An outer measure on a commutative ring Dariusz Dudzik and Marcin Skrzyński

Communicated by V. I. Sushchansky

Abstract

We show how to produce a reasonable outer measure on a commutative ring from a given measure on a family of prime ideals of this ring. We provide a few examples and prove several properties of such outer measures.

Introduction

Throughout the present paper, R is a nonzero commutative ring with identity. We denote by $\operatorname{Spec}(R)$ the family of all the prime ideals of R. (Notice that, by definition, every prime ideal is proper).

It is well known [1] that topological properties of $\operatorname{Spec}(R)$ equipped with the Zariski topology reflect algebraic properties of R. But are there useful relationships between algebraic or geometric properties of R and measures on $\operatorname{Spec}(R)$? This question seems to be quite interesting and not worked out in the specialist literature. The present paper provides some basic remarks concerning the question and, hopefully, is a starting point for further study.

In the paper, we will show that an arbitrary measure on a suitable subfamily of $\operatorname{Spec}(R)$ induces an outer measure on R with good multiplicative properties. We will also discuss a few elementary examples of such outer measures.

2010 MSC: 13A15, 28A12.
Key words and phrases: outer measure, measure, commutative ring, prime ideal.

By "measure" we mean a "non-negative σ-additive measure". We denote by 2^{X} the power set of a set X. We define

$$
|X|= \begin{cases}\text { the cardinality of } X, & \text { if } X \text { is finite } \\ +\infty, & \text { otherwise }\end{cases}
$$

By R^{\times}we denote the set of invertible elements of R. Notice that $\wp \cap R^{\times}=\varnothing$ whenever $\wp \in \operatorname{Spec}(R)$. We define $\operatorname{Max}(R)$ to be the family of all the maximal ideals of R. One can prove that $\operatorname{Max}(R) \subseteq \operatorname{Spec}(R)$ and $\bigcup \operatorname{Max}(R)=R \backslash R^{\times}$.

We refer to [1] for more information about commutative rings and to [2] for elements of measure theory.

1. Construction

We will use the definition of outer measure taken from [2].
Definition 1. We say that $\mu^{*}: 2^{X} \longrightarrow[0,+\infty]$ is an outer measure on a set X, if the following conditions are satisfied:
(1) $\mu^{*}(A) \leqslant \sum_{n=1}^{\infty} \mu^{*}\left(B_{n}\right)$ for every sequence $\left\{B_{n}\right\}_{n=1}^{\infty}$ of subsets of X and every $A \subseteq \bigcup_{n=1}^{\infty} B_{n}$,
(2) $\mu^{*}(\varnothing)=0$.

Let $\mathcal{P} \subseteq \operatorname{Spec}(R)$ be such that $\bigcup \mathcal{P}=R \backslash R^{\times}$, and let \mathfrak{M} be a σ-algebra of subsets of \mathcal{P}. For a set $A \subseteq R$ we define

$$
\Omega(A)=\left\{\mathcal{S} \in \mathfrak{M}: \bigcup \mathcal{S} \supseteq A \backslash R^{\times}\right\}
$$

Proposition 1. Suppose that $\mu: \mathfrak{M} \longrightarrow[0,+\infty]$ is a measure. Then the function $\mu^{*}: 2^{R} \longrightarrow[0,+\infty]$ defined by

$$
\mu^{*}(A)=\inf _{\mathcal{S} \in \Omega(A)} \mu(\mathcal{S})
$$

is an outer measure on R. (This outer measure will be referred to as the outer measure induced by μ).

