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Abstract. We prove that the Lie ring of derivations of a
semiprime ring is either trivial or non-nilpotent.

1. Preliminaries and introduction

Throughout the text R stands for an associative ring (possibly without
identity) and n for a positive integer. By Z(R) we denote the center of R.
The ring R is called semiprime, if it has no nonzero nilpotent ideals.
Equivalently, aRa = {0} with any a ∈ R implies a = 0. We refer the
reader to [1] for terminology, definitions and basic facts in ring theory.

A map d : R −→ R is called a derivation, if it is additive and satisfies
the Leibniz rule

d(xy) = d(x)y + xd(y)

for all x, y ∈ R. The set Der(R) of all derivations d : R −→ R is a Lie
ring under the pointwise addition and the Lie multiplication defined by

[d1, d2] = d1 ◦ d2 − d2 ◦ d1.

A set E ⊆ Der(R) is abelian, if

[d1, d2] = 0
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for all d1, d2 ∈ E. For n > 3 and d1, . . . , dn ∈ Der(R) we define inductively

[d1, . . . , dn] = [[d1, . . . , dn−1], dn].

A Lie ring D of derivations on R (i.e., D is a Lie subring of Der(R)) is
said to be nilpotent, if there exists some n such that [d1, . . . , dn+1] = 0 for
all d1, . . . , dn+1 ∈ D. We define the nilpotency class of D as the infimum
of the set

{n ∈ N \ {0} : [d1, . . . , dn+1] = 0 for all d1, . . . , dn+1 ∈ D}.

Notice that the Lie ring D is abelian if and only if it is nilpotent of class 1.
Let a ∈ R. It is easy to see that

∂a : R ∋ x 7→ [a, x] ∈ R

is a derivation. This derivation is referred to as the inner derivation
generated by a. One can prove that IDer(R) = {∂a : a ∈ R} is a Lie ideal
of Der(R).

In [2], the following theorem has been proved.

Theorem 1. Suppose that R is semiprime. Then the Lie ring IDer(R)
is nilpotent if and only if R is commutative.

The purpose of the present note is to show that if R is semiprime,
then either Der(R) = {0}, or Der(R) is not nilpotent. Notice that many
authors studied commuting derivations in polynomial rings (see [3–5] for
references).

2. Some lemmas and useful facts

We start with a simple and well known lemma.

Lemma 1. For any d ∈ Der(R) and any x ∈ R we have [d, ∂x] = ∂d(x).

The above lemma implies

Proposition 1. If d is a central element of Der(R) (i.e., [d, δ] = 0 for
every δ ∈ Der(R)), then d(R) ⊆ Z(R).

Proof. For arbitrary elements a, x ∈ R we have

0 = [d, ∂x](a) = ∂d(x)(a) = [d(x), a].
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Notice that there exists a ring R with a derivation d such that d(R) ⊆
Z(R) and d is not a central element of Der(R).

Example 1. Let d1, d2 ∈ Der(R[X]) be defined by

d1(f) = X
df

dX
and d2(f) = (X + 1)

df

dX
.

Then
d1(d2(X)) = d1(X + 1) = X,

and
d2(d1(X)) = d2(X) = X + 1.

Consequently, d1 and d2 are not central elements of Der(R[X]).

The following lemma is the key tool in the note.

Lemma 2. Suppose that Der(R) is abelian. Let d, δ ∈ Der(R). Then

(i) Ker(d) = {a ∈ R : d(a) = 0} is δ-stable,

(ii) d(R) ⊆ Z(R),

(iii) d(Z(R))δ(R) = {0},

(iv) [a, y]d(x) = −[a, x]d(y) for all a, x, y ∈ R.

Proof. Pick arbitrary elements a, b, x, y ∈ R and c ∈ Z(R). If a ∈ Ker(d),
then d(δ(a)) = δ(d(a)) = 0, and hence δ(a) ∈ Ker(d). Property (i) follows.
Property (ii) is an immediate consequence of Proposition 1. Next, since
c ∈ Z(R), the map

cδ : R ∋ r 7→ cδ(r) ∈ R

is a derivation. Therefore,

cδ(d(a)) = d(cδ(a)) = d(c)δ(a) + cd(δ(a)) = d(c)δ(a) + cδ(d(a)),

which yields d(c)δ(a) = 0. Property (iii) follows. Finally, by (ii), we have
ad(xy) = d(xy)a, and hence

ad(x)y + axd(y) = d(x)ya + xd(y)a.

Consequently,

[a, y]d(x) = ayd(x) − yad(x) = ad(x)y − d(x)ya

= xd(y)a − axd(y) = xad(y) − axd(y) = −[a, x]d(y).
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Let us proceed to some corollaries of Lemma 2. The first corollary
will not be used in the sequel, but it seems to be of separate interest.

Corollary 1. If Der(R) is abelian, then

(i) [R, R] ⊆ Z(R),

(ii) [R, R] ⊆
⋂

d∈Der(R) Ker(d).

