# On weakly semisimple derivations of the polynomial ring in two variables 

Volodimir Gavran and Vitaliy Stepukh

Communicated by A. P. Petravchuk

Abstract. Let $\mathbb{K}$ be an algebraically closed field of characteristic zero and $\mathbb{K}[x, y]$ the polynomial ring. Every element $f \in \mathbb{K}[x, y]$ determines the Jacobian derivation $D_{f}$ of $\mathbb{K}[x, y]$ by the rule $D_{f}(h)=\operatorname{det} J(f, h)$, where $J(f, h)$ is the Jacobian matrix of the polynomials $f$ and $h$. A polynomial $f$ is called weakly semisimple if there exists a polynomial $g$ such that $D_{f}(g)=\lambda g$ for some nonzero $\lambda \in \mathbb{K}$. Ten years ago, Y. Stein posed a problem of describing all weakly semisimple polynomials (such a description would characterize all two dimensional nonabelian subalgebras of the Lie algebra of all derivations of $\mathbb{K}[x, y]$ with zero divergence). We give such a description for polynomials $f$ with the separated variables, i.e. which are of the form: $f(x, y)=f_{1}(x) f_{2}(y)$ for some $f_{1}(t), f_{2}(t) \in \mathbb{K}[t]$.

## Introduction

Let $\mathbb{K}$ be an algebraically closed field of characteristic zero and $\mathbb{K}[x, y]$ the polynomial ring. For any polynomials $f, g \in \mathbb{K}[x, y]$ let us denote $[f, g]=\operatorname{det} J(f, g)$, where $\operatorname{det} J(f, g)$ is their Jacobian matrix. The vector $\mathbb{K}$-space $\mathbb{K}[x, y]$ with operation $(f, g) \rightarrow[f, g]$ is a Lie algebra over $\mathbb{K}$. The center of this algebra coincides with $\mathbb{K}$, the quotient algebra $\mathbb{K}[x, y] / \mathbb{K}$ is isomorphic to the Lie algebra $s a_{2}(\mathbb{K})$ of all derivations of $\mathbb{K}[x, y]$ with zero divergence (see, for example, [2]). For a fixed polynomial $f$, the linear

2010 MSC: 13N15; 13N99.
Key words and phrases: polynomial ring, irreducible polynomial, Jacobian derivation.
operator $D_{f}$ on $\mathbb{K}[x, y]$ defined by the rule $D_{f}(h)=[f, h]$ is a $\mathbb{K}$-derivation of the ring $\mathbb{K}[x, y]$. The derivation $D_{f}$ is called the Jacobian derivation.

In [7], a polynomial $f \in \mathbb{K}[x, y]$ was called weakly semisimple if there exists a polynomial $g$ such that $D_{f}(g)=\lambda g$ for a nonzero $\lambda \in \mathbb{K}$, the polynomial $g$ here is an eigenfunction for $f$ with respect to $\lambda$. The latter means that every weakly semisimple polynomial $f$ induces the Jacobian derivation $D_{f}$ which can be included in a two-dimensional nonabelian subalgebra $L_{f}=<D_{f}>\ll D_{g}>$ of the Lie algebra $s a_{2}(\mathbb{K})$. The structure of two-dimensional (abelian and nonabelian) subalgebras of the Lie algebra $s a_{2}(\mathbb{K})$ is very important for better understanding the structure of subalgebras of $s a_{2}(\mathbb{K})$, and it is closely connected with the jacobian conjecture for $n=2$.

In [7], some properties of weakly semisimple polynomials were pointed out and a question was asked about their description. We give a description of weakly semisimple polynomials $f$ with separated variables, i.e. of the form $f(x, y)=f_{1}(x) f_{2}(y)$.

