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Recursive formulas generating power moments

of multi-dimensional Kloosterman sums and
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sums∗
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Abstract. In this paper, we construct two binary linear
codes associated with multi-dimensional and m−multiple power
Kloosterman sums (for any fixed m) over the finite field Fq. Here
q is a power of two. The former codes are dual to a subcode of
the binary hyper-Kloosterman code. Then we obtain two recursive
formulas for the power moments of multi-dimensional Kloosterman
sums and for the m-multiple power moments of Kloosterman sums
in terms of the frequencies of weights in the respective codes. This
is done via Pless power moment identity and yields, in the case
of power moments of multi-dimensional Kloosterman sums, much
simpler recursive formulas than those associated with finite special
linear groups obtained previously.

1. Introduction and Notations

Let ψ be a nontrivial additive character of the finite field Fq with
q = pr elements (p a prime), and let m be a positive integer. Then the
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m-dimensional Kloosterman sum Km(ψ; a)([10]) is defined by

Km(ψ; a) =
∑

α1,··· ,αm∈F∗

q

ψ(α1 + · · · + αm + aα−1
1 · · ·α−1

m ) (a ∈ F∗
q).

For this, we have the Deligne bound

|Km(ψ; a)| 6 (m+ 1)q
m
2 . (1.1)

In particular, if m = 1, then K1(ψ; a) is simply denoted by K(ψ; a),
and is called the Kloosterman sum. The Kloosterman sum was introduced
in 1926 [8] to give an estimate for the Fourier coefficients of modular
forms. It has also been studied to solve various problems in coding theory
and cryptography over finite fields of characteristic two.

For each nonnegative integer h, we denote by MKm(ψ)h the h-th
moment of the m-dimensional Kloosterman sum Km(ψ; a), i.e.,

MKm(ψ)h =
∑

a∈F∗

q

Km(ψ; a)h.

If ψ = λ is the canonical additive character of Fq, then MKm(λ)h

will be simply denoted by MKh
m. If futher m = 1, for brevity MKh

1 will
be indicated by MKh. The power moments of Kloosterman sums can be
used, for example, to give an estimate for the Kloosterman sums.

Explicit computations on power moments of Kloosterman sums were
initiated in the paper [17] of Salié in 1931, where it is shown that for any
odd prime q,

MKh = q2Mh−1 − (q − 1)h−1 + 2(−1)h−1 (h > 1).

Here M0 = 0, and, for h ∈ Z>0,

Mh = |{(α1, · · · , αh) ∈ (F∗
q)h|

h
∑

j=1

αi = 1 =
h
∑

j=1

α−1
i }|.

For q = p an odd prime, Salié obtained MK1, MK2, MK3, MK4

in that same paper by determining M1, M2, M3. On the other hand,
MK5 can be expressed in terms of the p-th eigenvalue for a weight 3
newform on Γ0(15) (cf. [11], [16]). MK6 can be expressed in terms of the
p-th eigenvalue for a weight 4 newform on Γ0(6) (cf.[4]). Also, based on
numerical evidence, in [3] Evans was led to propose a conjecture which
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expresses MK7 in terms of Hecke eigenvalues for a weight 3 newform on
Γ0(525) with quartic nebentypus of conductor 105.

From now on, let us assume that q = 2r. Carlitz [1] evaluated MKh

for h 6 4. Recently, Moisio was able to find explicit expressions of MKh,
for h 6 10 (cf. [13]). This was done, via Pless power moment identity, by
connecting moments of Kloosterman sums and the frequencies of weights
in the binary Zetterberg code of length q + 1, which were known by the
work of Schoof and Vlugt in [18].

Also, Moisio considered binary hyper-Kloosterman codes C(r,m) and
determined the weight distributions of C(r,m) and C⊥(r,m), for r = 2
and all m > 2, and for all r > 2 and m = 3 (cf. [14]). In [15], these results
were further extended to the case of r = 3, 4 and all m > 2.