Proof. It is obvious that $\mu^{*}(\varnothing)=0$. Let $\left\{B_{n}\right\}_{n=1}^{\infty}$ be a sequence of subsets of R and let ε be an arbitrary positive real number. Observe that

$$
\forall n \in \mathbb{N} \backslash\{0\} \exists \mathcal{S}_{n} \in \Omega\left(B_{n}\right): \mu\left(\mathcal{S}_{n}\right) \leqslant \mu^{*}\left(B_{n}\right)+\frac{\varepsilon}{2^{n}}
$$

If $A \subseteq \bigcup_{n=1}^{\infty} B_{n}$, then $\bigcup_{n=1}^{\infty} \mathcal{S}_{n} \in \Omega(A)$ and hence

$$
\mu^{*}(A) \leqslant \sum_{n=1}^{\infty} \mu\left(\mathcal{S}_{n}\right) \leqslant \varepsilon+\sum_{n=1}^{\infty} \mu^{*}\left(B_{n}\right)
$$

Since ε is arbitrary, the above inequalities yield $\mu^{*}(A) \leqslant \sum_{n=1}^{\infty} \mu^{*}\left(B_{n}\right)$.
The outer measure induced by a measure on a family of prime ideals is a slight modification of a well known measure-theoretical construction. In the next section we give examples that illustrate and motivate this modification.

2. Examples

We denote by (a) the principal ideal generated by an element $a \in R$. Consider a further example of a "covering by prime ideals".

Example 1. We assume that R is a unique factorization domain and define $\mathcal{P}_{\text {irr }}(R)=\{(0)\} \cup\{(a): a \in R, a$ is irreducible $\}$. Observe that $\mathcal{P}_{\text {irr }}(R) \subseteq \operatorname{Spec}(R)$ and $\bigcup \mathcal{P}_{\text {irr }}(R)=R \backslash R^{\times}$. Moreover, if $n \in \mathbb{N} \backslash\{0,1\}$ and $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, then $\mathcal{P}_{\text {irr }}(R) \cap \operatorname{Max}(R)=\varnothing$.

Recall that for every ideal I of the ring of integers there exists exactly one $m \in \mathbb{N} \cup\{0\}$ such that $I=(m)$. Notice also that $\operatorname{Max}(\mathbb{Z})=\{(p)$: $p \in \mathbb{P}\}$, where \mathbb{P} stands for the set of prime numbers.

Proposition 2. Let $\mu^{*}: 2^{\mathbb{Z}} \longrightarrow[0,+\infty]$ be the outer measure induced by the counting measure on $\operatorname{Max}(\mathbb{Z})$, and let $A \subseteq \mathbb{Z}$ be such that $A \backslash\{-1,1\} \neq \varnothing$. Then
(i) $\mu^{*}(\{-1,1\})=0$,
(ii) $\mu^{*}(A)=1$ if and only if

$$
\exists d \in \mathbb{N} \backslash\{0,1\} \forall k \in A \backslash\{-1,1\}: d \mid k
$$

(in particular, $\mu^{*}(A)=1$ whenever A is a singleton or a proper ideal of \mathbb{Z}),
(iii) $\mu^{*}(A) \leqslant|A|$.

Moreover, in the case where $A \cap\{-1,1\}=\varnothing$ and A is a finite set, $\mu^{*}(A)=|A|$ if and only if the elements of A are pairwise relatively prime.

Proof. Since $\{-1,1\}=\mathbb{Z}^{\times}$, we have $\varnothing \in \Omega(\{-1,1\})$. Equality (i) follows.
By the above characterization of $\operatorname{Max}(\mathbb{Z})$ and the definition of counting measure, $\mu^{*}(A)=1$ if and only if $A \backslash\{-1,1\} \subseteq\left(p_{1}\right)$ for a prime number p_{1}. The latter condition means precisely that

$$
\exists p_{1} \in \mathbb{P} \forall k \in A \backslash\{-1,1\}: p_{1} \mid k .
$$

Finally, if $d \in \mathbb{N} \backslash\{0,1\}, k \in \mathbb{Z}$ and $d \mid k$, then k is divisible by every prime factor of d. Property (ii) follows.

Property (iii) is an immediate consequence of the definition of outer measure and the fact that $\mu^{*}(\{k\}) \leqslant 1$ for all $k \in \mathbb{Z}$.