We use standard notations. Let us remind that a polynomial $f \in$ $\mathbb{K}[x, y]$ is called closed if there exist no polynomials $F(t) \in \mathbb{K}[t]$ and $g(x, y) \in \mathbb{K}[x, y]$ such that $\operatorname{deg} F(t) \geqslant 2$, and that $f(x, y)=F(g(x, y))$. The polynomial $f$ has a Jacobian mate $g$ if $[f, g]=1$. If $D$ is a derivation of $\mathbb{K}[x, y]$ and $D(f)=h f$ for some $h \in \mathbb{K}[x, y]$, then $f$ will be called a Darboux polynomial for $D$ and $h$ its cofactor.

## 1. Preliminaries

We will often use the next statements which can be found in [7].
Lemma 1. Let $f, g \in \mathbb{K}[x, y]$ be such polynomials that $g$ is irreducible and $[f, g]=h g$ for some $h \in \mathbb{K}[x, y]$. Then there exists $c \in \mathbb{K}$ such that $g$ divides the polynomial $f-c$.

The first statement of the next lemma summarizes Proposition 2.1 from [7]

Lemma 2. Let $f \in \mathbb{K}[x, y]$ be a polynomial such that there exist a polynomial $g \in \mathbb{K}[x, y], g \neq 0$ and $\lambda \in \mathbb{K}^{\star}$ with $D_{f}^{n}(g)=\lambda g$ for some $n \geqslant 1$. Then:

1) $f$ is a closed polynomial;
2) the polynomial $f-c$ is square-free for any $c \in \mathbb{K}$, i.e $f-c$ is not divisible by square of any irreducible polynomial.

Proof. 1) Let on the contrary $f=F(h)$ for some $F(t) \in \mathbb{K}[t], \operatorname{deg} F \geqslant 2$ and $h \in \mathbb{K}[x, y]$. Then

$$
D_{f}(g)=[F(h), g]=F^{\prime}(h)[h, g]=F^{\prime}(h) D_{h}(g)
$$

Analogously we get the next relation

$$
\begin{aligned}
D_{f}^{2}(g) & =D_{f}\left(F^{\prime}(h) D_{h}(g)\right)=\left[F(h), F^{\prime}(h) D_{h}(g)\right]= \\
& =F^{\prime}(h)\left[F(h), D_{h}(g)\right]=F^{\prime}(h)^{2} D_{h}^{2}(g)
\end{aligned}
$$

Using induction on $k$ one can easily show that $D_{f}^{k}(g)=F^{\prime}(h)^{k} D_{h}^{k}(g)$. By the conditions of this lemma

$$
\begin{equation*}
D_{f}^{n}(g)=F^{\prime}(h)^{n} D_{h}^{n}(g)=\lambda g \tag{1}
\end{equation*}
$$

Write $g$ as $g=F^{\prime}(h)^{m} \cdot u$, where $m \geqslant n$ by (1) and the polynomial $u$ is not divisible by any nonconstant polynomial of $h$. Then

$$
D_{h}(g)=\left[h, F^{\prime}(h)^{m} u\right]=F^{\prime}(h)^{m}[h, u]=F^{\prime}(h)^{m} D_{h}(u) .
$$

Using induction on $k$ it is easily to show that $D_{h}^{k}(g)=F^{\prime}(h)^{m} D_{h}^{k}(u)$. Inserting the last equality in (1) we obtain

$$
D_{f}^{n}(g)=F^{\prime}(h)^{n} D_{h}^{n}(g)=F^{\prime}(h)^{n} F^{\prime}(h)^{m} D_{h}^{n}(u)=\lambda g .
$$

But $g=F^{\prime}(h)^{m} u$ and therefore $F^{\prime}(h)^{m+n} D_{h}(u)=\lambda F^{\prime}(h)^{m} u$
The last equality shows that $u$ divides on $F^{\prime}(h)$ which contradicts to our choice of the polynomial $u$. The obtained contradiction proves that $f$ is a closed polynomial.
2) Let on the contrary $c \in \mathbb{K}$ be such an element that we have equality $f-c=w^{k} f_{1}$, where $w, f_{1} \in \mathbb{K}[x, y], k \geqslant 2$ and $f_{1}$ is not divisible by $w$. Write $g=w^{m} g_{1}$, where $m \geqslant 0, g_{1} \in \mathbb{K}[x, y]$ and $g_{1}$ is not divisible by $w$. Then

