Algebra and Discrete Mathematics Volume **19** (2015). Number 2, pp. 193–199 © Journal "Algebra and Discrete Mathematics"

On one-sided interval edge colorings of biregular bipartite graphs

Rafayel Ruben Kamalian

Communicated by V. Mazorchuk

ABSTRACT. A proper edge t-coloring of a graph G is a coloring of edges of G with colors $1, 2, \ldots, t$ such that all colors are used, and no two adjacent edges receive the same color. The set of colors of edges incident with a vertex x is called a spectrum of x. Any nonempty subset of consecutive integers is called an interval. A proper edge t-coloring of a graph G is interval in the vertex x if the spectrum of x is an interval. A proper edge t-coloring φ of a graph G is interval on a subset R_0 of vertices of G, if for any $x \in R_0, \varphi$ is interval in x. A subset R of vertices of G has an *i*-property if there is a proper edge t-coloring of G which is interval on R. If G is a graph, and a subset R of its vertices has an *i*-property, then the minimum value of t for which there is a proper edge t-coloring of G interval on R is denoted by $w_R(G)$. We estimate the value of this parameter for biregular bipartite graphs in the case when R is one of the sides of a bipartition of the graph.

We consider undirected, finite graphs without loops and multiple edges. V(G) and E(G) denote the sets of vertices and edges of a graph G, respectively. For any vertex $x \in V(G)$, we denote by $N_G(x)$ the set of vertices of a graph G adjacent to x. The degree of a vertex x of a graph G is denoted by $d_G(x)$, the maximum degree of a vertex of G by $\Delta(G)$. For a graph G and an arbitrary subset $V_0 \subseteq V(G)$, we denote by $G[V_0]$ the subgraph of G induced by the subset V_0 of its vertices.

²⁰¹⁰ MSC: 05C15, 05C50, 05C85.

Key words and phrases: proper edge coloring, interval edge coloring, interval spectrum, biregular bipartite graph.

Using a notation G(X, Y, E) for a bipartite graph G, we mean that G has a bipartition (X, Y) with the sides X, Y, and E = E(G).

An arbitrary nonempty subset of consecutive integers is called an interval. An interval with the minimum element p and the maximum element q is denoted by [p, q].

A function $\varphi : E(G) \to [1, t]$ is called a proper edge *t*-coloring of a graph G, if all colors are used, and no two adjacent edges receive the same color.

The minimum $t \in \mathbb{N}$ for which there exists a proper edge t-coloring of a graph G is denoted by $\chi'(G)$ [26].

For a graph G and any $t \in [\chi'(G), |E(G)|]$, we denote by $\alpha(G, t)$ the set of all proper edge t-colorings of G. Let

$$\alpha(G) \equiv \bigcup_{t=\chi'(G)}^{|E(G)|} \alpha(G,t).$$

If G is a graph, $x \in V(G)$, $\varphi \in \alpha(G)$, then let us set $S_G(x, \varphi) \equiv \{\varphi(e)/e \in E(G), e \text{ is incident with } x\}.$

We say that $\varphi \in \alpha(G)$ is persistent-interval in the vertex $x_0 \in V(G)$ of the graph G iff $S_G(x_0, \varphi) = [1, d_G(x_0)]$. We say that $\varphi \in \alpha(G)$ is persistent-interval on the set $R_0 \subseteq V(G)$ iff φ is persistent-interval in $\forall x \in R_0$.

We say that $\varphi \in \alpha(G)$ is interval in the vertex $x_0 \in V(G)$ of the graph G iff $S_G(x_0, \varphi)$ is an interval. We say that $\varphi \in \alpha(G)$ is interval on the set $R_0 \subseteq V(G)$ iff φ is interval in $\forall x \in R_0$.

We say that a subset R of vertices of a graph G has an *i*-property iff there exists $\varphi \in \alpha(G)$ interval on R; for a subset $R \subseteq V(G)$ with an *i*-property, the minimum value of t warranting existence of $\varphi \in \alpha(G, t)$ interval on R is denoted by $w_R(G)$.

