# On one-sided interval edge colorings of biregular bipartite graphs 

Rafayel Ruben Kamalian

Communicated by V. Mazorchuk


#### Abstract

A proper edge $t$-coloring of a graph $G$ is a coloring of edges of $G$ with colors $1,2, \ldots, t$ such that all colors are used, and no two adjacent edges receive the same color. The set of colors of edges incident with a vertex $x$ is called a spectrum of $x$. Any nonempty subset of consecutive integers is called an interval. A proper edge $t$-coloring of a graph $G$ is interval in the vertex $x$ if the spectrum of $x$ is an interval. A proper edge $t$-coloring $\varphi$ of a graph $G$ is interval on a subset $R_{0}$ of vertices of $G$, if for any $x \in R_{0}, \varphi$ is interval in $x$. A subset $R$ of vertices of $G$ has an $i$-property if there is a proper edge $t$-coloring of $G$ which is interval on $R$. If $G$ is a graph, and a subset $R$ of its vertices has an $i$-property, then the minimum value of $t$ for which there is a proper edge $t$-coloring of $G$ interval on $R$ is denoted by $w_{R}(G)$. We estimate the value of this parameter for biregular bipartite graphs in the case when $R$ is one of the sides of a bipartition of the graph.


We consider undirected, finite graphs without loops and multiple edges. $V(G)$ and $E(G)$ denote the sets of vertices and edges of a graph $G$, respectively. For any vertex $x \in V(G)$, we denote by $N_{G}(x)$ the set of vertices of a graph $G$ adjacent to $x$. The degree of a vertex $x$ of a graph $G$ is denoted by $d_{G}(x)$, the maximum degree of a vertex of $G$ by $\Delta(G)$. For a graph $G$ and an arbitrary subset $V_{0} \subseteq V(G)$, we denote by $G\left[V_{0}\right]$ the subgraph of $G$ induced by the subset $V_{0}$ of its vertices.

2010 MSC: 05C15, 05C50, 05C85.
Key words and phrases: proper edge coloring, interval edge coloring, interval spectrum, biregular bipartite graph.

Using a notation $G(X, Y, E)$ for a bipartite graph $G$, we mean that $G$ has a bipartition $(X, Y)$ with the sides $X, Y$, and $E=E(G)$.

An arbitrary nonempty subset of consecutive integers is called an interval. An interval with the minimum element $p$ and the maximum element $q$ is denoted by $[p, q]$.

A function $\varphi: E(G) \rightarrow[1, t]$ is called a proper edge $t$-coloring of a graph $G$, if all colors are used, and no two adjacent edges receive the same color.

The minimum $t \in \mathbb{N}$ for which there exists a proper edge $t$-coloring of a graph $G$ is denoted by $\chi^{\prime}(G)[26]$.

For a graph $G$ and any $t \in\left[\chi^{\prime}(G),|E(G)|\right]$, we denote by $\alpha(G, t)$ the set of all proper edge $t$-colorings of $G$. Let

$$
\alpha(G) \equiv \bigcup_{t=\chi^{\prime}(G)}^{|E(G)|} \alpha(G, t)
$$

If $G$ is a graph, $x \in V(G), \varphi \in \alpha(G)$, then let us set $S_{G}(x, \varphi) \equiv$ $\{\varphi(e) / e \in E(G), e$ is incident with $x\}$.

We say that $\varphi \in \alpha(G)$ is persistent-interval in the vertex $x_{0} \in V(G)$ of the graph $G$ iff $S_{G}\left(x_{0}, \varphi\right)=\left[1, d_{G}\left(x_{0}\right)\right]$. We say that $\varphi \in \alpha(G)$ is persistent-interval on the set $R_{0} \subseteq V(G)$ iff $\varphi$ is persistent-interval in $\forall x \in R_{0}$.

We say that $\varphi \in \alpha(G)$ is interval in the vertex $x_{0} \in V(G)$ of the graph $G$ iff $S_{G}\left(x_{0}, \varphi\right)$ is an interval. We say that $\varphi \in \alpha(G)$ is interval on the set $R_{0} \subseteq V(G)$ iff $\varphi$ is interval in $\forall x \in R_{0}$.

We say that a subset $R$ of vertices of a graph $G$ has an $i$-property iff there exists $\varphi \in \alpha(G)$ interval on $R$; for a subset $R \subseteq V(G)$ with an $i$-property, the minimum value of $t$ warranting existence of $\varphi \in \alpha(G, t)$ interval on $R$ is denoted by $w_{R}(G)$.

