let Aa = im(ϕ), Ab =

im(ψ|Aa) for some Aa, Ab ∈ Γ. It is clear that ϕψ = ϕψ|Aa .
The equality |Aa| = 1 yields |Ab| = 1. In this case and in the case if

|Aa| 6= 1, |Ab| = 1, it is clear that ϕψ is a constant mapping from A0 to
Ab and consequently ϕψ belongs to LΓ

X .

Suppose |Aa| 6= 1,|Ab| 6= 1. Since ϕ = αA0

im(ϕ), ψ|Aa = αAa

im(ψ|Aa ), it goes

ϕψ|Aa = αA0

im(ϕ)ψ|Aa
. Thus, ϕψ ∈ LΓ

X .

Besides, Lemma 1 and the definition of elements in LΓ
X imply the

uniqueness of αXM for all M ⊆ X, M 6= ∅. Thus, LΓ
X is an L-cross-section

in Tn. Now we only have to prove the second part of Theorem 1.
Further, we will establish some properties of an arbitrary L-cross-

section L in semigroup Tn.

Lemma 3. Let α, β ∈ Dk∩L. If im(α) ∈ Tβ (im(β) ∈ Tα), then ρα = ρβ.

Proof. Indeed, if im(α) ∈ Tβ , then we have ραβ = ρα for the composition
αβ. On the other hand, since αβ ∈ Dk ∩L and im(αβ) = im(β), we have
αβ = β, thus, ραβ = ρβ. Therefore, ρα = ρβ.

Corollary 1. For all α, β ∈ D2 ∩ L the condition ρα = ρβ holds.

Proof. Clearly, the unequality Tβ ∩ Tα 6= ∅ is valid for all α, β ∈ D2 ∩ L.
Consequently, there exists γ ∈ L such that im(γ) ∈ Tα ∩Tβ . The previous
lemma yields ρα = ργ = ρβ.
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Lemma 4. Let L be an arbitrary L-cross-section in Tn, n > 2.

(i) If A,B ∈ XL are distinct elements then either A ∩ B = ∅ or one
of these sets contains the other one.

(ii) Any A ∈ XL, |A| > 1, is uniquely expressible as a disjoint union of
two sets (which are different from A and ∅) in XL.

(iii) If A ∈ XL and A = A1 ∪A2 for some A1, A2 ∈ XL then there exists
a mapping β ∈ L such that A1, A2 ∈ X/ρβ.

(iv) Let A ∈ XL, |A| > 2 and A = A1 ∪ A2 for some A1, A2 ∈ XL. If
|A2| > 1, A2 = A21 ∪A22 for some A21, A22 ∈ XL, then at least one
of the cardinalities |A21|, |A22| is no more than |A1|.

Proof. (i) Suppose that there exist A,B ∈ XL such that A ∩ B = C /∈
{A,B},C 6= ∅. Let α, β ∈ L be mappings such that A ∈ X/ρα,B ∈ X/ρβ .
Take a ∈ A \ C, b ∈ B \ C, c ∈ C. Thus,

aρα = cρα 6= bρα , aρβ
6= bρβ

= cρβ
.

Choose the element γ ∈ L such that im(γ) = {a, b, c}. Consider the
products γ1 = γα, γ2 = γβ. We get γ1, γ2 ∈ D2 ∩ L and

X/ργ1
= {{a, c}γ−1, {b}γ−1},

X/ργ2
= {{b, c}γ−1, {a}γ−1}.

The condition X/ργ1
6= X/ργ2

contradicts Corollary 1.

(ii) The proof is by induction on the number of sets from XL that
contain A. If A = X, |X| > 1, we get the proof at once from Corollary 1:
assume that for an arbitrary transformation ϕ ∈ L of rank 2 we have
X/ρϕ = {X1, X

′
1}. So, X = X1 ∪X ′

1. Such an expansion is clearly disjoint.

Suppose that A 6= X and (ii) holds for p sets that contain A, p ∈ N.
Without loss of generality, we put

A ⊂ X ′
1, X

′
1 = X2 ∪X ′

2,

A ⊂ X ′
2, X

′
2 = X3 ∪X ′

3,

A ⊂ X ′
3, X

′
3 = X4 ∪X ′

4, . . . ,

A ⊂ X ′
p−1, X

′
p−1 = Xp ∪X ′

p,

A = X ′
p.
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To show A = A1 ∪A2, A1, A2 ∈ XL we establish at first that for any
k ∈ N, 1 6 k 6 p we have

σk+1 =

(

X1 X2 ... Xk+1 X
′

k+1

x1 x2 ... xk+1 x′

k+1

)

∈ L,

where x′
k+1 ∈ X ′

k+1, xj ∈ Xj , 1 6 j 6 k + 1.