$$
\begin{gathered}
D_{f}(g)=[f, g]=[f-c, g]=\left[w^{k} f_{1}, w^{m} g_{1}\right]=w^{k}\left[f_{1}, w^{m} g_{1}\right]+f_{1}\left[w^{k}, w^{m} g_{1}\right] \\
=w^{k+m}\left[f_{1}, g_{1}\right]+w^{k} g_{1} m w^{m-1}\left[f_{1}, w\right]+f_{1} w^{m} k w^{k-1}\left[w, g_{1}\right]=w^{k+m-1} t_{1}
\end{gathered}
$$

for some $t_{1} \in \mathbb{K}[x, y]$. Thus, $D_{f}(g)=w^{k+m-1} t_{1}$.
Using induction on $i$ it is easily to show that $D_{f}^{i}(g)=w^{m+k i-1} t_{i}$ for some $t_{i} \in \mathbb{K}[x, y], i=2,3, \ldots$. But then for $i=n$ we obtain $D_{f}^{n}(g)=$ $w^{m+k n-1} t_{n}=\lambda w^{m} g_{1}$. From here, it follows that $\lambda g_{1}=w^{k n-1} t_{n}$ which is impossible since $k \geqslant 2$ and $g_{1}$ is not divisible by $w$ because of choice $g_{1}$. This contradiction shows that $f-c$ is not divisible by square of any irreducible polynomial.

Corollary 1. If $f=f_{1}(x) f_{2}(y)$ is a weakly semisimple polynomial then the polynomials $f_{1}(t), f_{2}(t) \in \mathbb{K}[t]$ have no multiple roots.

Proof. Since $[f, g]=g$ then putting in Lemma $2 n=1$ and $c=0$ we have that $f(x, y)=f_{1}(x) f_{2}(y)$ is not divisible by square of any irreducible polynomial. The latter means that $f_{1}(t)$ and $f_{2}(t)$ do not have multiple roots.

Lemma 3 (see [3]). Let $f(x, y)=\prod_{i=1}^{n} l_{i}(x, y)^{r_{i}}$ be a product of linear polynomials $l_{i}(x, y), i=1, \ldots, n$. Assume that $n \geqslant 2$ and the lines $l_{1}(x, y)=0$ and $l_{2}(x, y)=0$ do intersect. If $\operatorname{gcd}\left(r_{1}, \ldots, r_{n}\right)=1$ then $f(x, y)$ is a closed polynomial and the polynomial $f(x, y)+c$ is irreducible for any $c \in \mathbb{K}^{\star}$.

Corollary 2. $\operatorname{Let} p(x) \in \mathbb{K}[x]$ and $q(y) \in \mathbb{K}[y]$ be nonconstant polynomials such that $p(x)$ has no multiple roots. Then the polynomial $p(x) q(y)+c$ is irreducible for any $c \in \mathbb{K}^{\star}$.

Lemma 4. (see, for instance [1]). Let $D$ be a derivation of the polynomial ring $\mathbb{K}[x, y]$ and $g$ a Darboux polynomial for $D$. Then any divisor of $g$ is a Darboux polynomial for $D$. If $f_{1}, f_{2}$ are Darboux polynomials for $D$ with cofactors $h_{1}$ and $h_{2}$ respectively, then $f_{1} f_{2}$ is a Darboux polynomial for $D$ with the cofactor $h_{1}+h_{2}$.

## 2. Weakly semisimple polynomials of the form $f_{1}(x) f_{2}(y)$

In this section we give a description of all weakly semisimple polynomials $f \in \mathbb{K}[x, y]$ of the form $f(x, y)=f_{1}(x) f_{2}(y)$ (that is with separated variables) and their eigenfunctions $g(x, y) \in \mathbb{K}[x, y]$ such that $[f, g]=\lambda g, \lambda \in \mathbb{K}^{\star}$. In fact, we can assume that $\lambda=1$ because in other case we can consider $\lambda^{-1} f$ instead of $f$. So, we will consider only the case $[f, g]=g$.