In this paper, we construct two binary linear codes Cn−1 and Dm,
respectively connected with multi-dimensional and m-multiple power
Kloosterman sums (for any fixed m) over the finite field Fq. Here q is
a power of two. The code C⊥

n−1 is a subcode of the hyper-Kloosterman
code C(r, n), which is mentioned above. Then we obtain two recursive
formulas for the power moments of multi-dimensional Kloosterman sums
and the m-multiple power moments of Kloosterman sums in terms of
the frequencies of weights in the respective codes. This is done via Pless
power moment identity and yields, in the case of power moments of multi-
dimensional Kloosterman sums, much simpler recursive formulas than
those obtained previously in [5]. As for the case of q a power of three,
in [6] two infinite families of ternary linear codes associated with double
cosets in the symplectic group Sp(2n, q) were constructed in order to
generate infinite families of recursive formulas for the power moments
of Kloosterman sums with square arguments and for the even power
moments of those in terms of the frequencies of weights in those codes.

Theorem 1.1. (1) Let n = 2s, q = 2r. For r > 3, and h = 1, 2, · · · ,

MKh
n−1 =

h−1
∑

l=0

(−1)h+l+1

(

h

l

)

(q − 1)(n−1)(h−l)MK l
n−1

+ q

min{(q−1)n−1, h}
∑

j=0

(−1)h+jCn−1,j

h
∑

t=j

t!S(h, t)2h−t

(

(q − 1)n−1 − j

(q − 1)n−1 − t

)

.

(1.2)

Here S(h, t) indicates the Stirling number of the second kind given by

S(h, t) =
1

t!

t
∑

j=0

(−1)t−j

(

t

j

)

jh. (1.3)
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In addition, {Cn−1,j}(q−1)n−1

j=0 denotes the weight distribution of the binary
linear code Cn−1, given by

Cn−1,j =
∑ ∏

β∈Fq

(

δ(n− 1, q;β)

νβ

)

, (1.4)

where the sum runs over all the sets of integers {νβ}β∈Fq
(0 6 νβ 6

δ(n− 1, q;β)) satisfying
∑

β∈Fq

νβ = j,
∑

β∈Fq

νββ = 0 (1.5)

and δ(n− 1, q;β) = |{(α1, · · · , αn−1) ∈ (F∗
q)n−1|

α1 + · · · + αn−1 + α−1
1 · · ·α−1

n−1 = β}|

=

{

q−1{(q − 1)n−1 + 1}, if β = 0,

Kn−2(λ;β−1) + q−1{(q − 1)n−1 + 1}, if β ∈ F∗
q .

Here we understand that K0(λ;β−1) = λ(β−1).

(2) Let q = 2r. For r > 3, and m,h = 1, 2, · · · ,

MKmh =
h−1
∑

l=0

(−1)h+l+1

(

h

l

)

(q − 1)m(h−l)MKml

+ q

min{(q−1)m,h}
∑

j=0

(−1)h+jDm,j

h
∑

t=j

t!S(h, t)2h−t

(

(q − 1)m − j

(q − 1)m − t

)

.

(1.6)

Here {Dm,j}(q−1)m

j=0 is the weight distribution of the binary linear code Dm,
given by

Dm,j =
∑ ∏

β∈Fq

(

σ(m, q;β)

νβ

)

, (1.7)

where the sum runs over all the sets of integers {νβ}β∈Fq
(0 6 νβ 6

σ(m, q;β)) satisfying (1.5), and

σ(m, q;β) = |{(α1, · · · , αm) ∈ (F∗
q)m|

α1 + · · · + αm + α−1
1 + · · · + α−1

m = β}|
=
∑

λ(α1 + · · · + αm) + q−1{(q − 1)m + (−1)m+1},
(1.8)

with the sum running over all α1,· · ·, αm ∈F∗
q, satisfying α−1

1 +· · ·+α−1
m =β.
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(1) and (2) of the following are respectively n = 2 and n = 4 cases
of Theorem 1.1 (1) (cf. (3.3), (3.4)), and (3) and (4) are equivalent and
n = 2 case of Theorem 1.1 (2) ((cf. (5.4), (5.8)).

Corollary 1.2. (1) Let q = 2r. For r > 3, and h = 1, 2, · · · ,

MKh =
h−1
∑

l=0

(−1)h+l+1

(

h

l

)

(q − 1)h−lMK l

+ q

min{(q−1),h}
∑

j=0

(−1)h+jC1,j

h
∑

t=j

t!S(h, t)2h−t

(

q − 1 − j

q − 1 − t

)

,

(1.9)

where {C1,j}q−1
j=0 is the weight distribution of the binary linear code C1,

with

C1,j =
∑

(

1

ν0

)

∏

tr(β−1)=0

(

2

νβ

)

(j = 0, · · · , N1).