Notice that the problem of deciding whether the set of all vertices of an arbitrary graph has an $i$-property is $N P$-complete [ $7,8,17$ ]. Unfortunately, even for an arbitrary bipartite graph (in this case the interest is strengthened owing to the application of an $i$-property in timetablings $[6,17])$ the problem keeps the complexity of a general case $[3,12,25]$. Some positive results were obtained for graphs of certain classes with numerical or structural restrictions $[9,11,13-15,17,19-22,28,29]$. The examples of bipartite graphs whose sets of vertices have not an $i$-property are given in $[6,13,16,23,25]$.

The subject of this research is a parameter $w_{R}(G)$ of a bipartite graph $G=G(X, Y, E)$ in the case when $R$ is one of the sides of the bipartition
of $G$ (the exact value of this parameter for an arbitrary bipartite graph is not known as yet). We obtain an upper bound of the parameter being discussed for biregular [2-5, 24] bipartite graphs, and the exact values of it in the case of the complete bipartite graph $K_{m, n}(m \in \mathbb{N}, n \in \mathbb{N})$ as well.

The terms and concepts that we do not define can be found in [27]. First we recall some known results.

Theorem 1 ([7, 8, 17]). If $R$ is one of the sides of a bipartition of an arbitrary bipartite graph $G=G(X, Y, E)$, then: 1) there exists $\varphi \in$ $\alpha(G,|E|)$ interval on $R$, 2) for $\forall t \in\left[w_{R}(G),|E|\right]$, there exists $\psi_{t} \in \alpha(G, t)$ interval on $R$.

Theorem $2([1,7,8])$. Let $G=G(X, Y, E)$ be a bipartite graph. If for $\forall e=(x, y) \in E$, where $x \in X, y \in Y$, the inequality $d_{G}(y) \leqslant d_{G}(x)$ is true, then $\exists \varphi \in \alpha(G, \Delta(G))$ persistent-interval on $X$.

Corollary 1 ([1, 7, 8]). Let $G=G(X, Y, E)$ be a bipartite graph. If $\max _{y \in Y} d_{G}(y) \leqslant \min _{x \in X} d_{G}(x)$, then $\exists \varphi \in \alpha(G, \Delta(G))$ persistent-interval on $X$.

Remark 1. Note that Corollary 1 follows from the result of [10].
Let $H=H(\mu, \nu)$ be a $(0,1)$-matrix with $\mu$ rows, $\nu$ columns, and with elements $h_{i j}, 1 \leqslant i \leqslant \mu, 1 \leqslant j \leqslant \nu$. The $i$-th row of $H, i \in[1, \mu]$, is called collected, iff $h_{i p}=h_{i q}=1, t \in[p, q]$ imply $h_{i t}=1$, and the inequality $\sum_{j=1}^{\nu} h_{i j} \geqslant 1$ is true. Similarly, the $j$-th column of $H, j \in[1, \nu]$, is called collected, iff $h_{p j}=h_{q j}=1, t \in[p, q]$ imply $h_{t j}=1$, and the inequality $\sum_{i=1}^{\mu} h_{i j} \geqslant 1$ is true. If all rows and all columns of $H$ are collected, then for $i$-th row of $H, i \in[1, \mu]$, we define the number $\varepsilon(i, H) \equiv \min \left\{j / h_{i j}=1\right\}$.
$H$ is called a collected matrix (see Figure 1), iff all its rows and all its columns are collected, $h_{11}=h_{\mu \nu}=1$, and $\varepsilon(1, H) \leqslant \varepsilon(2, H) \leqslant \cdots \leqslant$ $\varepsilon(\mu, H)$.
$H$ is called a $b$-regular matrix $(b \in \mathbb{N})$, iff for $\forall i \in[1, \mu], \sum_{j=1}^{\nu} h_{i j}=b$. $H$ is called a $c$-compressed matrix $(c \in \mathbb{N})$, iff for $\forall j \in[1, \nu], \sum_{i=1}^{\mu} h_{i j} \leqslant c$.

Lemma 1 ([18]). If a collected $n$-regular $(n \in \mathbb{N})$ matrix $P=P(m, w)$ with elements $p_{i j}(1 \leqslant i \leqslant m, 1 \leqslant j \leqslant w)$ is $n$-compressed, then $w \geqslant\left\lceil\frac{m}{n}\right\rceil \cdot n$.

Proof. We use induction on $\left\lceil\frac{m}{n}\right\rceil$.
If $\left\lceil\frac{m}{n}\right\rceil=1$, the statement is trivial.