Lemma 5. Let a polynomial $g=g(x, y)$ satisfies the relation $[f, g]=g$, where $f(x, y)=f_{1}(x) f_{2}(y) \in \mathbb{K}[x, y]$. Then the only irreducible factors of the polynomial $g(x, y)$ are the polynomials of the form $\delta(f(x, y)+c)$ with $\delta, c \in \mathbb{K}^{\star}$ or $\beta\left(x-c_{1}\right), \gamma\left(y-c_{2}\right)$ with $\beta, \gamma \in \mathbb{K}^{\star}$ and $c_{1}, c_{2}$ satisfying $f_{1}\left(c_{1}\right)=0, f_{2}\left(c_{2}\right)=0$.

Proof. Let $h$ be an irreducible factor of $g$. By Lemma $4 h$ is a Darboux polynomial for $D_{f}$, i.e. $[f, h]=h u, u \in \mathbb{K}[x, y]$, so by Lemma 1 there exists $c \in \mathbb{K}$ such that $f-c$ is divisible by $h$. If $c \neq 0$, then the polynomial
$f-c$ is irreducible by Lemma 3 and therefore $h=(f+c) \delta$ for some $\delta \in \mathbb{K}^{\star}$. Let $c=0$. As $h$ is irreducible and divides $f(x, y)=f_{1}(x) f_{2}(y)$, then $h$ is linear of the form $\beta\left(x-c_{1}\right)$ or $\gamma\left(y-c_{2}\right)$.

Lemma 6. Let $f(x, y)=f_{1}(x) f_{2}(y)$ and $g=g(x, y)$ be polynomials from $\mathbb{K}[x, y]$ satisfying the relation $[f, g]=g$. Then $g=F(f) g_{1} g_{2}$, where $F(t) \in$ $\mathbb{K}[t]$ and $g_{1}=g_{1}(x), g_{2}=g_{2}(y)$ satisfying the equality $\left[f, g_{1} g_{2}\right]=g_{1} g_{2}$.
Proof. Write the polynomial $g$ as a product $g=h_{1}^{k_{1}} \cdots h_{s}^{k_{s}}$ of powers of irreducible polynomials $h_{1}, \ldots, h_{s}$. By Lemma 5 the polynomial $h_{i}$ is either of the form $h_{i}=\delta_{i}\left(f+c_{i}\right)$ for $\delta_{i} \in \mathbb{K}^{*}, c_{i} \in \mathbb{K}$ or of the form $h_{i}=\alpha_{i}\left(x-d_{i}\right)$, or $h_{i}=\beta_{i}\left(y-r_{i}\right)$ for $\alpha_{i}, \beta_{i} \in \mathbb{K}^{*}$. The elements $d_{i}, r_{i} \in \mathbb{K}$ are such that $f_{1}\left(d_{i}\right)=0, f_{2}\left(r_{i}\right)=0$. Denote by $F(f)$ the product of all irreducible divisors of the polynomial $g$ which are of the form $\delta_{i}\left(f+c_{i}\right)$ (this is a polynomial of $f$ ). Group other irreducible divisors of $g$ and write their product in the form $g_{1}(x) g_{2}(y)$. Then

$$
\left[f, F(f) g_{1} g_{2}\right]=F(f)\left[f, g_{1} g_{2}\right]=F(f) g_{1} g_{2}
$$

From this it follows the equality $\left[f, g_{1} g_{2}\right]=g_{1} g_{2}$.
Thus the problem of finding polynomials $f$ and $g$ satisfying the relation $[f, g]=g$, is reduced to searching polynomials $f_{1}(x) f_{2}(y), g_{1}(x) g_{2}(y)$ with separated variables such that

$$
\left[f_{1}(x) f_{2}(y), g_{1}(x) g_{2}(y)\right]=g_{1}(x) g_{2}(y)
$$

We have from the last relation that

$$
\begin{equation*}
\left[f_{1} f_{2}, g_{1} g_{2}\right]=f_{1}\left[f_{2}, g_{1} g_{2}\right]+f_{2}\left[f_{1}, g_{1} g_{2}\right]=f_{1} g_{2}\left[f_{2}, g_{1}\right]+f_{2} g_{1}\left[f_{1}, g_{2}\right] \tag{2}
\end{equation*}
$$