Here the sum is over all the sets of nonnegative integers {ν0}⋃{νβ}tr(β−1)=0

satisfying ν0 +
∑

tr(β−1)=0 νβ = j and
∑

tr(β−1)=0 νββ = 0.
(2) Let q = 2r. For r > 3, and h = 1, 2, · · · ,

MKh
3 =

h−1
∑

l=0

(−1)h+l+1

(

h

l

)

(q − 1)3(h−l)MK l
3

+ q

min{(q−1)3,h}
∑

j=0

(−1)h+jC3,j

h
∑

t=j

t!S(h, t)2h−t

(

(q − 1)3 − j

(q − 1)3 − t

)

,

(1.10)

where {C3,j}(q−1)3

j=0 is the weight distribution of the binary linear code C3,
with

C3,j =
∑

(

m0

ν0

)

∏

|t|<2
√

q

t≡−1(4)

∏

K(λ;β−1)=t

(

mt

νβ

)

.

Here the sum runs over all the sets of nonnegative integers {νβ}β∈Fq

satisfying (1.5),

m0 = q2 − 3q + 3,

and

mt = t2 + q2 − 4q + 3,
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for every integer t satisfying |t| < 2
√
q and t ≡ −1(4).

(3) Let q = 2r. For r > 3, and h = 1, 2, · · · ,

MK2h =
h−1
∑

l=0

(−1)h+l+1

(

h

l

)

(q − 1)2(h−l)MK2l

+ q

min{(q−1)2,h}
∑

j=0

(−1)h+jD2,j

h
∑

t=j

t!S(h, t)2h−t

(

(q − 1)2 − j

(q − 1)2 − t

)

,

(1.11)

where {D2,j}(q−1)2

j=0 is the weight distribution of the binary linear code D2,
with

D2,j =
∑

(

2q − 3

ν0

)

∏

β∈F∗

q

(

K(λ;β−1) + q − 3

νβ

)

=
∑

(

2q − 3

ν0

)

∏

|t|<2
√

q

t≡−1(4)

∏

K(λ;β−1)=t

(

t+ q − 3

νβ

)

,
(1.12)

with the sum running over all the sets of nonnegative integers {νβ}β∈Fq

satisfying (1.5).

(4) Let q = 2r. For r > 3, and h = 1, 2, · · · ,

MKh
2 =

h−1
∑

l=0

(−1)h+l+1

(

h

l

)

(q2 − 3q + 1)(h−l)MK l
2

+ q

min{(q−1)2,h}
∑

j=0

(−1)h+jD2,j

h
∑

t=j

t!S(h, t)2h−t

(

(q − 1)2 − j

(q − 1)2 − t

)

,

(1.13)

where D2,j(0 6 j 6 (q − 1)2)’s are just as in (1.12).

The next two theorems will be of use later.

Theorem 1.3 ([9]). Let q = 2r, with r > 2. Then the range R of K(λ; a),
as a varies over F∗

q, is given by

R = {t ∈ Z | |t| < 2
√
q, t ≡ −1(mod4)}.

In addition, each value t ∈ R is attained exactly H(t2 − q) times,
where H(d) is the Kronecker class number of d.
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Theorem 1.4 ([2]). For the canonical additive character λ of Fq, and
a ∈ F∗

q,

K2(λ; a) = K(λ; a)2 − q. (1.14)

Before we proceed further, we will fix the notations that will be used
throughout this paper:

q = 2r (r ∈ Z>0),

Fq = the finite field with q elements,

tr(x) = x+ x2 + · · · + x2r−1

the trace function Fq → F2,

λ(x) = (−1)tr(x) the canonical additive character of Fq.

Note that any nontrivial additive character ψ of Fq is given by ψ(x) =
λ(ax), for a unique a ∈ F∗

q .

2. Construction of codes associated

with multi-dimensional Kloosterman sums

We will construct binary linear codes Cn−1 of length N1 = (q− 1)n−1,
connected with the (n− 1)-dimensional Kloosterman sums. Here n = 2s,
with s ∈ Z>0.

Let

vn−1 = (· · · , α1 + · · · + αn−1 + α−1
1 · · ·α−1

n−1, · · · ), (2.1)

where α1, α2, · · · , αn−1 run respectively over all elements of F∗
q . Here we

do not specify the ordering of the components of vn−1, but we assume
that some ordering is fixed.