Indeed, denote the transformation such that im(σ1) = {x1, x
′
1} for

fixed x1 ∈ X1, x′
1 ∈ X ′

1 by σ1 ∈ L. It is easy to see that xσ1 = x1, x ∈ X1,
xσ1 = x′

1, x ∈ X ′
1 since σ2

1 ∈ L.

Suppose that

σk =
(

X1 X2 ... Xk X′

k

x1 x2 ... xk x′

k

)

∈ L,

where x′
k ∈ X ′

k, xj ∈ Xj , 1 6 j 6 k.

Let y′
k ∈ X ′

k, y
′
k 6= x′

k be an arbitrary fixed element, µk ∈ L be
the transformation such that im(µk) = {x1, x2, . . . , xk, x

′
k, y

′
k}. Since

µkσk, σk ∈ L and im(µkσk) = im(σk), we have µkσk = σk. The latter is
possible whenever

im(µk|X1
) = {x1}, im(µk|X2

) = {x2}, . . . ,

im(µk|Xk
) = {xk}, im(µk|X′

k
) = {x′

k, y
′
k}.

As x′
kµ

−1
k , y′

kµ
−1
k ∈ XL and item (i) holds, we have {x′

kµ
−1
k , y′

kµ
−1
k } =

{Xk+1, X
′
k+1}. Assume xk+1 ∈ Xk+1, x

′
k+1 ∈ X ′

k+1 are arbitrary ele-
ments and ε ∈ L is the transformation such that im(ε) = {x1, x2, . . . ,

xk, xk+1, x
′
k+1

}

. As im(ε)∈Tµk
, we have ρε = ρµk

(according to Lemma 3).

Since conditions ε2 ∈ L, im(ε2) = im(ε) hold, we get ε = σk+1.

Now take a1, a2 ∈ A, a1 6= a2 and σp ∈ L. If

µp ∈ L such that im(µp) = {x1, x2, . . . , xp, a1, a2} ,

then as was shown above we get im(µp|A) = {a1, a2}. Set A1 = a1µ
−1
p ,

A2 = a2µ
−1
p . It is clear that A = A1 ∪ A2, where A1, A2 ∈ XL,

A1 ∩A2 = ∅.

Suppose that A = B1 ∪ B2 holds for some other B1, B2 ∈ XL such
that B1, B2 ⊂ A. The condition B1 ∩ B2 6= ∅ contradicts item (i). If
A1 ⊂ B1, then B2 ∩ A1 6= ∅. Similar considerations are valid in other
cases. Thus, the coexistence of different pairs Ai and Bj , i, j ∈ {1, 2}
contradicts item (i).

(iii) Since A1 ∈ XL, there exists a transformation β1 ∈ L such that
A1 ∈ X/ρβ1

. If A2 ∈ X/ρβ1
, then there is nothing to prove. Let A2 /∈
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X/ρβ1
. In this case any B ∈ X/ρβ1

contains neither A2, nor part of A2

as a proper subset: the conditions B ∩A 6= ∅, B ∩A /∈ {B,A} contradict
item (i). Hence, for every B ∈ X/ρβ1

, B ∩A2 6= ∅ the inclusion B ⊂ A2

holds. By β′ ∈ L denote a transformation of X such that im(β′) ∈ Tβ1
.