Figure 1. An example of the visual image of a collected matrix. The dark area is filled by 1 s , the light area - by 0s.

Now assume that $\left\lceil\frac{m}{n}\right\rceil=\lambda_{0} \geqslant 2$, and the statement is true for all collected $n^{\prime}$-regular $n^{\prime}$-compressed matrixes $P^{\prime}\left(m^{\prime}, w^{\prime}\right)$ with $\left\lceil\frac{m^{\prime}}{n^{\prime}}\right\rceil \leqslant \lambda_{0}-1$.

First of all let us prove that $\varepsilon(n+1, P) \geqslant n+1$. Assume the contrary: $\varepsilon(n+1, P) \leqslant n$. Since $P$ is a collected $n$-regular matrix, we obtain $\sum_{i=1}^{m} p_{i n} \geqslant \sum_{i=1}^{n+1} p_{i n} \geqslant n+1$, which is impossible because $P(m, w)$ is an $n$-compressed matrix. This contradiction shows that $\varepsilon(n+1, P) \geqslant n+1$.

Now let us form a new matrix $P^{\prime}(m-n, w-(\varepsilon(n+1, P)-1))$ by deleting from the matrix $P$ the elements $p_{i j}$, which satisfy at least one of the inequalities $i \leqslant n, j \leqslant \varepsilon(n+1, P)-1$.

It is not difficult to see that $P^{\prime}(m-n, w-(\varepsilon(n+1, P)-1))$ is a collected $n$-regular $n$-compressed matrix with $\left\lceil\frac{m-n}{n}\right\rceil=\lambda_{0}-1$. By the induction hypothesis, we have

$$
w-(\varepsilon(n+1, P)-1) \geqslant\left\lceil\frac{m-n}{n}\right\rceil \cdot n
$$

which means that

$$
w \geqslant\left(\lambda_{0}-1\right) n+\varepsilon(n+1, P)-1 \geqslant\left(\lambda_{0}-1\right) n+n=\lambda_{0} n=\left\lceil\frac{m}{n}\right\rceil \cdot n
$$

Now, for arbitrary positive integers $m, l, n, k$, where $m \geqslant n$ and $m l=$ $n k$, let us define the class $\operatorname{Bip}(m, l, n, k)$ of biregular bipartite graphs:

$$
\operatorname{Bip}(m, l, n, k) \equiv\left\{\begin{array}{l|l}
G=G(X, Y, E) \left\lvert\, \begin{array}{l}
|X|=m,|Y|=n \\
\text { for } \forall x \in X, d_{G}(x)=l \\
\text { for } \forall y \in Y, d_{G}(y)=k
\end{array}\right.
\end{array}\right\}
$$

Remark 2. Clearly, if $G \in \operatorname{Bip}(m, l, n, k)$, then $\chi^{\prime}(G)=k$.

Theorem 3. If $G=G(X, Y, E) \in \operatorname{Bip}(m, l, n, k)$, then $w_{Y}(G)=k$, $w_{X}(G) \leqslant l \cdot\left\lceil\frac{m}{l}\right\rceil$.
Proof. The equality follows from Remark 2. Let us prove the inequality.
Let $X=\left\{x_{1}, \ldots, x_{m}\right\}$. For $\forall r \in\left[1,\left\lfloor\frac{m}{l}\right\rfloor\right]$, define $X_{r} \equiv\left\{x_{(r-1) l+1}, \ldots\right.$, $\left.x_{r l}\right\}$. Define $X_{1+\left\lfloor\frac{m}{l}\right\rfloor} \equiv X \backslash\left(\bigcup_{i=1}^{\left\lfloor\frac{m}{l}\right\rfloor} X_{i}\right)$. For $\forall r \in\left[1,\left\lfloor\frac{m}{l}\right\rfloor\right]$, define $Y_{r} \equiv$ $\bigcup_{x \in X_{r}} N_{G}(x)$. Define $Y_{1+\left\lfloor\frac{m}{l}\right\rfloor} \equiv \bigcup_{x \in X_{1+\left\lfloor\frac{m}{l}\right\rfloor}} N_{G}(x)$. For $\forall r \in\left[1,\left\lceil\frac{m}{l}\right\rceil\right]$, define $G_{r} \equiv G\left[X_{r} \cup Y_{r}\right]$.

Consider the sequence $G_{1}, G_{2}, \ldots, G_{\left\lceil\frac{m}{l}\right\rceil}$ of subgraphs of the graph $G$. From Corollary 1, we obtain that for $\forall i \in\left[1,\left\lceil\frac{m}{l}\right\rceil\right]$, there is $\varphi_{i} \in \alpha\left(G_{i}, l\right)$ persistent-interval on $X_{i}$.