Further, notice that $\left[f_{2}, g_{1}\right]=\left|\begin{array}{cc}0 & \frac{\partial f_{2}}{\partial y} \\ \frac{\partial g_{1}}{\partial x} & 0\end{array}\right|=-f_{2}^{\prime} g_{1}^{\prime}$ and analogously $\left[f_{1}, g_{2}\right]=f_{1}^{\prime} g_{2}^{\prime}$ (we omit here signs of variables while differentiating). Therefore we obtain from (2) that

$$
\left[f_{1} f_{2}, g_{1} g_{2}\right]=-f_{1} f_{2}^{\prime} g_{2} g_{1}^{\prime}+f_{2} f_{1}^{\prime} g_{1} g_{2}^{\prime}=g_{1} g_{2}
$$

Dividing both parts of this equality by $g_{1} g_{2}$ we get

$$
\begin{equation*}
-f_{1} f_{2}^{\prime} \frac{g_{1}^{\prime}}{g_{1}}+f_{2} f_{1}^{\prime} \frac{g_{2}^{\prime}}{g_{2}}=1 \tag{3}
\end{equation*}
$$

Note that every linear factor of $g_{1}$ is a divisor of $f_{1}$ by Lemma 5 , so $f_{1} g_{1}^{\prime}$ is divisible by $g_{1}$ and analogously $f_{2} g_{2}^{\prime}$ is divisible by $g_{2}$. Therefore (3) is in fact a relation for polynomials with separated variables.

Lemma 7. Let $a(x), c(x) \in \mathbb{K}[x]$ and $b(y), d(y) \in \mathbb{K}[y]$ be polynomials such that

$$
\begin{equation*}
a(x) b(y)+c(x) d(y)=1 \tag{4}
\end{equation*}
$$

Then either $a, c \in \mathbb{K}$ or $b, d \in \mathbb{K}$.
Proof. Let us differentiate the equality (4) on the variable $x$. Then we have $a^{\prime}(x) b(y)+c^{\prime}(x) d(y)=0$. If $a^{\prime}(x)=0$ and $c^{\prime}(x)=0$ then $a, c \in \mathbb{K}$ and all is done. If $c^{\prime}(x) \neq 0$, then $\frac{a^{\prime}(x)}{c^{\prime}(x)}=-\frac{d(y)}{b(y)}$ and therefore there exists $\lambda \in \mathbb{K}$ such that $d=\lambda b$. Substituting this equality into (4) we obtain $b(y)(a(x)+\lambda c(x))=1$. The latter equality implies $b, d \in \mathbb{K}$.

Lemma 8. Let $f_{1}(x), g_{1}(x) \in \mathbb{K}[x]$ and $f_{2}(y), g_{2}(y) \in \mathbb{K}[y]$ be polynomials satisfying the equality (3). Then either $f_{1}(x)$ is linear and then $g_{1}(x)=$ $c_{1} f_{1}^{l}(x)$, or $f_{2}(y)$ is linear and then $g_{2}(y)=c_{2} f_{2}^{k}(y)$ for some $c_{1}, c_{2} \in$ $\mathbb{K}^{*}, k, l, \in \mathbb{N}$.