Proposition 2.1 ([5], Proposition 11). For each β ∈ Fq, let

δ(n− 1, q;β)

= |{(α1, · · · , αn−1) ∈ (F∗
q)n−1|α1 + · · · ,+αn−1 + α−1

1 · · ·α−1
n−1 = β}|

(Note that δ(n− 1, q;β) is the number of components with those equal to
β in the vector vn−1(cf.(2.1))). Then

δ(n− 1, q; 0) = q−1{(q − 1)n−1 + 1},
and, for β ∈ F∗

q,

δ(n− 1, q;β) = Kn−2(λ;β−1) + q−1{(q − 1)n−1 + 1},
where K0(λ;β−1) = λ(β−1) by convention.
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Corollary 2.2.

(1) δ(1, q;β) =















2, if tr(β−1) = 0,

1, if β = 0,

0, if tr(β−1) = 1.

(2.2)

(2) δ(3, q;β) =

{

q2 − 3q + 3, if β = 0,

K(λ;β−1)2+q2−4q+3, if β∈F∗
q (cf.(1.14)).

(2.3)

The binary linear code Cn−1 is defined as

Cn−1 = {u ∈ F
N1

2 |u · vn−1 = 0}, (2.4)

where the dot denotes the usual inner product in FN1
q .

The following Delsarte’s theorem is well-known.

Theorem 2.3 ([12]). Let B be a linear code over Fq. Then

(B|F2
)⊥ = tr(B⊥).

In view of this theorem, the dual C⊥
n−1 of Cn−1 is given by

C⊥
n−1 ={c(a)=(· · · , tr(a(α1+· · ·+αn−1+α−1

1 · · ·α−1
n−1)), · · · )|a ∈ Fq}.

(2.5)

Lemma 2.4. (q − 1)n−1 > nq
n−1

2 , for all n = 2s (s ∈ Z>0), and q =
2r > 8.

Proof. This can be proved, for example, by induction on s.

Proposition 2.5. For q = 2r, with r > 3, the map Fq → C⊥
n−1(a 7→ c(a))

is an F2-linear isomorphism.

Proof. The map is clearly F2-linear and onto. Let a be in the kernel
of the map. Then tr(a(α1 + · · · + αn−1 + α−1

1 · · ·α−1
n−1)) = 0, for all

α1, · · · , αn−1 ∈ F∗
q . Suppose that a 6= 0. Then, on the one hand,

∑

α
1
,··· ,α

n−1
∈F∗

q

(−1)tr(a(α
1
+···+αn−1

+α−1

1
···α−1

n−1
)) = (q − 1)n−1 = N1. (2.6)

On the other hand, (2.6) is equal to Kn−1(λ; a) (cf. proof of Proposition 11
in [5]), and so from Deligne’s estimate in (1.1) we get

(q − 1)n−1
6 nq

n−1

2 .

But this is impossible for q > 8, in view of Lemma 2.4.
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3. Recursive formulas for power moments

of multi-dimensional Kloostermann sums

We are now ready to derive, via Pless power moment identity, a recur-
sive formula for the power moments of multi-dimensional Kloosterman
sums in terms of the frequencies of weights in Cn−1.

Theorem 3.1 (Pless power moment identity, [12]). Let B be an q-ary
[n, k] code, and let Bi(resp. B⊥

i ) denote the number of codewords of weight
i in B(resp. in B⊥). Then, for h = 0, 1, 2, · · · ,

n
∑

i=0

ihBi =

min{n,h}
∑

i=0

(−1)iB⊥
i

h
∑

t=i

t!S(h, t)qk−t(q − 1)t−i

(

n− i

n− t

)

, (3.1)

where S(h, t) is the Stirling number of the second kind defined in(1.3).

For the following lemma, observe that (n, q − 1) = 1.

Lemma 3.2. The map a 7→ an : F∗
q → F∗

q is a bijection.