Assume that $A \cap\{-1,1\}=\varnothing$ and A is a finite set. Let us define $\ell=|A|$. Observe that $\mu^{*}(A) \neq|A|$ if and only if

$$
\exists \mathcal{S} \in \Omega(A):|\mathcal{S}| \leqslant \ell-1
$$

Since the cardinality of A is greater than the cardinality of \mathcal{S}, the latter condition holds true if and only if

$$
\exists s, t \in A \exists p_{2} \in \mathbb{P}:\left\{\begin{array}{l}
s \neq t \\
s, t \in\left(p_{2}\right)
\end{array}\right.
$$

and this means precisely that there exist two distinct elements of A which are not relatively prime.

Let $n \in \mathbb{N} \backslash\{0\}$. Consider a σ-algebra \mathfrak{N} of subsets of \mathbb{C}^{n}, a measure $\lambda: \mathfrak{N} \longrightarrow[0,+\infty]$, and the map

$$
\Phi: \mathbb{C}^{n} \ni z \longmapsto\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]: f(z)=0\right\} \in \operatorname{Max}\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right) .
$$

The family $\mathfrak{M}=\left\{\mathcal{S} \subseteq \operatorname{Max}\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right): \Phi^{-1}(\mathcal{S}) \in \mathfrak{N}\right\}$ is a σ-algebra of subsets of $\operatorname{Max}\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right)$. The function $\eta: \mathfrak{M} \ni \mathcal{S} \mapsto \lambda\left(\Phi^{-1}(\mathcal{S})\right) \in$ $[0,+\infty]$ is a measure.

Let us define $U=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{\times}$. (Obviously, $U=\mathbb{C} \backslash\{0\}$).
Proposition 3. If $\eta^{*}: 2^{\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]} \longrightarrow[0,+\infty]$ is the outer measure induced by η and $A \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is such that $A \backslash U \neq\{0\}$, then

$$
\eta^{*}(A)=\inf \left\{\lambda(Z): Z \in \mathfrak{N}, Z \cap f^{-1}(0) \neq \varnothing \text { for every } f \in A \backslash \mathbb{C}\right\}
$$

Proof. If $A \subseteq U$, then $\left\{Z \in \mathfrak{N}: Z \cap f^{-1}(0) \neq \varnothing\right.$ for every $\left.f \in A \backslash \mathbb{C}\right\}=$ \mathfrak{N}, and hence

$$
\inf \left\{\lambda(Z): Z \in \mathfrak{N}, Z \cap f^{-1}(0) \neq \varnothing \text { for every } f \in A \backslash \mathbb{C}\right\}=0=\eta^{*}(A)
$$

By Hilbert's Nullstellensatz, the map Φ is bijective. Consequently, $\mathfrak{M}=$ $\{\Phi(Z): Z \in \mathfrak{N}\}$. Suppose that $A \backslash \mathbb{C} \neq \varnothing$. Then for any $Z \in \mathfrak{N}$ the following equivalences hold true:

$$
\begin{gathered}
\Phi(Z) \in \Omega(A) \Longleftrightarrow(\forall f \in A \backslash U \exists \wp \in \Phi(Z): f \in \wp) \Longleftrightarrow \\
(\forall f \in A \backslash \mathbb{C} \exists z \in Z: f(z)=0) \Longleftrightarrow\left(\forall f \in A \backslash \mathbb{C}: Z \cap f^{-1}(0) \neq \varnothing\right)
\end{gathered}
$$

(The second equivalence holds because 0 belongs to every ideal). Therefore,

$$
\begin{gathered}
\eta^{*}(A)=\inf _{\mathcal{S} \in \Omega(A)} \eta(\mathcal{S})= \\
=\inf \left\{\lambda\left(\Phi^{-1}(\Phi(Z))\right): Z \in \mathfrak{N}, Z \cap f^{-1}(0) \neq \varnothing \text { for every } f \in A \backslash \mathbb{C}\right\},
\end{gathered}
$$

which completes the proof.
Example 2. Let $\eta^{*}: 2^{\mathbb{C}[x, y]} \longrightarrow[0,+\infty]$ be the outer measure induced by the counting measure on $\operatorname{Max}(\mathbb{C}[x, y])$. Consider the set $E=\{f, g, h, k\} \subset$ $\mathbb{C}[x, y]$, where