Proof. Property (i) follows from the definition of inner derivation and
Lemma 2 (ii). Now, for any d ∈ Der(R) and any a, x ∈ R we have
d(x) ∈ Z(R), and hence

d([a, x]) = d(∂a(x)) = ∂a(d(x)) = 0.

This proves property (ii).

Corollary 2. Let R be a commutative ring. Suppose that Der(R) is
abelian. Then

(i) d(R)δ(R) = {0} for all d, δ ∈ Der(R),

(ii) Der(R) = {0} whenever R is reduced.

Proof. Property (i) is an obvious consequence of Lemma 2 (iii). If R is
reduced, d ∈ Der(R) and x ∈ R, then by (i) we have d(x)2 = 0, and hence
d(x) = 0. Property (ii) follows.

3. Main results

Theorem 2. Let R be a semiprime ring. Then Der(R) is abelian if and
only if Der(R) = {0}.

Proof. (⇐) is obvious.
(⇒) Assume that Der(R) is abelian. Then by Theorem 1, the ring R

is commutative. The commutativity and semiprimeness yield that R is
reduced. By applying Corollary 2 (ii), we get therefore Der(R) = {0}.

We will need one more lemma.

Lemma 3. Let R be a commutative ring and n > 2. Suppose that

∀ d1, . . . , dn+1 ∈ Der(R) : [d1, . . . , dn+1] = 0.

Then [d1, . . . , dn](R)δ(R) = {0} for any d1, . . . , dn, δ ∈ Der(R).



O. D. Artemovych, K. Kular 161

Proof. Pick arbitrary d1, . . . , dn, δ ∈ Der(R) and arbitrary a, c ∈ R. Recall
that

cδ : R ∋ x 7→ cδ(x) ∈ R

is a derivation of R. Consequently,

0 = [[d1, . . . , dn], cδ](a) = [d1, . . . , dn](cδ(a)) − cδ([d1, . . . , dn](a))

= [d1, . . . , dn](c)δ(a) + c[d1, . . . , dn](δ(a)) − cδ([d1, . . . , dn](a))

= [d1, . . . , dn](c)δ(a) + c[[d1, . . . , dn], δ](a) = [d1, . . . , dn](c)δ(a).

The assertion follows.

By making use of the above lemma with δ = [d1, . . . , dn], we obtain

Corollary 3. Let n > 2. Suppose that R is commutative and reduced. If
the Lie ring Der(R) is nilpotent of class at most n, then it is nilpotent of
class at most n − 1.

We are ready to prove our most important theorem.

Theorem 3. Suppose that R is semiprime and the Lie ring Der(R) is
nilpotent. Then Der(R) = {0}.

Proof. Since Der(R) is nilpotent, so is IDer(R). Therefore, by Theorem 1,
the ring R is commutative, and hence reduced. It follows now from
Corollary 3 that Der(R) is abelian. Consequently, Theorem 2 yields
Der(R) = {0}.

Let us conclude the note by a natural example of a ring whose Lie
ring of derivations is nontrivial and abelian.

Example 2. Consider the ring Q[a] = {s + ta : s, t ∈ Q}, where a is a
nonzero element such that a2 = 0. (This ring is isomorphic to the quotient
Q[X]/〈X2〉). For an arbitrary λ ∈ Q, we define dλ : Q[a] −→ Q[a] by the
rule

dλ(s + ta) = λta.

It is easy to see that dλ ∈ Der(Q[a]). Moreover,

Der(Q[a]) = {dλ : λ ∈ Q}.

Since [dλ, dµ] = 0 for all λ, µ ∈ Q, the Lie ring Der(Q[a]) is abelian.

Acknowledgements. The second-named author would like to express his
gratitude to Marcin Skrzyński for inspiring suggestions.



162 Lie ring of derivations of a semiprime ring

References

[1] I. N. Herstein, Noncommutative rings, The Carus Mathematical Monographs,
Mathematical Association of America, Washington, 1996.

[2] K. Kular Semiprime rings with nilpotent Lie ring of inner derivations, Ann. Univ.
Paedagog. Crac. Stud. Math., to appear.

[3] J. Li, X.Du, Pairwise commuting derivations of polynomial rings, Linear Algebra
Appl., 436, 2012, pp.2375–2379.

[4] A. Nowicki, Commutative basis of derivations in polynomial and power series

rings, J. Pure Appl. Algebra, 40, 1986, pp.275–279.

[5] A. P. Petravchuk, On pairs of commuting derivations of the polynomial ring in

one or two variables, Linear Algebra Appl., 433, 2010, pp.574–579.

Contact information

O. D. Artemovych,

K. Kular

Institute of Mathematics Cracow University of
Technology, ul. Warszawska 24, 31-155 Kraków
POLAND
E-Mail(s): artemo@usk.pk.edu.pl,

kamil-kular@wp.pl

Received by the editors: 10.07.2014
and in final form 10.10.2014.