For β′ the following is true. Firstly, ρβ1
= ρβ′ (see Lemma 3). Secondly, β′

is idempotent since β′2 ∈ L and im(β′2) = im(β′). Therefore, a2β
′ ∈ A2

for all a2 ∈ A2.
Suppose now β2 ∈ L such that A2 ∈ X/ρβ2

. If A1 ∈ X/ρβ2
, then there

is nothing to prove. Let A1 /∈ X/ρβ2
. Just as in the previous case the

condition C ∈ X/ρβ2
, C ∩A1 6= ∅ is possible whenever C ⊂ A1. Similarly,

let β′′ ∈ L be an idempotent transformation such that im(β′′) ∈ Tβ2
.

Consider now the transformation β = β′β′′ ∈ L. On the one hand,
A1 ∈ X/ρβ′ , so it is easy to see that A1 ∈ X/ρβ . On the other hand, the
conditions a2β

′ ∈ A2 for all a2 ∈ A2 and A2 ∈ X/ρβ′′ imply A2 ∈ X/ρβ.
(iv) Let the assumption of item (iv) be fulfilled. If |A1| > |A2| then

there is nothing to prove. Suppose that |A1| 6 |A2|. To be definite, assume
that |A21| 6 |A22|. We shall prove |A1| > |A21|.

Assume the converse. Then |A1| < |A21| 6 |A22| < |A2|.
If A = X, then take α, β ∈ L such that im(α) = A21 ∪ A22 and

A21, A22 ∈ X/ρβ (see the previous item). Set A′
i = A21α

−1 ∩ Ai and
A′′
i = A22α

−1 ∩ Ai, i ∈ {1, 2}. Having regard to |A2iα
−1| > |A1|, the

sets A′
1, A

′
2 or A′′

1, A
′′
2 at least in one pair are both not empty. Consider

the product αβ ∈ L. We have X/ραβ = {A′
1 ∪ A′

2, A
′′
1 ∪ A′′

2}, which is
impossible since at least one class has a nonempty intersection with
A1, A2 ∈ XL at the same time. Thus, |A1| > |A21|.

Let A 6= X, denote a class from XL that does not contain A by S1,
and the other one by S′

1, i.e. A ⊆ S′
1. If A ⊂ S′

1 then denote the classes in
XL such that S′

1 = S2 ∪S′
2 and A ⊆ S′

2 by S2 and S′
2. We will redesignate

elements in XL until A = S′
t for a natural t. Consider the system of

subsets {S1, S2, . . . , St}. Note that Si ∩ Sj = ∅ = Si ∩ A, Sj ∪ Si /∈ XL

for all 1 6 i 6= j 6 t.
As in the case A = X we will construct a transformation γ ∈ L such

that im(γ|A) = {A21, A22}.
Let s1, s2, . . . , s

′
t be arbitrary fixed elements from S1, S2, . . ., S

′
t re-

spectively. Just as in the proof of item (ii) one can prove by induc-

tion that σt =
(

S1 S2 S3 ... St S
′

t

s1 s2 s3 ... st s′

t

)

∈ L. Set γ ∈ L, im(γ) = {s1, s2,

. . . , st} ∪ A21 ∪ A22. Recall that A21 ∪ A22 ⊂ S′
t = A. Obviously, we

get γσt = σt, whence γ =
(

S1 S2 S3 ... St S′

t

s1 s2 s3 ... st A21∪A22

)

. Thus, im(γ|A) =

{A21, A22}. Set A′
i = A21α

−1 ∩ Ai and A′′
i = A22α

−1 ∩ Ai, i ∈ {1, 2}.
Having regard to |A2iγ

−1| > |A1|, the subsets at least in one pair A′
1, A

′
2
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orA′′
1, A

′′
2 are both not empty. Consider the product αβ ∈ L. As was shown

above γβ ∈ L contradicts item (i) since X/ργβ = {A′
1 ∪A′

2, A
′′
1 ∪A′′

2}. So,
we get |A1| > |A21|.

It can be shown dually that if |A1| > 1, A1 = A11 ∪ A12 for some
A11, A12 ∈ XL, then at least one of the cardinalities |A11|, |A12| is no
more than |A2|.

Corollary 2. For any L-cross-section L in the semigroup Tn, n > 2 the
collection of sets XL is a full binary tree.