$$
f(x, y)=x^{2}-y+1, g(x, y)=y^{2}, h(x, y)=x y-1, k(x, y)=x y+1
$$

Since $f^{-1}(0) \cap g^{-1}(0) \cap h^{-1}(0) \cap k^{-1}(0)=\varnothing$ and $f^{-1}(0) \cap g^{-1}(0) \neq \varnothing$, we have $\eta^{*}(E) \in\{2,3\}$. Observe that $\{f, g\},\{f, h\}$ and $\{f, k\}$ are the only two-element subsets of E which have a common zero. Consequently, no three-element subset of E has a common zero. It follows, therefore, that $\eta^{*}(E)=3$.

Notice that in the example above, if I is a proper ideal of $\mathbb{C}[x, y]$, then $I \subseteq \wp$ for an ideal $\wp \in \operatorname{Max}(\mathbb{C}[x, y])$ and hence $\eta^{*}(I)=1$.

Let K be a nonempty compact subset of \mathbb{R}^{n} and let $\mathcal{C}(K, \mathbb{R})$ stand for the ring of all the continuous functions $f: K \longrightarrow \mathbb{R}$. Recall that $\mathcal{C}(K, \mathbb{R})^{\times}=\{f \in \mathcal{C}(K, \mathbb{R}): f(x) \neq 0$ for all $x \in K\}$. The map

$$
\Psi: K \ni x \longmapsto\{f \in \mathcal{C}(K, \mathbb{R}): f(x)=0\} \in \operatorname{Max}(\mathcal{C}(K, \mathbb{R}))
$$

is well known to be a bijection [3]. Consequently, if \mathfrak{B} is a σ-algebra of subsets of K and $\xi: \mathfrak{B} \longrightarrow[0,+\infty]$ is a measure, then $\mathfrak{M}=\{\Psi(Z): Z \in$ $\mathfrak{B}\}$ is a σ-algebra of subsets of $\operatorname{Max}(\mathcal{C}(K, \mathbb{R}))$ and

$$
\eta: \mathfrak{M} \ni \mathcal{S} \mapsto \xi\left(\Psi^{-1}(\mathcal{S})\right) \in[0,+\infty]
$$

is a measure. The obvious counterpart of Proposition 3 remains true.

Example 3. Let $\eta^{*}: 2^{\mathcal{C}(K, \mathbb{R})} \longrightarrow[0,+\infty]$ be the outer measure induced by η. We will denote by W the set of all the polynomial functions $f: K \longrightarrow \mathbb{R}$. Since

$$
\forall x \in K \exists f \in W: f^{-1}(0)=\{x\}
$$

we have $\eta^{*}(W)=\eta^{*}(\mathcal{C}(K, \mathbb{R}))=\xi(K)$.
Now, suppose that K is the Euclidean closed unit ball and ξ is the n-dimensional Lebesgue measure. If E stands for the set of all the radially symmetric functions belonging to $\mathcal{C}(K, \mathbb{R})$ and L is the straight line segment that joins the origin to a boundary point of K, then

$$
\forall f \in E \backslash \mathcal{C}(K, \mathbb{R})^{\times}: L \cap f^{-1}(0) \neq \varnothing
$$

Consequently, $\eta^{*}(E)=\xi(L)=0$ whenever $n \geqslant 2$. It is easy to see that if $n=1$, then $\eta^{*}(E)=1$.

3. General properties

In the theorem below (it is the main result of the paper) we use the notations and assumptions of Proposition 1. For $n \in \mathbb{N} \backslash\{0\}$ and $A_{1}, \ldots, A_{n} \subseteq R$ we define $A_{1} \ldots A_{n}=\left\{a_{1} \ldots a_{n}: a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}\right\}$. Moreover, if $A \subseteq R$, then $A^{n}=\left\{a^{n}: a \in A\right\}$ and $A^{\bullet n}=\underbrace{A \ldots A}_{n}$.