Proof. By Lemma 7 we obtain from (3) that either $f_{1}^{\prime}, \frac{f_{1} g_{1}^{\prime}}{g_{1}} \in \mathbb{K}$ or $f_{2}^{\prime}, \frac{f_{2} g_{2}^{\prime}}{g_{2}} \in \mathbb{K}$. For example, let the second case hold. Then $f_{2}=\alpha y+\beta$ and $\frac{f_{2} g_{2}^{\prime}}{g_{2}}=\gamma \in \mathbb{K}$, for some $\alpha, \gamma \in \mathbb{K}^{\star}, \beta \in \mathbb{K}$. From the relation $f_{2} g_{2}^{\prime}=\lambda g_{2}$ we have that $g_{2}$ is divisible by $g_{2}^{\prime}$. But the latter is possible only in the case $g_{2}=\lambda(y+\delta)^{k}$ for some $\lambda \in \mathbb{K}^{\star}, \delta \in \mathbb{K}, k \in \mathbb{N}$.

From the equality

$$
\frac{f_{2} g_{2}^{\prime}}{g_{2}}=\frac{(\alpha y+\beta) k \lambda(y+\delta)^{k-1}}{\lambda(y+\delta)^{k}}=\gamma \in \mathbb{K}
$$

it follows that $(\alpha y+\beta) k=\gamma(y+\delta)$. But then $\gamma=k \alpha$ and $\gamma \delta=k \beta$ which gives us $\delta=\frac{\beta}{\alpha}$. The latter equality means that $g_{2}(y)=c_{2} f_{2}^{k}(y)$ for some $c_{2} \in \mathbb{K}^{\star}$. The case $f_{1}^{\prime}, \frac{f_{1} g_{1}^{\prime}}{g_{1}} \in \mathbb{K}$ can be analogously considered.

Theorem 1. A polynomial $f(x, y)=f_{1}(x) f_{2}(y) \in \mathbb{K}[x, y]$ is weakly semisimple if and only if it has no multiple roots and at least one of the polynomials $f_{1}(x), f_{2}(y)$ is linear, and if for example $f_{2}(y)=a y+b, a, b \in$ $\mathbb{K}$ and $\alpha_{1}, \cdots, \alpha_{n}$ are the roots of $f_{1}(x)$, then $l_{i}=\frac{1}{a f_{1}^{\prime}\left(\alpha_{i}\right)} \in \mathbb{Z}, i=1, \ldots, n$. Besides, if $g=g(x, y)$ is an eigenfunction for $D_{f}$ with eigenvalue 1, then $g=F(f) f_{2}(y)^{k} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)^{k-l_{i}}$, where $F(t) \in \mathbb{K}[t], k \in \mathbb{N}$ such that $k \geqslant l_{i}, i=1, \ldots, n$.

Proof. $\Rightarrow$ Let $f=f(x, y)$ be a weakly semisimple polynomial of the form $f(x, y)=f_{1}(x) f_{2}(y)$, i.e. such that for some $g \in \mathbb{K}[x, y]$ it holds
$[f, g]=\operatorname{det} J(f, g)=g$. By Corollary $1 f$ has no multiple roots and taking into account Lemma 8 we see that at least one of the polynomials $f_{1}(x), f_{2}(y)$ is linear. Let for instance $f_{2}(y)=a y+b$ for some $a, b \in \mathbb{K}$. By Lemma 6 one can assume $g=g_{1}(x) g_{2}(y)$ and any nonconstant polynomial of $f$ does not divide $g$. Using Lemma 8 we can assume that $g_{2}(y)=d f_{2}(y)^{k}$ for some $d \in \mathbb{K}^{\star}$ and $k \in \mathbb{N}$. Then the equality (3) can be written in the form

$$
-f_{1} a \frac{g_{1}^{\prime}}{g_{1}}+\frac{f_{1}^{\prime} f_{2} d k f_{2}^{k-1} a}{d f_{2}^{k}}=1
$$

Rewriting the latter relation we obtain

$$
\frac{-a f_{1} g_{1}^{\prime}}{g_{1}}+a k f_{1}^{\prime}=1
$$

and as consequence

$$
\begin{equation*}
\frac{a k f_{1}^{\prime}-1}{f_{1}}=\frac{a g_{1}^{\prime}}{g_{1}} \tag{5}
\end{equation*}
$$