Proof. According to Lemma 4, item (ii), X is uniquely expressible as a
disjoint union of two classes from XL. We set B0 = X and denote classes
in expansion of B0 by B1 and B2. Any non-one-element class we have
obtained, is expressible as a union of two other classes from XL. Without
loss of generality, we may assume that |B1| > 1,B1 = B11∪B12,B11, B12 ∈
XL. Let α, β ∈ L be the transformations such that im(α) = B11 ∪ B12,
B11, B12 ∈ X/ρβ. Since rk(αβ) = 2, according to Corollary 1 we get
X/ραβ = {B1, B2}, whence {B11α

−1, B12α
−1} = {B1, B2}. Redesignate

sets B11, B12 so that equalities B1α = B11, B2α = B12 hold. Do the same
with every obtained non-one-element class. It is clear that we get a full
binary tree.

We will denote new classes by Baj , where j ∈ {1, 2}, a is an index of
the initial set (Ba = Ba1 ∪Ba2) and if α′ ∈ L is the transformation such
that im(α′) = Ba1 ∪Ba2 then B1α

′ = Ba1, B2α
′ = Ba2.

Hereinbelow XL means the family of sets described in previous Lemma.
Suppose α ∈ L, Ba ∈ XL, a ∈ F (Y ). It is clear that Baα can be

embedded into some class from XL. We may ask the following question:
does there exist another class Bc ∈ XL, c ∈ F (Y ), Bc 6= Ba such that
Baα ∩Bcα 6= ∅? Next Lemma gives a negative answer to this question.

Lemma 5. Let α ∈ L and Ba, Bc ∈ XL be arbitrary classes. If |Baα| > 1
and Ba ∩Bc = ∅ then Baα ∩Bcα = ∅.

Proof. Let Ba ∩Bc = ∅. Denote the class of XL such that Bb = Baα by
Bb, b ∈ F (Y ).

Suppose Baα ∩Bcα ⊆ Bb. In this case for any x ∈ Baα ∩Bcα we get
xα−1 ∈ X/ρα and xα−1 ∩ Ba 6= ∅ 6= xα−1 ∩ Bc. By Lemma 4, item (i)
we have Ba ∩Bc 6= ∅. Therefore Baα ∩Bcα = ∅.

Suppose now that Baα ∩ Bcα = ∅ and Baα ∪ Bcα ⊆ Bb. Since
Bb = Baα, Baα has a nonempty intersection with Bb1 and Bb2 both.
So without loss of generality, we can assume that Bcα ∩ Bb1 6= ∅. Let
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B′
a ⊂ Ba, B

′
c ⊆ Bc be the maximal subsets such that B′

aα ⊂ Bb1, B
′
cα ⊆

Bb1. Denote a transformation from L such that Bb1 ∈ X/ρβ by β. It
is easy to see that B′

a ∪ B′
c ∈ X/ραβ, i.e. belongs to XL, since αβ ∈ L.

Thus, the class B′
a∪B′

c has a proper nonempty intersection with Ba. This
contradicts Lemma 4, item (i).

Thus, Baα ∩Bcα = ∅.

Lemma 6. Let µ ∈ L be an arbitrary transformation, Bs ∈ XL be an
arbitrary element, s ∈ F (Y ) with |Bs| > 1. Let Bp = Bsµ ∈ XL, p ∈ F (Y ).
If |Bp| > 1, then Bsiµ ⊆ Bpi, i ∈ {1, 2}.

Proof. Suppose the assumption of this lemma is fulfilled. Since |Bp| > 1,
we have Bpi ∩ im(µ) 6= ∅, i ∈ {1, 2}. According to Lemma 5 for all
Ba ∈ XL such that Ba ∩Bs = ∅ the condition Bp ∩Baµ = ∅ holds true.
Hence, (im(µ)∩Bpi)µ

−1 ⊂ Bs, i ∈ {1, 2}. As there exists a transformation
β in L such that Bp1, Bp2 ∈ X/ρβ (Lemma 4, item (iii)), we get (im(µ) ∩
Bpi)µ

−1 ∈ X/ρµβ , i ∈ {1, 2}. Having regard to

(im(µ) ∩Bp1)µ−1 ∪ (im(µ) ∩Bp2)µ−1 = Bs, we obtain

{(im(µ) ∩Bp1)µ−1, (im(µ) ∩Bp2)µ−1} = {Bs1, Bs2}.