Theorem 1. Let $A, B \subseteq R$ and let C be a nonempty subset of R^{\times}. Then
(i) $\mu^{*}\left(R^{\times}\right)=0$,
(ii) $\mu^{*}(A)=\mu^{*}\left(A \backslash R^{\times}\right)$,
(iii) $\mu^{*}(\{0\})=\min \left\{\mu^{*}(E): E \subseteq R, E \backslash R^{\times} \neq \varnothing\right\}$,
(iv) $\forall n \in \mathbb{N} \backslash\{0\}: \mu^{*}\left(A^{n}\right)=\mu^{*}\left(A^{\bullet n}\right)=\mu^{*}(A)$,
(v) $\mu^{*}(A C)=\mu^{*}(A)$,
(vi) $\mu^{*}(A B) \geqslant \max \left\{\mu^{*}(A), \mu^{*}(B)\right\}$ whenever $A \cap R^{\times} \neq \varnothing$ and $B \cap R^{\times} \neq \varnothing$,
(vii) $\mu^{*}(A B) \leqslant \mu^{*}(A)+\mu^{*}(B)$,
(viii) $\mu^{*}(A B)=\mu^{*}(A)$ whenever $A \cap R^{\times}=\varnothing$ and $B \cap R^{\times} \neq \varnothing$,
(ix) $\mu^{*}(A B)=\min \left\{\mu^{*}(A), \mu^{*}(B)\right\}$ whenever $A \cap R^{\times}=\varnothing$ and $B \cap R^{\times}=\varnothing$.

Proof. Properties (i) and (ii) are obvious.
Property (iii) follows from the facts that $0 \notin R^{\times}$and 0 belongs to every ideal of R.

Fix a positive integer n. Let $a_{1}, \ldots, a_{n} \in R$. The product $a_{1} \ldots a_{n}$ is not invertible if and only if there exists an index $i \in\{1, \ldots, n\}$ such that
a_{i} is not invertible. Similarly, $a_{1} \ldots a_{n} \in \wp$ for an ideal $\wp \in \operatorname{Spec}(R)$ if and only if there exists an index $i \in\{1, \ldots, n\}$ such that $a_{i} \in \wp$. Therefore, $\Omega\left(A^{n}\right)=\Omega\left(A^{\bullet n}\right)=\Omega(A)$. Property (iv) follows.

Let $a \in R$ and $c \in R^{\times}$. Observe that $a c \notin R^{\times}$if and only if $a \notin R^{\times}$. Moreover,

$$
\forall \wp \in \operatorname{Spec}(R): a c \in \wp \Leftrightarrow a \in \wp
$$

Consequently, $\Omega(A C)=\Omega(A)$.
Suppose that $C_{1}=A \cap R^{\times} \neq \varnothing$ and $C_{2}=B \cap R^{\times} \neq \varnothing$. Since $A C_{2} \cup B C_{1} \subseteq A B$, we have $\max \left\{\mu^{*}\left(A C_{2}\right), \mu^{*}\left(B C_{1}\right)\right\} \leqslant \mu^{*}(A B)$. Property (v) yields $\mu^{*}\left(A C_{2}\right)=\mu^{*}(A)$ and $\mu^{*}\left(B C_{1}\right)=\mu^{*}(B)$. This completes the proof of (vi).

Let $\mathcal{S} \in \Omega(A)$ and $\mathcal{T} \in \Omega(B)$. Suppose that $a b \notin R^{\times}$for some $a \in A$ and $b \in B$. Then $a \notin R^{\times}$or $b \notin R^{\times}$. By the definition of ideal, we get therefore

$$
a b \in \bigcup \mathcal{S} \cup \bigcup \mathcal{T}
$$

Consequently, $\mathcal{S} \cup \mathcal{T} \in \Omega(A B)$ and hence $\mu^{*}(A B) \leqslant \mu(\mathcal{S})+\mu(\mathcal{T})$. Since \mathcal{S} and \mathcal{T} are arbitrarily chosen, it follows that $\mu^{*}(A B) \leqslant \mu^{*}(A)+\mu^{*}(B)$.