Notice that the problem of deciding whether the set of all vertices of an arbitrary graph has an *i*-property is NP-complete [7,8,17]. Unfortunately, even for an arbitrary bipartite graph (in this case the interest is strengthened owing to the application of an *i*-property in timetablings [6,17]) the problem keeps the complexity of a general case [3,12,25]. Some positive results were obtained for graphs of certain classes with numerical or structural restrictions [9,11,13–15,17,19–22,28,29]. The examples of bipartite graphs whose sets of vertices have not an *i*-property are given in [6,13,16,23,25].

The subject of this research is a parameter $w_R(G)$ of a bipartite graph G = G(X, Y, E) in the case when R is one of the sides of the bipartition

of G (the exact value of this parameter for an arbitrary bipartite graph is not known as yet). We obtain an upper bound of the parameter being discussed for biregular [2–5,24] bipartite graphs, and the exact values of it in the case of the complete bipartite graph $K_{m,n}$ ($m \in \mathbb{N}, n \in \mathbb{N}$) as well.

The terms and concepts that we do not define can be found in [27]. First we recall some known results.

Theorem 1 ([7, 8, 17]). If R is one of the sides of a bipartition of an arbitrary bipartite graph G = G(X, Y, E), then: 1) there exists $\varphi \in \alpha(G, |E|)$ interval on R, 2) for $\forall t \in [w_R(G), |E|]$, there exists $\psi_t \in \alpha(G, t)$ interval on R.

Theorem 2 ([1,7,8]). Let G = G(X,Y,E) be a bipartite graph. If for $\forall e = (x,y) \in E$, where $x \in X, y \in Y$, the inequality $d_G(y) \leq d_G(x)$ is true, then $\exists \varphi \in \alpha(G, \Delta(G))$ persistent-interval on X.

Corollary 1 ([1, 7, 8]). Let G = G(X, Y, E) be a bipartite graph. If $\max_{y \in Y} d_G(y) \leq \min_{x \in X} d_G(x)$, then $\exists \varphi \in \alpha(G, \Delta(G))$ persistent-interval on X.

Remark 1. Note that Corollary 1 follows from the result of [10].

Let $H = H(\mu, \nu)$ be a (0, 1)-matrix with μ rows, ν columns, and with elements h_{ij} , $1 \leq i \leq \mu$, $1 \leq j \leq \nu$. The *i*-th row of H, $i \in [1, \mu]$, is called collected, iff $h_{ip} = h_{iq} = 1$, $t \in [p, q]$ imply $h_{it} = 1$, and the inequality $\sum_{j=1}^{\nu} h_{ij} \geq 1$ is true. Similarly, the *j*-th column of H, $j \in [1, \nu]$, is called collected, iff $h_{pj} = h_{qj} = 1$, $t \in [p, q]$ imply $h_{tj} = 1$, and the inequality $\sum_{i=1}^{\mu} h_{ij} \geq 1$ is true. If all rows and all columns of H are collected, then for *i*-th row of H, $i \in [1, \mu]$, we define the number $\varepsilon(i, H) \equiv \min\{j/h_{ij} = 1\}$.

H is called a collected matrix (see Figure 1), iff all its rows and all its columns are collected, $h_{11} = h_{\mu\nu} = 1$, and $\varepsilon(1, H) \leq \varepsilon(2, H) \leq \cdots \leq \varepsilon(\mu, H)$.

H is called a *b*-regular matrix $(b \in \mathbb{N})$, iff for $\forall i \in [1, \mu]$, $\sum_{j=1}^{\nu} h_{ij} = b$. *H* is called a *c*-compressed matrix $(c \in \mathbb{N})$, iff for $\forall j \in [1, \nu]$, $\sum_{i=1}^{\mu} h_{ij} \leq c$.

Lemma 1 ([18]). If a collected n-regular $(n \in \mathbb{N})$ matrix P = P(m, w)with elements p_{ij} $(1 \leq i \leq m, 1 \leq j \leq w)$ is n-compressed, then $w \geq \lfloor \frac{m}{n} \rfloor \cdot n.$

Proof. We use induction on $\lceil \frac{m}{n} \rceil$. If $\lceil \frac{m}{n} \rceil = 1$, the statement is trivial.

