Algebra and Discrete Mathematics Volume **18** (2014). Number 2, pp. 157–162 © Journal "Algebra and Discrete Mathematics"

On the Lie ring of derivations of a semiprime ring

Orest D. Artemovych, Kamil Kular

Communicated by V. I. Sushchansky

ABSTRACT. We prove that the Lie ring of derivations of a semiprime ring is either trivial or non-nilpotent.

1. Preliminaries and introduction

Throughout the text R stands for an associative ring (possibly without identity) and n for a positive integer. By Z(R) we denote the center of R. The ring R is called *semiprime*, if it has no nonzero nilpotent ideals. Equivalently, $aRa = \{0\}$ with any $a \in R$ implies a = 0. We refer the reader to [1] for terminology, definitions and basic facts in ring theory.

A map $d: R \longrightarrow R$ is called a *derivation*, if it is additive and satisfies the Leibniz rule

$$d(xy) = d(x)y + xd(y)$$

for all $x, y \in R$. The set Der(R) of all derivations $d : R \longrightarrow R$ is a Lie ring under the pointwise addition and the Lie multiplication defined by

$$[d_1, d_2] = d_1 \circ d_2 - d_2 \circ d_1.$$

A set $E \subseteq \text{Der}(R)$ is abelian, if

$$[d_1, d_2] = 0$$

²⁰¹⁰ MSC: Primary 16W10; Secondary 16N60, 16W25.

Key words and phrases: Semiprime ring, nilpotent Lie ring, derivation.

for all $d_1, d_2 \in E$. For $n \ge 3$ and $d_1, \ldots, d_n \in \text{Der}(R)$ we define inductively

$$[d_1, \ldots, d_n] = [[d_1, \ldots, d_{n-1}], d_n].$$

A Lie ring D of derivations on R (i.e., D is a Lie subring of Der(R)) is said to be *nilpotent*, if there exists some n such that $[d_1, \ldots, d_{n+1}] = 0$ for all $d_1, \ldots, d_{n+1} \in D$. We define the *nilpotency class* of D as the infimum of the set

 $\{n \in \mathbb{N} \setminus \{0\} : [d_1, \dots, d_{n+1}] = 0 \text{ for all } d_1, \dots, d_{n+1} \in D\}.$

Notice that the Lie ring D is abelian if and only if it is nilpotent of class 1.

Let $a \in R$. It is easy to see that

$$\partial_a : R \ni x \mapsto [a, x] \in R$$

is a derivation. This derivation is referred to as the *inner derivation* generated by a. One can prove that $\text{IDer}(R) = \{\partial_a : a \in R\}$ is a Lie ideal of Der(R).

In [2], the following theorem has been proved.

Theorem 1. Suppose that R is semiprime. Then the Lie ring IDer(R) is nilpotent if and only if R is commutative.

The purpose of the present note is to show that if R is semiprime, then either $\text{Der}(R) = \{0\}$, or Der(R) is not nilpotent. Notice that many authors studied commuting derivations in polynomial rings (see [3–5] for references).

2. Some lemmas and useful facts

We start with a simple and well known lemma.

Lemma 1. For any $d \in \text{Der}(R)$ and any $x \in R$ we have $[d, \partial_x] = \partial_{d(x)}$.

The above lemma implies

Proposition 1. If d is a central element of Der(R) (i.e., $[d, \delta] = 0$ for every $\delta \in Der(R)$), then $d(R) \subseteq Z(R)$.

Proof. For arbitrary elements $a, x \in R$ we have

$$0 = [d, \partial_x](a) = \partial_{d(x)}(a) = [d(x), a].$$

Notice that there exists a ring R with a derivation d such that $d(R) \subseteq Z(R)$ and d is not a central element of Der(R).

Example 1. Let $d_1, d_2 \in \text{Der}(\mathbb{R}[X])$ be defined by

$$d_1(f) = X \frac{\mathrm{d}f}{\mathrm{d}X}$$
 and $d_2(f) = (X+1) \frac{\mathrm{d}f}{\mathrm{d}X}$.