Assume that $A \cap R^{\times}=\varnothing$ and $C_{2}=B \cap R^{\times} \neq \varnothing$. Then, by the definition of ideal, $\Omega(A) \subseteq \Omega(A B)$ which implies that $\mu^{*}(A B) \leqslant \mu^{*}(A)$. On the other hand, by (v), we have $\mu^{*}(A)=\mu^{*}\left(A C_{2}\right) \leqslant \mu^{*}(A B)$. Therefore, $\mu^{*}(A B)=\mu^{*}(A)$.

Finally, assume that $A \cap R^{\times}=\varnothing$ and $B \cap R^{\times}=\varnothing$. Then $\mu^{*}(A B) \leqslant$ $\min \left\{\mu^{*}(A), \mu^{*}(B)\right\}$ (cf. the proof of property (viii)). Suppose now that $\mu^{*}(A B)<\min \left\{\mu^{*}(A), \mu^{*}(B)\right\}$. Then

$$
\exists \mathcal{U} \in \Omega(A B):\left\{\begin{array}{l}
\mu^{*}(\bigcup \mathcal{U})<\mu^{*}(A) \\
\mu^{*}(\bigcup \mathcal{U})<\mu^{*}(B)
\end{array}\right.
$$

(Notice that $\left.\mu^{*}(\cup \mathcal{U}) \leqslant \mu(\mathcal{U})\right)$. Consequently,

$$
\mu^{*}(A \backslash \bigcup \mathcal{U}) \geqslant \mu^{*}(A)-\mu^{*}(A \cap \bigcup \mathcal{U}) \geqslant \mu^{*}(A)-\mu^{*}(\bigcup \mathcal{U})>0
$$

and, in the same way, $\mu^{*}(B \backslash \bigcup \mathcal{U})>0$. Since $A B \cap R^{\times}=\varnothing$ and therefore $A B \subseteq \bigcup \mathcal{U}$, we get

$$
\exists a \in A \exists b \in B \exists \wp \in \mathcal{U} \subseteq \operatorname{Spec}(R):\left\{\begin{array}{l}
a b \in \wp, \\
a \notin \wp, b \notin \wp,
\end{array}\right.
$$

a contradiction. Property (ix) follows.

We will conclude the paper with an example illustrating the behavior of $\mu^{*}(A B)$ in the case where A and B both contain invertible elements.

Example 4. Let $\mu^{*}: 2^{\mathbb{Z}} \longrightarrow[0,+\infty]$ be the outer measure induced by the counting measure on $\operatorname{Max}(\mathbb{Z})$. If $A=\{1,2,3\}, B_{1}=\{1,2,3,5\}, B_{2}=$ $\{1,2,5,7\}$ and $B_{3}=\{1,5,7,11\}$, then $\mu^{*}(A)=2, \mu^{*}\left(B_{1}\right)=\mu^{*}\left(B_{2}\right)=$ $\mu^{*}\left(B_{3}\right)=3, \mu^{*}\left(A B_{1}\right)=3, \mu^{*}\left(A B_{2}\right)=4$ and $\mu^{*}\left(A B_{3}\right)=5$.

References

[1] M. F. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra, Westview Press, 1994.
[2] H. Federer, Geometric Measure Theory, Springer, 1969.
[3] W. Rudin, Functional Analysis, McGraw-Hill, 1991.

Contact information

D. Dudzik | Institute of Mathematics, | |
| :--- | :--- |
| Pedagogical University of Cracow, | |
| ul. Podchorążych 2, | |
| | 30-084 Kraków, Poland |
| | $E-\operatorname{Mail}(s)$: dariusz.dudzik@gmail.com |

M. Skrzyński Institute of Mathematics, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland E-Mail(s): pfskrzyn@cyf-kr.edu.pl

Received by the editors: 15.10 .2015
and in final form 05.01.2016.