FIGURE 1. An example of the visual image of a collected matrix. The dark area is filled by 1s, the light area — by 0s.

Now assume that $\left\lceil \frac{m}{n} \right\rceil = \lambda_0 \ge 2$, and the statement is true for all collected *n'*-regular *n'*-compressed matrices P'(m', w') with $\left\lceil \frac{m'}{n'} \right\rceil \le \lambda_0 - 1$.

First of all let us prove that $\varepsilon(n+1, P) \ge n+1$. Assume the contrary: $\varepsilon(n+1, P) \le n$. Since P is a collected n-regular matrix, we obtain $\sum_{i=1}^{m} p_{in} \ge \sum_{i=1}^{n+1} p_{in} \ge n+1$, which is impossible because P(m, w) is an *n*-compressed matrix. This contradiction shows that $\varepsilon(n+1, P) \ge n+1$.

Now let us form a new matrix $P'(m-n, w - (\varepsilon(n+1, P) - 1))$ by deleting from the matrix P the elements p_{ij} , which satisfy at least one of the inequalities $i \leq n, j \leq \varepsilon(n+1, P) - 1$.

It is not difficult to see that $P'(m-n, w - (\varepsilon(n+1, P) - 1))$ is a collected *n*-regular *n*-compressed matrix with $\lceil \frac{m-n}{n} \rceil = \lambda_0 - 1$. By the induction hypothesis, we have

$$w - (\varepsilon(n+1, P) - 1) \ge \left\lceil \frac{m-n}{n} \right\rceil \cdot n,$$

which means that

$$w \ge (\lambda_0 - 1)n + \varepsilon(n + 1, P) - 1 \ge (\lambda_0 - 1)n + n = \lambda_0 n = \left\lceil \frac{m}{n} \right\rceil \cdot n. \quad \Box$$

Now, for arbitrary positive integers m, l, n, k, where $m \ge n$ and ml = nk, let us define the class Bip(m, l, n, k) of biregular bipartite graphs:

$$Bip(m,l,n,k) \equiv \begin{cases} G = G(X,Y,E) & |X| = m, |Y| = n, \\ \text{for } \forall x \in X, d_G(x) = l, \\ \text{for } \forall y \in Y, d_G(y) = k. \end{cases}$$

Remark 2. Clearly, if $G \in Bip(m, l, n, k)$, then $\chi'(G) = k$.

Theorem 3. If $G = G(X, Y, E) \in Bip(m, l, n, k)$, then $w_Y(G) = k$, $w_X(G) \leq l \cdot \lceil \frac{m}{l} \rceil$.

Proof. The equality follows from Remark 2. Let us prove the inequality. Let $X = \{x_1, \ldots, x_m\}$. For $\forall r \in [1, \lfloor \frac{m}{l} \rfloor]$, define $X_r \equiv \{x_{(r-1)l+1}, \ldots, x_{rl}\}$. Define $X_{1+\lfloor \frac{m}{l} \rfloor} \equiv X \setminus \left(\bigcup_{i=1}^{\lfloor \frac{m}{l} \rfloor} X_i\right)$. For $\forall r \in [1, \lfloor \frac{m}{l} \rfloor]$, define $Y_r \equiv \bigcup_{x \in X_r} N_G(x)$. Define $Y_{1+\lfloor \frac{m}{l} \rfloor} \equiv \bigcup_{x \in X_{1+\lfloor \frac{m}{l} \rfloor}} N_G(x)$. For $\forall r \in [1, \lceil \frac{m}{l} \rceil]$, define $G_r \equiv G[X_r \cup Y_r]$.

Consider the sequence $G_1, G_2, \ldots, G_{\lceil \frac{m}{l} \rceil}$ of subgraphs of the graph G. From Corollary 1, we obtain that for $\forall i \in [1, \lceil \frac{m}{l} \rceil]$, there is $\varphi_i \in \alpha(G_i, l)$ persistent-interval on X_i .

Clearly, for $\forall e \in E(G)$, there exists the unique $\xi(e)$, satisfying the conditions $\xi(e) \in [1, \lceil \frac{m}{l} \rceil]$ and $e \in E(G_{\xi(e)})$.