The polynomial $f_{1}(x)$ has no multiple roots (by Lemma 6), let $\alpha_{1}, \ldots, \alpha_{n}$ be all the roots of $f_{1}(x)$. Then $f_{1}(x)=c_{1}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ for some element $c_{1} \in \mathbb{K}^{\star}$, and taking into account the relation (5) we have $g_{1}(x)=$ $d_{1}\left(x-\alpha_{1}\right)^{m_{1}} \cdots\left(x-\alpha_{n}\right)^{m_{n}}$ for some $d_{1} \in \mathbb{K}, m_{i} \in \mathbb{N} \cup\{0\}$. The relation (5) can be rewritten in the form $\frac{a k f_{1}^{\prime}}{f_{1}}-\frac{1}{f_{1}}=\frac{a g_{1}^{\prime}}{g_{1}}$. Substituting $f_{1}$ and $g_{1}$ from the last expressions, we have

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{a k}{\left(x-\alpha_{i}\right)}-\sum_{i=1}^{n} \frac{1}{f_{1}^{\prime}\left(\alpha_{i}\right)\left(x-\alpha_{i}\right)}=\sum_{i=1}^{n} \frac{a m_{i}}{\left(x-\alpha_{i}\right)} \tag{6}
\end{equation*}
$$

(We used the decomposition of the rational function $\frac{1}{f_{1}}=\frac{1}{c_{1}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)}$ into the sum of elementary fraction of the form $\left.\frac{A_{i}}{x-\alpha_{i}}, i=1, \ldots, n\right)$.

The relation (6) implies $m_{i}=k-\frac{1}{a f_{1}^{\prime}\left(\alpha_{i}\right)}$ and since $m_{i} \geqslant 0, k \geqslant 1$ we have $l_{i}=\frac{1}{a f_{1}^{\prime}\left(\alpha_{i}\right)} \in \mathbb{Z}, i=1, \ldots, n$. Since $m_{i} \geqslant 0$ we obtain $k \geqslant l_{i}$, $i=1, \ldots, n$. But then $g_{1}(x)=d_{1} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)^{k-l_{i}}, g_{2}(y)=(a y+b)^{k}, k \geqslant l_{i}$ and therefore by Lemma $6 g(x, y)=F(f)(a y+b)^{k} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)^{k-l_{i}}$.
$\Leftarrow$ Let $f=f_{1}(x) f_{2}(y)$ with $f_{1}(x)=c_{1}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ and $f_{2}=(a y+b)$, and let $g(x, y)=F(f) g_{1} g_{2}$ where $g_{1}=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)^{k-l_{i}}$ and $g_{2}=(a y+b)^{k}$, where $l_{i}=k-\frac{1}{a f_{1}^{\prime}\left(\alpha_{i}\right)}$ are integers. We will show that

$$
\left[f,(a y+b)^{k} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)^{k-l_{i}}\right]=(a y+b)^{k} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)^{k-l_{i}}
$$

Using the equality $f(x, y)=f_{1}(x)(a y+b)$ we have

$$
\begin{aligned}
{\left[f,(a y+b)^{k}\right.} & \left.\prod_{i=1}^{n}\left(x-\alpha_{i}\right)^{k-l_{i}}\right] \\
& =\left[f_{1}(x)(a y+b),(a y+b)^{k} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)^{k-l_{i}}\right] \\
& =f_{1}^{\prime}(a y+b) a k(a y+b)^{k-1} g_{1}-a f_{1} g_{1}^{\prime}(a y+b)^{k} \\
& =(a y+b)^{k} a\left(f_{1}^{\prime} k g_{1}-f_{1} g_{1}^{\prime}\right)
\end{aligned}
$$

But the relation (5) yields $a f_{1}^{\prime} k g_{1}-a f_{1} g_{1}^{\prime}=g_{1}$, so we get $\left[f, g_{1} g_{2}\right]=$ $g_{1} g_{2}$ and the polynomial $f$ is weakly semisimple.

The next statement allows us to produce infinitely many weakly semisimple polynomials from a given one.