So, for a fixed i ∈ {1, 2} there exists ki ∈ {1, 2} such that Bsiµ ⊆ Bpki
.

The case Bp = B0 implies Bs = B0. Let b1 ∈ B1, b2 ∈ B2 be arbitrary

fixed elements, σ =
(

B1 B2

b1 b2

)

. It was shown in Lemma 4, (ii) that σ ∈ L.

Since im(σ) = im(µσ), we have σ = µσ, whence we immediately get
Bsiµ ⊆ Bpi, i ∈ {1, 2}.

Suppose Bp 6= B0. We will first prove that for any η ∈ L if Bp = Bsη,
then Bsiη, Bsiµ ⊆ Bpki

, i ∈ {1, 2}.

If B0 = B1 ∪ B2, then denote the set that does not contain Bp
by K1, and the set that contains Bp by K ′

1. If K ′
1 6= Bp then in the

decomposition of K ′
1 we denote the component that does not contain Bp

by K2, and the one that contains Bp by K ′
2. As a continuation we obtain

a system of mutually disjoint sets K1,K2, . . . ,Km ∈ XL, m ∈ N such
that Ki ∩Bp = ∅, 1 6 i 6 m, and K ′

m = Bp. Let {k1, k2, . . . , km, k
′
m} be

an arbitrary transversal of the family {K1,K2, . . . ,Km,K
′
m}. As we have

seen in the proof of item (ii), Lemma 4, it can be proved by induction

that δm =
(

K1 K2 K3 ... Km K′

m

k1 k2 k3 ... km k′

m

)

∈ L.

Let b1 ∈ Bp1, b2 ∈ Bp2 be arbitrary fixed elements, γ ∈ L be such that
im(γ) = {k1, k2, . . . , km, b1, b2}. Since γδm ∈ L and im(γδm) = im(δm),

we have γ =
(

K1 K2 K3 ... Km Bp

k1 k2 k3 ... km {bp1,bp2}

)

. Whence according to item (i) of
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Lemma 4 we get Bp1, Bp2 ∈ X/ργ . Having regard to γ2 = γ ∈ L, we get

γ =
(

K1 K2 K3 ... Km Bp1 Bp2

k1 k2 k3 ... km b1 b2

)

.

The condition Bsη, Bsµ ⊆ Bp implies that there are representatives
of the same classes from K1,K2, . . . ,Km in im(η) and im(µ). Hence,
im(ηγ) = im(µγ) whence ηγ = µγ. The last implies in particular that
Bsiη, Bsiµ ⊆ Bpki

, i ∈ {1, 2}.
Now we prove that Bsiµ ⊆ Bpi, i ∈ {1, 2}. Assume the converse:

Bsiµ ⊆ Bpj , i, j ∈ {1, 2}, i 6= j. Let ψ,ψ′ ∈ L, im(ψ) = Bs, im(ψ′) = Bp.
By construction of XL (Corollary 2) we have Biψ = Bsi, Biψ

′ = Bpi,
i ∈ {1, 2}. On the other hand, ψµ ∈ L and Bi(ψµ) = Bsiµ ⊆ Bpj . The
contradiction Biψ

′ ⊆ Bpi, Bi(ψµ) ⊆ Bpj , i, j ∈ {1, 2}, i 6= j proves the
theorem.

Corollary 3. For any L-cross-section L in the semigroup Tn, n > 2, the
collection of sets XL is L-family.

Proof. Having regard to Corollary 2, the collection of sets XL forms a
full binary tree. Let Ba be an arbitrary element from XL. In fact, it was
shown in Lemma 4, item (iv) that inequality |Baib| 6 |Ba∗b|, i ∈ {1, 2},
i 6= a0 holds for an empty word b. Without loss of generality we assume
a = c2, a∗ = c1 and consider inequality |Bc21| 6 |Bc1|. Let γ ∈ L be
the transformation such that im(γ|Bc) = Bc2. By the previous lemma
we have im(γ|Bc1b

) = Bc21b for all b ∈ F (Y ) such that Bc1b, Bc21b ∈ XL.
Hence, |Bc21b| 6 |Bc1b| for all b ∈ F (Y ) such that Bc21b, Bc1b ∈ XL. It
can be shown dually that |Ba2b| 6 |Ba∗b| for all b ∈ F (Y ) such that
Ba2b, Ba∗b ∈ XL.