Define a function $\psi : E(G) \to [1, l \cdot \lceil \frac{m}{l} \rceil]$. For an arbitrary $e \in E(G)$, set $\psi(e) \equiv (\xi(e) - 1) \cdot l + \varphi_{\xi(e)}(e)$.

It is not difficult to see that $\psi \in \alpha(G, l \cdot \lceil \frac{m}{l} \rceil)$ and ψ is interval on X. Hence, $w_X(G) \leq l \cdot \lceil \frac{m}{l} \rceil$.

Theorem 4. Let R be an arbitrary side of a bipartition of the complete bipartite graph $G = K_{m,n}$, where $m \in \mathbb{N}$, $n \in \mathbb{N}$. Then

$$w_R(G) = (m+n-|R|) \cdot \left\lceil \frac{|R|}{m+n-|R|} \right\rceil$$

Proof. Without loss of generality we can assume that G has a bipartition (X, Y), where $X = \{x_1, \ldots, x_m\}, Y = \{y_1, \ldots, y_n\}$, and $m \ge n$.

Case 1. R = Y. In this case the statement follows from Theorem 3; thus $w_Y(G) = m$.

Case 2. R = X.

The inequality $w_X(G) \leq n \cdot \lceil \frac{m}{n} \rceil$ follows from Theorem 3. Let us prove that $w_X(G) \geq n \cdot \lceil \frac{m}{n} \rceil$.

Consider an arbitrary proper edge $w_X(G)$ -coloring φ of the graph G, which is interval on X.

Clearly, without loss of generality, we can assume that

 $\min(S_G(x_1,\varphi)) \leqslant \min(S_G(x_2,\varphi)) \leqslant \ldots \leqslant \min(S_G(x_m,\varphi)).$

Let us define a (0, 1)-matrix $P(m, w_X(G))$ with m rows, $w_X(G)$ columns, and with elements p_{ij} , $1 \leq i \leq m$, $1 \leq j \leq w_X(G)$. For $\forall i \in [1, m]$, and for $\forall j \in [1, w_X(G)]$, set

$$p_{ij} = \begin{cases} 1, & \text{if } j \in S_G(x_i, \varphi) \\ 0, & \text{if } j \notin S_G(x_i, \varphi). \end{cases}$$

It is not difficult to see that $P(m, w_X(G))$ is a collected *n*-regular *n*-compressed matrix. From Lemma 1, we obtain $w_X(G) \ge n \cdot \lfloor \frac{m}{n} \rfloor$. \Box

From Theorems 1 and 3, taking into account the proof of Case 2 of Theorem 4, we also obtain

Corollary 2. If $G \in Bip(m, l, n, k)$, then

- 1) for $\forall t \in \left[l \cdot \left\lceil \frac{m}{l} \right\rceil, ml\right]$, there exists $\varphi_t \in \alpha(G, t)$ interval on X,
- 2) for $\forall t \in [k, nk]$, there exists $\psi_t \in \alpha(G, t)$ interval on Y.