Clearly, for $\forall e \in E(G)$, there exists the unique $\xi(e)$, satisfying the conditions $\xi(e) \in\left[1,\left\lceil\frac{m}{l}\right\rceil\right]$ and $e \in E\left(G_{\xi(e)}\right)$.

Define a function $\psi: E(G) \rightarrow\left[1, l \cdot\left\lceil\frac{m}{l}\right\rceil\right]$. For an arbitrary $e \in E(G)$, set $\psi(e) \equiv(\xi(e)-1) \cdot l+\varphi_{\xi(e)}(e)$.

It is not difficult to see that $\psi \in \alpha\left(G, l \cdot\left\lceil\frac{m}{l}\right\rceil\right)$ and $\psi$ is interval on $X$. Hence, $w_{X}(G) \leqslant l \cdot\left\lceil\frac{m}{l}\right\rceil$.

Theorem 4. Let $R$ be an arbitrary side of a bipartition of the complete bipartite graph $G=K_{m, n}$, where $m \in \mathbb{N}, n \in \mathbb{N}$. Then

$$
w_{R}(G)=(m+n-|R|) \cdot\left\lceil\frac{|R|}{m+n-|R|}\right\rceil \text {. }
$$

Proof. Without loss of generality we can assume that $G$ has a bipartition $(X, Y)$, where $X=\left\{x_{1}, \ldots, x_{m}\right\}, Y=\left\{y_{1}, \ldots, y_{n}\right\}$, and $m \geqslant n$.

Case 1. $R=Y$. In this case the statement follows from Theorem 3; thus $w_{Y}(G)=m$.

Case 2. $R=X$.
The inequality $w_{X}(G) \leqslant n \cdot\left\lceil\frac{m}{n}\right\rceil$ follows from Theorem 3. Let us prove that $w_{X}(G) \geqslant n \cdot\left\lceil\frac{m}{n}\right\rceil$.

Consider an arbitrary proper edge $w_{X}(G)$-coloring $\varphi$ of the graph $G$, which is interval on $X$.

Clearly, without loss of generality, we can assume that

$$
\min \left(S_{G}\left(x_{1}, \varphi\right)\right) \leqslant \min \left(S_{G}\left(x_{2}, \varphi\right)\right) \leqslant \ldots \leqslant \min \left(S_{G}\left(x_{m}, \varphi\right)\right)
$$

Let us define a $(0,1)$-matrix $P\left(m, w_{X}(G)\right)$ with $m$ rows, $w_{X}(G)$ columns, and with elements $p_{i j}, 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant w_{X}(G)$. For $\forall i \in[1, m]$, and for $\forall j \in\left[1, w_{X}(G)\right]$, set

$$
p_{i j}= \begin{cases}1, & \text { if } j \in S_{G}\left(x_{i}, \varphi\right) \\ 0, & \text { if } j \notin S_{G}\left(x_{i}, \varphi\right)\end{cases}
$$

It is not difficult to see that $P\left(m, w_{X}(G)\right)$ is a collected $n$-regular $n$-compressed matrix. From Lemma 1, we obtain $w_{X}(G) \geqslant n \cdot\left\lceil\frac{m}{n}\right\rceil$.

From Theorems 1 and 3, taking into account the proof of Case 2 of Theorem 4, we also obtain

Corollary 2. If $G \in \operatorname{Bip}(m, l, n, k)$, then

1) for $\forall t \in\left[l \cdot\left\lceil\frac{m}{l}\right\rceil, m l\right]$, there exists $\varphi_{t} \in \alpha(G, t)$ interval on $X$,
2) for $\forall t \in[k, n k]$, there exists $\psi_{t} \in \alpha(G, t)$ interval on $Y$.