Then

$$d_1(d_2(X)) = d_1(X+1) = X,$$

and

$$d_2(d_1(X)) = d_2(X) = X + 1.$$

Consequently, d_1 and d_2 are not central elements of $Der(\mathbb{R}[X])$.

The following lemma is the key tool in the note.

Lemma 2. Suppose that Der(R) is abelian. Let $d, \delta \in Der(R)$. Then

- (i) $\operatorname{Ker}(d) = \{a \in R : d(a) = 0\}$ is δ -stable,
- (ii) $d(R) \subseteq Z(R)$,
- (iii) $d(Z(R))\delta(R) = \{0\},\$
- (iv) [a, y]d(x) = -[a, x]d(y) for all $a, x, y \in R$.

Proof. Pick arbitrary elements $a, b, x, y \in R$ and $c \in Z(R)$. If $a \in Ker(d)$, then $d(\delta(a)) = \delta(d(a)) = 0$, and hence $\delta(a) \in Ker(d)$. Property (i) follows. Property (ii) is an immediate consequence of Proposition 1. Next, since $c \in Z(R)$, the map

$$c\delta: R \ni r \mapsto c\delta(r) \in R$$

is a derivation. Therefore,

$$c\delta(d(a)) = d(c\delta(a)) = d(c)\delta(a) + cd(\delta(a)) = d(c)\delta(a) + c\delta(d(a)),$$

which yields $d(c)\delta(a) = 0$. Property (iii) follows. Finally, by (ii), we have ad(xy) = d(xy)a, and hence

$$ad(x)y + axd(y) = d(x)ya + xd(y)a.$$

Consequently,

$$[a,y]d(x) = ayd(x) - yad(x) = ad(x)y - d(x)ya$$
$$= xd(y)a - axd(y) = xad(y) - axd(y) = -[a,x]d(y). \quad \Box$$

Let us proceed to some corollaries of Lemma 2. The first corollary will not be used in the sequel, but it seems to be of separate interest.

Corollary 1. If Der(R) is abelian, then

- (i) $[R, R] \subseteq Z(R)$,
- (ii) $[R, R] \subseteq \bigcap_{d \in \operatorname{Der}(R)} \operatorname{Ker}(d).$

Proof. Property (i) follows from the definition of inner derivation and Lemma 2 (ii). Now, for any $d \in \text{Der}(R)$ and any $a, x \in R$ we have $d(x) \in \mathbb{Z}(R)$, and hence

$$d([a,x]) = d(\partial_a(x)) = \partial_a(d(x)) = 0.$$

This proves property (ii).

Corollary 2. Let R be a commutative ring. Suppose that Der(R) is abelian. Then

- (i) $d(R)\delta(R) = \{0\}$ for all $d, \delta \in \text{Der}(R)$,
- (ii) $Der(R) = \{0\}$ whenever R is reduced.

Proof. Property (i) is an obvious consequence of Lemma 2 (iii). If R is reduced, $d \in \text{Der}(R)$ and $x \in R$, then by (i) we have $d(x)^2 = 0$, and hence d(x) = 0. Property (ii) follows.

3. Main results

Theorem 2. Let R be a semiprime ring. Then Der(R) is abelian if and only if $Der(R) = \{0\}$.

Proof. (\Leftarrow) is obvious.

 (\Rightarrow) Assume that Der(R) is abelian. Then by Theorem 1, the ring R is commutative. The commutativity and semiprimeness yield that R is reduced. By applying Corollary 2 (ii), we get therefore $Der(R) = \{0\}$. \Box

We will need one more lemma.

Lemma 3. Let R be a commutative ring and $n \ge 2$. Suppose that

 $\forall d_1, \ldots, d_{n+1} \in \operatorname{Der}(R) : [d_1, \ldots, d_{n+1}] = 0.$

Then $[d_1, \ldots, d_n](R)\delta(R) = \{0\}$ for any $d_1, \ldots, d_n, \delta \in \text{Der}(R)$.