Corollary 3. Let $f(x, y)$ be a weakly semisimple polynomial and $g(x, y)$ be such that $[f, g]=g$. If polynomials $p, q$ satisfy the condition $[p, q]=1$, then $f(p, q)$ is weakly semisimple and $[f(p, q), g(p, q)]=g(p, q)$.
Example 1. Let $f(x, y)=x(x-1) y, g(x, y)=x^{k+1}(x-1)^{k-1} y^{k}, k \in \mathbb{N}$. Then

$$
\begin{aligned}
{[f, g] } & =\left[x(x-1) y, x^{k+1}(x-1)^{k-1} y^{k}\right] \\
& =\left[x(x-1) y, y^{k}\right] x^{k+1}(x-1)^{k-1}+\left[x(x-1) y, x^{k+1}(x-1)^{k-1}\right] y^{k} \\
& =y^{k}\left(k[x(x-1), y] x^{k+1}(x-1)^{k-1}+x(x-1)\left[y, x^{k+1}(x-1)^{k-1}\right]\right) \\
& =y^{k}\left(x^{k+2}(x-1)^{k-1}-x^{k+1}(x-1)^{k}\right)=x^{k+1}(x-1)^{k-1} y^{k}
\end{aligned}
$$

So, the polynomial $f(x, y)=x(x-1) y$ is weakly semisimple and $g(x, y)$ is its eigenfunction with eigenvalue $\lambda=1$.
Example 2. The polynomial $f(x, y)=y(x-1)\left(x-\frac{1}{2}\right) \ldots\left(x-\frac{1}{n}\right), n \in \mathbb{N}$, $n \geqslant 2$ is weakly semisimple. Really, putting $f_{1}(x)=(x-1)\left(x-\frac{1}{2}\right) \ldots\left(x-\frac{1}{n}\right)$ $1 \leqslant i \leqslant n$ we obtain:

$$
\begin{aligned}
f_{1}^{\prime}\left(\frac{1}{i}\right) & =\left(\frac{1}{i}\right)^{n-2} \frac{1}{n!}(1-i)(2-i) \ldots(i-1-i)(i+1-i) \ldots(n-i) \\
& =(-1)^{i-1}\left(\frac{1}{i}\right)^{n-1} \frac{1}{n!}!(n-i)!=(-1)^{i-1}\left(i^{n-1}\binom{n}{i}\right)^{-1} \in \mathbb{Z}
\end{aligned}
$$

Therefore the polynomial $f(x, y)$ satisfies the conditions of Theorem 1 and is weakly semisimple.

## References

[1] Arnaud Bodin, Reducibility of rational functions in several variables, Israel J. Math., 164 (2008), 333-347.
[2] A.P. Petravchuk, O.G. Iena, On centralizers of elements in the Lie algebra of the special Cremona group $s a(2, k)$, Journal of Lie Theory, 16, no. 3 (2006), 561-567.
[3] D. Lorenzini, Reducibility of polynomials in two variables, J. Algebra, 156, (1993), 65-75.
[4] A. Nowicki, M. Nagata, Rings of constants for $k$-derivations in $k\left[x_{1}, \ldots, x_{n}\right]$, J. Math. Kyoto Univ. 28 (1988), 111-118.
[5] A. Nowicki, Polynomial derivations and their rings of constants, N.Copernicus University Press, Torun, 1994.
[6] J. M. Ollagnier, Algebraic closure of a rational function, Qualitative theory of dynamical systems, 5 (2004), 285-300.
[7] Y. Stein, Weakly nilpotent and weakly semisimple polynomials on the plane, Int. Math. Research Notices, 13 (2000), 681-698.

## Contact information

V. S. Gavran Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkivska str, 3, 01601, Kyiv, Ukraine E-Mail: v.gavran@yahoo.com<br>V. V. Stepukh National Taras Shevchenko University of Kyiv, Faculty of Mechanics and Mathematics, 64, Volodymyrska str. 01033, Kyiv, Ukraine E-Mail: svvhelios@gmail.com

Received by the editors: 23.03.2014
and in final form 23.03.2014.