## References

[1] A.S. Asratian, Investigation of some mathematical model of Scheduling Theory, Doctoral Dissertation, Moscow University, 1980 (in Russian).
[2] A.S. Asratian, C.J. Casselgren, A sufficient condition for interval edge colorings of (4, 3)-biregular bipartite graphs, Research report LiTH-MAT-R-2006-07, Linköping University, 2006.
[3] A.S. Asratian, C.J. Casselgren, Some results on interval edge colorings of $(\alpha, \beta)-$ biregular bipartite graphs, Research report LiTH-MAT-R-2006-09, Linköping University, 2006.
[4] A.S. Asratian, C.J. Casselgren, On interval edge colorings of $(\alpha, \beta)$-biregular bipartite graphs, Discrete Math 307 (2007), pp.1951-1956.
[5] A.S. Asratian, C.J. Casselgren, J. Vandenbussche, D.B. West, Proper path-factors and interval edge-coloring of $(3,4)$-biregular bigraphs, J. of Graph Theory 61 (2009), pp.88-97.
[6] A.S. Asratian, T.M.J. Denley, R. Haggkvist, Bipartite graphs and their applications, Cambridge Tracts in Mathematics, 131, Cambridge University Press, 1998.
[7] A.S. Asratian, R.R. Kamalian, Interval colorings of edges of a multigraph, Appl. Math. 5 (1987), Yerevan State University, pp.25-34 (in Russian).
[8] A.S. Asratian, R.R. Kamalian, Investigation of interval edge-colorings of graphs, Journal of Combinatorial Theory. Series B 62 (1994), N.1, pp.34-43.
[9] M.A. Axenovich, On interval colorings of planar graphs, Congr. Numer. 159 (2002), pp.77-94.
[10] D.P. Geller and A.J.W. Hilton, How to color the lines of a bigraph, Networks, 4(1974), pp.281-282.
[11] K. Giaro, Compact task scheduling on dedicated processors with no waiting periods, PhD thesis, Technical University of Gdansk, EIT faculty, Gdansk, 1999 (in Polish).
[12] K. Giaro, The complexity of consecutive $\Delta$-coloring of bipartite graphs: 4 is easy, 5 is hard, Ars Combin. 47(1997), pp.287-298.
[13] K. Giaro, M. Kubale and M. Malafiejski, On the deficiency of bipartite graphs, Discrete Appl. Math. 94 (1999), pp.193-203.
[14] H.M. Hansen, Scheduling with minimum waiting periods, Master's Thesis, Odense University, Odense, Denmark, 1992 (in Danish).
[15] D. Hanson, C.O.M. Loten, B. Toft, On interval colorings of bi-regular bipartite graphs, Ars Combin. 50(1998), pp.23-32.
[16] T.R. Jensen, B. Toft, Graph Coloring Problems, Wiley Interscience Series in Discrete Mathematics and Optimization, 1995.
[17] R.R. Kamalian, Interval Edge Colorings of Graphs, Doctoral dissertation, the Institute of Mathematics of the Siberian Branch of the Academy of Sciences of USSR, Novosibirsk, 1990 (in Russian).
[18] R.R. Kamalian, On one-sided interval colorings of bipartite graphs, the Herald of the RAU, N.2, Yerevan, 2010, pp.3-11 (in Russian).
[19] R.R. Kamalian, Interval colorings of complete bipartite graphs and trees, Preprint of the Computing Centre of the Academy of Sciences of Armenia, Yerevan, 1989 (in Russian).
[20] M. Kubale, Graph Colorings, American Mathematical Society, 2004.
[21] P.A. Petrosyan, Interval edge-colorings of complete graphs and n-dimensional cubes, Discrete Math. 310 (2010), pp.1580-1587.
[22] P.A. Petrosyan, On interval edge-colorings of multigraphs, The Herald of the RAU, N.1, Yerevan, 2011, pp.12-21 (in Russian).
[23] P.A. Petrosyan, H.H. Khachatrian, Interval non-edge-colorable bipartite graphs and multigraphs, J. of Graph Theory 76 (2014), pp.200-216.
[24] A.V. Pyatkin, Interval coloring of (3,4)-biregular bipartite graphs having large cubic subgraphs, J. of Graph Theory 47 (2004), pp.122-128.
[25] S.V. Sevast'janov, Interval colorability of the edges of a bipartite graph, Metody Diskret. Analiza 50(1990), pp.61-72 (in Russian).
[26] V.G. Vizing, The chromatic index of a multigraph, Kibernetika 3 (1965), pp.29-39.
[27] D.B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 1996.
[28] F. Yang, X. Li, Interval coloring of (3,4)-biregular bigraphs having two (2,3)biregular bipartite subgraphs, Appl. Math. Letters 24(2011), pp.1574-1577.
[29] Y. Zhao and J.G. Chang, Consecutive Edge-Colorings of Generalized $\theta$-Graphs, J. Akiyama et al. (Eds.): CGGA 2010, LNCS 7033, 2011, pp.214-225.

## Contact information

## R. R. Kamalian Institute for Informatics and Automation Problems of the National Academy of Sciences of RA, 0014 Yerevan, Republic of Armenia E-Mail(s): rrkamalian@yahoo.com

Received by the editors: 17.12.2012
and in final form 10.02.2015.