Now we only have to define a strict linear order on X. For any x, y ∈ X
let x be less than y, if x ∈ Bb1, y ∈ Bb2 for some Bb1, Bb2 ∈ XL. Such a
definition is correct, since firstly, Bb1, Bb2 are disjoint, and secondly, XL

contains all one-element subsets of X.
Thus, the collection of sets XL satisfies the definition of an L-family.

Corollary 4. Any L-cross-section in Tn has a form LΓ
X for a suitable

L-family Γ on the set X.

Proof. If |X| = 1, then XL = {B0}, and β ∈ L is expressible as αX .
Let further |X| > 1. Suppose im(β) = {m}, m ∈ X. Then there exists

Bw ∈ XL, w ∈ F (Y ) such that Bw = {m} and thus β = α{m} ∈ LXL

X .

Let Ba = im(β), Ba ∈ XL, | im(β)| > 1. By Lemma 6 we have
Biβ ⊆ Bai, consequently im(β|Bi

) = B′
ai∩ im(β), i ∈ {1, 2}. An analogous

reasoning can be applied to each of the transformations β|Bi
, i ∈ {1, 2},
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etc., until we get |Bat ∩ im(β)| = 1 for some Bat ∈ XL, t ∈ F (Y ).

Consequently, any β = αim(β) ∈ LXL

X . Since im(β), β ∈ L, goes through

all possible subsets of X, we get L = LXL

X .

Corollary 4 completes the proof of Theorem 1.

References

[1] O. Ganyushkin, V. Mazorchuk, Classical Finite Transformation Semigroups: An

Introduction, Springer-Verlag, 2009, 317 p.

[2] A. Clifford, G. Preston, The algebraic theory of semigroups, Mir, 1972, 278 p. (In
Russian).

[3] L. Renner, Analogue of the Bruhat decomposition for algebraic monoids II, Journal
of Algebra, Vol.101, N.2, 1986, 303–338.

[4] D. Cowan, N. Reilly, Partial cross-sections of symmetric inverse semigroups,
International Journal of Algebra and Computation, Vol.5, N.3, 1995, 259–287.

[5] O. Ganyushkin, V. Mazorchuk, L- and R-cross-sections in ISn, Communications
in Algebra, Vol.31, N.9, 2003, 4507–5423.

[6] V. Pekhterev, Idempotent D-cross-sections of the finite inverse symmetric semi-

group ISn, Algebra discrete math., N.3, 2008, 84–87.

[7] V. Pekhterev, H-, R- and L-cross-sections of the infinite symmetric inverse

semigroup, Algebra discrete math., N.1, 2005, 92–104.

[8] Yu. V. Zhuchok, Cross-sections of Green’s relations in a symmetric inverse 0-

category, Algebra Logika, Vol.51, N.4, 2012, 458–475 (In Russian).

[9] G. Kudryavtseva, V. Maltcev, V. Mazorchuk, L- and R-cross-sections in the

Brauer Semigroup, U.U.D.M. Report 2004:43, Uppsala University, 2004, 1101–
3591.

[10] V. Pekhterev, H- and R-cross-sections of the full finite semigroup Tn, Algebra
discrete math., Vol.2, N.3, 2003, 82–88.

[11] I. B. Kozhuhov, On transversals of the semigroup Tn for the relation L, Kamyanets-
Podolsky, July, 1-7, 2007, 110.

[12] E. Bondar, L-, R- and H-cross-sections in strong endomorphism semigroup of

graphs, International Mathematical conference: abstracts of talks, Mykolayiv, 2012,
155.

Contact information

E. Bondar Luhansk Taras Shevchenko National University
E-Mail: bondareug@gmail.com

Received by the editors: 08.05.2013
and in final form 02.04.2014.