Proof. Pick arbitrary $d_1, \ldots, d_n, \delta \in \text{Der}(R)$ and arbitrary $a, c \in R$. Recall that

$$c\delta: R \ni x \mapsto c\delta(x) \in R$$

is a derivation of R. Consequently,

$$0 = [[d_1, \dots, d_n], c\delta](a) = [d_1, \dots, d_n](c\delta(a)) - c\delta([d_1, \dots, d_n](a))$$

= $[d_1, \dots, d_n](c)\delta(a) + c[d_1, \dots, d_n](\delta(a)) - c\delta([d_1, \dots, d_n](a))$
= $[d_1, \dots, d_n](c)\delta(a) + c[[d_1, \dots, d_n], \delta](a) = [d_1, \dots, d_n](c)\delta(a).$

The assertion follows.

By making use of the above lemma with $\delta = [d_1, \ldots, d_n]$, we obtain

Corollary 3. Let $n \ge 2$. Suppose that R is commutative and reduced. If the Lie ring Der(R) is nilpotent of class at most n, then it is nilpotent of class at most n-1.

We are ready to prove our most important theorem.

Theorem 3. Suppose that R is semiprime and the Lie ring Der(R) is nilpotent. Then $Der(R) = \{0\}$.

Proof. Since Der(R) is nilpotent, so is IDer(R). Therefore, by Theorem 1, the ring R is commutative, and hence reduced. It follows now from Corollary 3 that Der(R) is abelian. Consequently, Theorem 2 yields $Der(R) = \{0\}$.

Let us conclude the note by a natural example of a ring whose Lie ring of derivations is nontrivial and abelian.

Example 2. Consider the ring $\mathbb{Q}[a] = \{s + ta : s, t \in \mathbb{Q}\}$, where *a* is a nonzero element such that $a^2 = 0$. (This ring is isomorphic to the quotient $\mathbb{Q}[X]/\langle X^2 \rangle$). For an arbitrary $\lambda \in \mathbb{Q}$, we define $d_{\lambda} : \mathbb{Q}[a] \longrightarrow \mathbb{Q}[a]$ by the rule

$$d_{\lambda}(s+ta) = \lambda ta.$$

It is easy to see that $d_{\lambda} \in \text{Der}(\mathbb{Q}[a])$. Moreover,

$$\operatorname{Der}(\mathbb{Q}[a]) = \{ d_{\lambda} : \lambda \in \mathbb{Q} \}.$$

Since $[d_{\lambda}, d_{\mu}] = 0$ for all $\lambda, \mu \in \mathbb{Q}$, the Lie ring $\text{Der}(\mathbb{Q}[a])$ is abelian.

Acknowledgements. The second-named author would like to express his gratitude to Marcin Skrzyński for inspiring suggestions.

References

- I. N. Herstein, *Noncommutative rings*, The Carus Mathematical Monographs, Mathematical Association of America, Washington, 1996.
- K. Kular Semiprime rings with nilpotent Lie ring of inner derivations, Ann. Univ. Paedagog. Crac. Stud. Math., to appear.
- [3] J. Li, X.Du, Pairwise commuting derivations of polynomial rings, Linear Algebra Appl., 436, 2012, pp.2375–2379.
- [4] A. Nowicki, Commutative basis of derivations in polynomial and power series rings, J. Pure Appl. Algebra, 40, 1986, pp.275–279.
- [5] A. P. Petravchuk, On pairs of commuting derivations of the polynomial ring in one or two variables, Linear Algebra Appl., 433, 2010, pp.574–579.

CONTACT INFORMATION

O. D. Artemovych, Institute of Mathematics Cracow University of K. Kular Technology, ul. Warszawska 24, 31-155 Kraków POLAND *E-Mail(s)*: artemo@usk.pk.edu.pl, kamil-kular@wp.pl

Received by the editors: 10.07.2014 and in final form 10.10.2014.