Lemma 3.3. For a ∈ F∗
q, the Hamming weight w(c(a))(cf. (2.5)) of c(a)

can be expressed as follows:

w(c(a)) =
N1

2
− 1

2
Kn−1(λ; a), with N1 = (q − 1)n−1. (3.2)

Proof.

w(c(a)) =
1

2

∑

α
1
,··· ,α

n−1
∈F∗

q

(1 − (−1)tr(a(α
1
+···+αn−1

+α−1

1
···α−1

n−1
)))

=
1

2
{N1 −

∑

α
1
,··· ,α

n−1
∈F∗

q

λ(a(α1 + · · · + αn−1 + α−1
1 · · ·α−1

n−1))}

=
N1

2
− 1

2

∑

α
1
,··· ,α

n−1
∈F∗

q

λ(α1 + · · · + αn−1 + anα−1
1 · · ·α−1

n−1)

=
N1

2
− 1

2

∑

α
1
,··· ,α

n−1
∈F∗

q

λ(αn
1 + · · · + αn

n−1 + anα−n
1 · · ·α−n

n−1)

(by Lemma 3.2)

=
N1

2
− 1

2

∑

α
1
,··· ,α

n−1
∈F∗

q

λ((α1 + · · · + αn−1 + aα−1
1 · · ·α−1

n−1)n)

=
N1

2
− 1

2

∑

α
1
,··· ,α

n−1
∈F∗

q

λ(α1 + · · · + αn−1 + aα−1
1 · · ·α−1

n−1)
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([10], Theorem 2.23(v))

=
N1

2
− 1

2
Kn−1(λ; a).

Denote for the moment vn−1 in (2.1) by vn−1 = (g1, g2, · · · , gN1
). Let

u = (u1, · · · , uN1
) ∈ F

N1

2 , with νβ 1’s in the coordinate places where
gl = β, for each β ∈ Fq. Then we see from the definition of the code Cn−1

(cf. (2.4)) that u is a codeword with weight j if and only if
∑

β∈Fq
νβ = j

and
∑

β∈Fq
νββ = 0 (an identity in Fq). As there are

∏

β∈Fq

(δ(n−1,q;β)
νβ

)

(cf. Proposition 2.1) many such codewords with weight j, we obtain the
following result.

Proposition 3.4. Let {Cn−1,j}N1

j=0 be the weight distribution of Cn−1,
where Cn−1,j denotes the frequency of the codewords with weight j in
Cn−1. Then

Cn−1,j =
∑ ∏

β∈Fq

(

δ(n− 1, q;β)

νβ

)

,

where the sum runs over all the sets of integers {νβ}β∈Fq
(0 6 νβ 6

δ(n− 1, q;β)) satisfying
∑

β∈Fq

νβ = j, and
∑

β∈Fq

νββ = 0.

Corollary 3.5. (1) Let {C1,j}q−1
j=0 be the weight distribution of C1. Then

C1,j =
∑

(

1

ν0

)

∏

tr(β−1)=0

(

2

νβ

)

(j = 0, · · · , q − 1), (3.3)

where the sum is over all the sets of nonnegative integers {ν0}∪{νβ}tr(β−1)=0

satisfying ν0 +
∑

tr(β−1)=0 νβ = j and
∑

tr(β−1)=0 νββ = 0 (cf.(2.2)).

(2) Let {C3,j}(q−1)3

j=0 be the weight distribution of C3. Then

C3,j =
∑

(

m0

ν0

)

∏

|t|<2
√

q

t≡−1(4)

∏

K(λ;β−1)=t

(

mt

νβ

)

, (3.4)

where the sum runs over all the sets of integers {νβ}β∈Fq
satisfying

∑

β∈Fq

νβ = j, and
∑

β∈Fq

νββ = 0,
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m0 = q2 − 3q + 3,

and

mt = t2 + q2 − 4q + 3,

for every integer t satisfying |t|<2
√
q and t≡−1(4) (cf.Theorem1.3,(2.3)).

Remark 3.6. This shows that the weight distribution of C1 is the same
as that of C(SO+(2, q)) (cf. [7]).

From now on, we will assume that r > 3, and hence every codeword
in C⊥

n−1 can be written as c(a), for a unique a ∈ Fq (cf. Proposition 2.5).
We now apply the Pless power moment identity in (3.1) to C⊥

n−1, in
order to obtain the result in Theorem 1.1 (1) about a recursive formula.
Then the left hand side of that identity in (3.1) is equal to

∑

a∈F∗

q

w(c(a))h, (3.5)

with w(c(a)) given by (3.2). So (3.5) is
∑

a∈F∗

q

w(c(a))h =
1

2h

∑

a∈F∗

q

(N1 −Kn−1(λ; a))h

=
1

2h

∑

a∈F∗

q

h
∑

l=0

(−1)l

(

h

l

)

Nh−1
1 Kn−1(λ; a)l

=
1

2h

h
∑

l=0

(−1)l

(

h

l

)

Nh−1
1 MK l

n−1.