References

- [1] A.S. Asratian, *Investigation of some mathematical model of Scheduling Theory*, Doctoral Dissertation, Moscow University, 1980 (in Russian).
- [2] A.S. Asratian, C.J. Casselgren, A sufficient condition for interval edge colorings of (4,3)-biregular bipartite graphs, Research report LiTH-MAT-R-2006-07, Linköping University, 2006.
- [3] A.S. Asratian, C.J. Casselgren, Some results on interval edge colorings of (α, β)biregular bipartite graphs, Research report LiTH-MAT-R-2006-09, Linköping University, 2006.
- [4] A.S. Asratian, C.J. Casselgren, On interval edge colorings of (α, β)-biregular bipartite graphs, Discrete Math 307 (2007), pp.1951-1956.
- [5] A.S. Asratian, C.J. Casselgren, J. Vandenbussche, D.B. West, Proper path-factors and interval edge-coloring of (3, 4)-biregular bigraphs, J. of Graph Theory 61 (2009), pp.88-97.
- [6] A.S. Asratian, T.M.J. Denley, R. Haggkvist, *Bipartite graphs and their applications*, Cambridge Tracts in Mathematics, 131, Cambridge University Press, 1998.
- [7] A.S. Asratian, R.R. Kamalian, Interval colorings of edges of a multigraph, Appl. Math. 5 (1987), Yerevan State University, pp.25-34 (in Russian).
- [8] A.S. Asratian, R.R. Kamalian, Investigation of interval edge-colorings of graphs, Journal of Combinatorial Theory. Series B 62 (1994), N.1, pp.34-43.
- M.A. Axenovich, On interval colorings of planar graphs, Congr. Numer. 159 (2002), pp.77-94.
- [10] D.P. Geller and A.J.W. Hilton, How to color the lines of a bigraph, Networks, 4(1974), pp.281-282.
- [11] K. Giaro, Compact task scheduling on dedicated processors with no waiting periods, PhD thesis, Technical University of Gdansk, EIT faculty, Gdansk, 1999 (in Polish).
- [12] K. Giaro, The complexity of consecutive Δ-coloring of bipartite graphs: 4 is easy, 5 is hard, Ars Combin. 47(1997), pp.287-298.
- [13] K. Giaro, M. Kubale and M. Malafiejski, On the deficiency of bipartite graphs, Discrete Appl. Math. 94 (1999), pp.193-203.

- [14] H.M. Hansen, Scheduling with minimum waiting periods, Master's Thesis, Odense University, Odense, Denmark, 1992 (in Danish).
- [15] D. Hanson, C.O.M. Loten, B. Toft, On interval colorings of bi-regular bipartite graphs, Ars Combin. 50(1998), pp.23-32.
- [16] T.R. Jensen, B. Toft, *Graph Coloring Problems*, Wiley Interscience Series in Discrete Mathematics and Optimization, 1995.
- [17] R.R. Kamalian, Interval Edge Colorings of Graphs, Doctoral dissertation, the Institute of Mathematics of the Siberian Branch of the Academy of Sciences of USSR, Novosibirsk, 1990 (in Russian).
- [18] R.R. Kamalian, On one-sided interval colorings of bipartite graphs, the Herald of the RAU, N.2, Yerevan, 2010, pp.3-11 (in Russian).
- [19] R.R. Kamalian, Interval colorings of complete bipartite graphs and trees, Preprint of the Computing Centre of the Academy of Sciences of Armenia, Yerevan, 1989 (in Russian).
- [20] M. Kubale, *Graph Colorings*, American Mathematical Society, 2004.
- [21] P.A. Petrosyan, Interval edge-colorings of complete graphs and n-dimensional cubes, Discrete Math. 310 (2010), pp.1580-1587.
- [22] P.A. Petrosyan, On interval edge-colorings of multigraphs, The Herald of the RAU, N.1, Yerevan, 2011, pp.12-21 (in Russian).
- [23] P.A. Petrosyan, H.H. Khachatrian, Interval non-edge-colorable bipartite graphs and multigraphs, J. of Graph Theory 76 (2014), pp.200-216.
- [24] A.V. Pyatkin, Interval coloring of (3,4)-biregular bipartite graphs having large cubic subgraphs, J. of Graph Theory 47 (2004), pp.122-128.
- [25] S.V. Sevast'janov, Interval colorability of the edges of a bipartite graph, Metody Diskret. Analiza 50(1990), pp.61-72 (in Russian).
- [26] V.G. Vizing, The chromatic index of a multigraph, Kibernetika 3 (1965), pp.29-39.
- [27] D.B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 1996.
- [28] F. Yang, X. Li, Interval coloring of (3,4)-biregular bigraphs having two (2,3)biregular bipartite subgraphs, Appl. Math. Letters 24(2011), pp.1574-1577.
- [29] Y. Zhao and J.G. Chang, Consecutive Edge-Colorings of Generalized θ -Graphs, J. Akiyama et al. (Eds.): CGGA 2010, LNCS 7033, 2011, pp.214-225.

CONTACT INFORMATION

R. R. Kamalian Institute for Informatics and Automation Problems of the National Academy of Sciences of RA, 0014 Yerevan, Republic of Armenia E-Mail(s): rrkamalian@yahoo.com

Received by the editors: 17.12.2012 and in final form 10.02.2015.