(3.6)

On the other hand, noting that dimF2
Cn−1 = r (cf. Proposition 2.5)

the right hand side of the Pless moment identity(cf. (3.1)) becomes

q

min{N1,h}
∑

j=0

(−1)jCn−1,j

h
∑

t=j

t!S(h, t)2−t

(

N1 − j

N1 − t

)

. (3.7)

Our result in (1.2) follows now by equating (3.6) and (3.7).

Remark 3.7. A recursive formula for the power moments of multi-
dimensional Kloosterman sums was obtained in [5] by constructing binary
linear codes C(SL(n, q)) and utilizing explicit expressions of Gauss sums
for the finite special linear group SL(n, q). However, our result in (1.2) is
better than that in (1) of [5]. Because our formula here is much simpler
than the one there. Indeed, the length of the code Cn−1 here is N1 =

(q − 1)n−1, whereas that of C(SL(n, q)) there is N = q(
n

2)
∏n

j=2(qj − 1),
both of which appear in their respective expressions of recursive formulas.
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4. Construction of codes associated

with powers of Kloosterman sums

We will construct binary linear codes Dm of length N2 = (q − 1)m,
connected with the m-th powers of (the ordinary) Kloosterman sums.
Here m ∈ Z>0.

Let

wm = (· · · , α1 + · · · + αm + α−1
1 + · · · + α−1

m , · · · ), (4.1)

where α1, α2, · · · , αm run respectively over all elements of F∗
q . Here we do

not specify the ordering of the components of wm, but we assume that
some ordering is fixed.

Theorem 4.1 ([7]). Let λ be the canonical additive character of Fq, and
let β ∈ F∗

q. Then

∑

α∈Fq−{0,1}
λ(

β

α2 + α
) = K(λ;β) − 1. (4.2)

Proposition 4.2. For each β ∈ Fq, let

σ(m, q;β) = |{(α1, · · · , αm) ∈ (F∗
q)m|α1+· · ·+αm+α−1

1 +· · ·+α−1
m =β}|

(Note that σ(m, q;β) is the number of components with those equal to β
in the vector wm (cf. (4.1)). Then

(1) σ(m, q;β) =
∑

λ(α1+· · ·+αm)+q−1{(q−1)m+(−1)m+1}, (4.3)

where the sum in (4.3) runs over all α1, · · · , αm ∈ F∗
q, satisfying α−1

1 +
· · · + α−1

m = β.

(2) σ(2, q;β) =

{

2q − 3, if β = 0,

K(λ;β−1) + q − 3, if β 6= 0.
(4.4)

Proof. (1) can be proved just as Proposition 2.1(cf. [5], Proposition 11).
The details are left to the reader.

(2) If m = 2, from (4.3)

σ(2, q;β) =
∑

λ(α1 + α2) + q − 2, (4.5)

where α1 and α2 run over all elements in F∗
q , satisfying α−1

1 + α−1
2 = β.
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If β = 0, then the result is clear. Assume now that β 6= 0. Then the sum
in (4.5) is

∑

α1∈Fq−{0,β−1}
λ(α1 + (α−1

1 + β)−1)

=
∑

α1∈Fq−{0,β}
λ(α−1

1 + (α1 + β)−1) (α1 → α−1
1 )

=
∑

α1∈Fq−{0,1}
λ(

β−1

α2
1 + α1

) (α1 → βα1)

= K(λ;β−1) − 1 (cf.(4.2)).

The binary linear code Dm is defined as

Dm = {u ∈ F
N2

2 |u · wm = 0},

where the dot denotes the usual inner product in FN2
q .

Remark 4.3. Clearly, the binary linear codes C1 and D1 coincide.

In view of Theorem 2.3, the dual D⊥
m of Dm is given by

D⊥
m = {d(a)=(· · ·, tr(a(α1+· · ·+αm+α−1

1 +· · ·+α−1
m )), · · · )|a∈Fq}.

(4.6)

Lemma 4.4. (q − 1)m > 2mq
m
2 , for all m ∈ Z>0 and q = 2r > 8.

Proof. This can be shown, for example, by induction on m.

Proposition 4.5. For q = 2r, with r > 3, the map Fq → D⊥
m(a 7→ d(a))

is an F2-linear isomorphism.

Proof. The map is clearly F2-linear and onto. Let a be in the kernel
of the map. Then tr(a(α1 + · · · + αm + α−1

1 + · · · + α−1
m )) = 0, for all

α1, · · · , αm ∈ F∗
q . Suppose that a 6= 0. Then, on the one hand,

∑

α
1
,··· ,αm∈F∗

q

(−1)tr(a(α
1
+···+αm+α−1

1
+···+α−1

m )) = (q − 1)m = N2. (4.7)

On the other hand, (4.7) is equal to K(λ; a)m, and so from Weil’s estimate
(i.e. (1.1) with m = 1) we get

(q − 1)m
6 2mq

m
2 .

But this is impossible for q > 8, in view of Lemma 4.4.
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5. Recursive formulas for m-multiple power moments

of Kloostermann sums

We are now ready to derive, via Pless power moment identity, a
recursive formula for the m-multiple power moments of Kloosterman
sums in terms of the frequencies of weights in Dm.

Lemma 5.1. For a ∈ F∗
q, the Hamming weight w(d(a)) of d(a) (cf. (4.6))

can be expressed as follows:

w(d(a)) =
N2

2
− 1

2
K(λ; a)m, with N2 = (q − 1)m. (5.1)

Proof. This can be shown exactly as the proof of Lemma 3.3.

Corollary 5.2. For m = 2,

w(d(a)) =
1

2
(q2 − 3q + 1 −K2(λ; a)) (cf.(1.14)). (5.2)

The same argument leading to Proposition 3.4 shows the next propo-
sition.

Proposition 5.3. Let {Dm,j}N2

j=0 be the weight distribution of Dm, where
Dm,j denotes the frequency of the codewords with weight j in Dm. Then

Dm,j =
∑ ∏

β∈Fq

(

σ(m, q;β)

νβ

)

, (5.3)

where the sum runs over all the sets of integers {νβ}β∈Fq
(0 6 νβ 6

σ(m, q;β)), satisfying
∑

β∈Fq

νβ = j, and
∑

β∈Fq

νββ = 0.

Corollary 5.4. Let {D2,j}(q−1)2

j=0 be the weight distribution of D2, and let
q = 2r, with r > 2. Then, in view of Theorem 1.3 and (4.4), we have

D2,j =
∑

(

2q − 3

ν0

)

∏

β∈F∗

q

(

K(λ;β−1) + q − 3

νβ

)

=
∑

(

2q − 3

ν0

)

∏

|t|<2
√

q

t≡−1(4)

∏

K(λ;β−1)=t

(

t+ q − 3

νβ

)

,
(5.4)
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where the sum runs over all the sets of nonnegative integers {νβ}β∈Fq

satisfying

∑

β∈Fq

νβ = j and
∑

β∈Fq

νββ = 0.

From now on, we will assume that r > 3, and hence every codeword
in D⊥

m can be written as d(a), for a unique a ∈ Fq(cf. Proposition 4.5).

We now apply the Pless power moment identity in (3.1) to D⊥
m, in

order to obtain the result in Theorem 1.1 (1) about a recursive formula.
Then the left hand side of that identity in (3.1) is equal to

∑

a∈F∗

q

w(d(a))h, (5.5)

with w(d(a)) given by (5.1). So (5.5) is seen to be equal to

∑

a∈F∗

q

w(d(a))h =
1

2h

h
∑

l=0

(−1)l

(

h

l

)

Nh−l
2 MKml. (5.6)

On the other hand, noting that dimF2
Dm = r(cf. Proposition 4.5) the

right hand side of the Pless moment identity(cf. (3.1)) becomes

q

min{N2,h}
∑

j=0

(−1)jDm,j

h
∑

t=j

t!S(h, t)2−t

(

N2 − j

N2 − t

)

. (5.7)

Our result in (1.6) follows now by equating (5.6) and (5.7).

Remark 5.5. If m = 2, from the alternative expression of w(d(a)) in (5.2)
we see that (5.5) can also be given as

∑

a∈F∗

q

w(d(a))h =
1

2h

h
∑

l=0

(−1)l

(

h

l

)

(q2 − 3q + 1)h−lMK l
2. (5.8)
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